Through The Looking Glass of The Great Dying: New Study Finds Ocean Stratification Proceeded Rapidly Over Past 150 Years

During the terrible mass extinction event at the Permian-Triassic boundary about 250 million years ago nearly all life on Earth was snuffed out. The event, which geologists have dubbed “The Great Dying,” occurred during a period of rapid warming on the tail end of a long period of glaciation (see A Deadly Climb From Glaciation to Hothouse: Why the Permian-Triassic Extinction is Pertinent to Human Warming). According to reports by Dr. Peter Ward, a prominent geologist specializing in causes of previous mass extinctions, the Permian extinction was composed of three smaller extinction events occurring over the course of about 50,000 to 80,000 years which together wiped out 96% of all marine species and 70% of all land species. Ward’s book “Under a Green Sky,” in my view, together with Hansen’s seminal “Storms of My Grandchildren” provide an excellent if terrible rough allegory of the climate beast we seem to be in the process of awakening.

A2 model run

(NCAR A2 model run shows global surface temperatures near those last seen during the PETM and Permian/Triassic extinction events by 2090 under a middle-range fossil fuel emissions scenario. A2 does include some added emissions via amplifying feedbacks from massive polar methane or CO2 stores along with other Earth Systems feedbacks. It is worth nothing that the P/T extinction occurred at the end of a glacial period while the PETM did not and was notably less pronounced. It also worth noting that global average temperatures are currently about .2 C above those seen in the 1990s.)

As noted above, Ward’s work focused on causes and what he found at numerous dig sites around the world was evidence of a ‘Great Dying’ that began at the ocean floor, proceeded upward from the depths, and eventually came to transcend the ocean boundary and inflict a similar, if less pronounced, lethality upon terrestrial organisms. The mechanism Ward proposed for the worst extinction in Earth’s geological memory involved how oceans and, in particular, living creatures in the oceans, respond to rapid warming. Ward found that during periods of high heat called hothouse states, oceans first became anoxic and stratified and then, during the worst events, transitioned to a deadly primordial state called a Canfield Ocean.

A stratified ocean is one in which the layers become inverted and do not mix. Warm water is avected toward the ocean bottom and a cooler layer on top keeps that warm layer in place. The warmer water beneath is oxygen poor and this results in more anaerobic microbes living in the deep ocean. Overall, global ocean warming also contributes to an anoxic state. Many of these microbes produce toxins that are deadly to oxygen dependent organisms. As they multiplied, the combined low oxygen/high toxicity environment created a layer of death that slowly rose up through the world ocean system.

The primary lethal agent Ward proposed for this action was hydrogen sulfide gas. This deadly gas, which has an effect similar to that of cyanide gas, is produced in prodigious quantities by an anaerobic bacteria whose remnants lurk in the world’s deep oceans. In lower quantities they turn the water pink or purple, in greater quantities — black. Oxygen is toxic to these primordial bacteria. And so, in the mixed oceans of the Holocene all the way back to the PETM boundary layer, these little monsters were kept in check by a relatively high oxygen content. But start to shut down ocean mixing, start to make the oceans more stratified and less oxygen rich and you begin to let these dragons of our past out of their ancient cages. And once they get on the move, these creatures of Earth’s deep history can do extreme and severe harm.

Ward hypothesized that these ancient organisms and the gas they produced eventually came to fill the oceans and then spill out into the atmosphere.

An anoxic, stratified ocean full of anaerobic organisms and out-gassing hydrogen sulfide to the atmosphere is a primordial sea state known as a Canfield Ocean. And Ward found that such hot, toxic waters were the lethal agent that most likely snuffed out nearly all life 250 million years ago.

A Climate Hockey Stick for the World Ocean System: Oceans Show Marked and Rapid Stratification Over the Past 150 Years

Peter Ward’s tone was nothing if not fearful in his book ‘Under a Green Sky.’ He wrote with the wisdom of a man who has come face to face with terrible limits time and time again. He wrote with the wisdom of a man shocked by some of the hardest truths of our world. He also made a plea — could scientists and experts of different fields please work together to give humanity a better measure of the risks he saw to be plainly visible.

Chief among these risks, according to Ward, included a rapidly warming planet. Ward found that both extreme high heat conditions as well as a relatively rapid pace of warming, in geological terms, increased the speed of transition to stratified ocean and Canfield Ocean states. Ward acknowledged that high rates of water runoff from continents likely contributed to anoxia. Recent studies have also indicated that rapid glacial melt combined with rapid global heating may contribute to a an increasingly stratified and anoxic ocean system.

Now, a new study of deep ocean corals entitled Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age and conducted by researchers at the University of Santa Cruz and published in Nature has discovered proxy evidence that ocean stratification over the past 150 years advanced at the most rapid pace in at least the last 12,000 years. The study analyzed the sediment composition of coral growth layers to determine changes in ocean states since the 1850s. As the corals sucked up the dead bodies of micro-organisms over the past 1,000 years, the researchers were able to analyze what was happening to the cyanobacteria at the base of the food web.

What they found was that the bacteria increased their rate of nitrogen fixation by about 17 to 27 percent over the past 150 year period. And that this pace of change was ten times more rapid than that observed at the end of the Pliestocene and beginning of the Holocene 12,000 years ago.

Nitrogen Proxy Records and Their Relationship to Climate Change

(The Ocean’s Hockey Stick? Nitrogen Proxy Levels and Their Relationship to Climate Change.)

Increasing nitrogen fixation is an indicator of ocean stratification because cyanobacteria species under stress evolve to fix higher amounts of nitrogen from the surface transfer boundary with the air if particulate nitrogen levels in their environment drop. In a healthy, mixed ocean environment, nitrogen from various sources (terrestrial, run-off, etc), is readily traded between ocean layers due to the mixing action of ocean currents. In cooler oceans, more nitrogen is also held in suspension. But as oceans become warmer and more stratified, a loss of mixing and solubility results in lower nitrogen levels.

The researchers believe that this increase in nitrogen fixation is a clear indication that the region of the Pacific they observed is rapidly becoming more stratified and that this rate of increase is probably an order of magnitude faster than what occurred during the last major transition at the end of the last ice age.

“In comparison to other transitions in the paleoceanographic record, it’s gigantic,” Lead author Sherwood noted. “It’s comparable to the change observed at the transition between the Pleistocene and Holocene Epochs, except that it happens an order of magnitude faster.”

A separate study analyzing the nitrogen content of sea bird bones also provided proxy indication of a shift among cyanobacteria toward greater rates of nitrogen fixation, providing some additional confirmation for the increased ocean stratification observation. (An excellent article providing a more in depth exploration of these studies is available here.)

These studies combine with numerous observations of declining ocean health, increasing ocean hypoxia and anoxia, and an increasing number of observed mechanisms that may result in a more and more stratified ocean state as human warming intensifies to increase concern that the worst fears of Dr. Peter Ward and colleagues may be in the process of realization. (See: Dead Dolphins,  Climate Change Devastating Ocean Fishermen, and Mass Starfish Die-off for more indicators of failing ocean health.)

Concerned Journalists and Terrified Ecologists

Put into various contexts, the current state of climate and environmental health does channel our worst fears that the Permian Extinction event may well be in for a human-caused repeat. The current estimated background extinction rate of 100-250 species per day is possibly the most rapid in all of geological history. The current CO2 level, near 400 parts per million, is higher than at any time during which human beings walked the Earth. The pace of greenhouse gas emissions is at least six times faster than at any time in the geological record. And the current, very large, forcing provided by humans does not yet include a probable powerful and unpredictable response from the Earth’s natural systems.

As Ecologist Guy McPherson notes — Nature Bats Last. And we should not be comforted by this notion. Because Nature carries the biggest stick of all. A consequence hanging over our heads that grows larger and more dangerous with each passing year during which our insults to her continue.

Among the pessimists regarding the end consequences of human caused climate change and related pollution, ecologists are the worst of the bunch. This is likely due to the fact that ecologists are very intimately involved in the study of how communities of organisms succeed or fail in natural settings. Among all groups of scientists, they are perhaps the ones most intimately familiar with the way in which all living things are connected to both one another and to the natural world. Ecologists know all too well that small shifts can mean huge changes to biodiversity, the rate of death among living beings, and the distribution of species in a given environment. But the changes humans inflict are not small in the least. They roughly ripple through the natural world in ways that ecologists know all too well have never before been seen.

Dr. McPherson is such an ecologist and one with such great conscience and concern that he, years ago, abandoned most of the luxuries of modern civilization to live in a fashion that produced the least harm possible. Not that this action has resulted in more optimism on his part. In fact, Guy is one of a growing group of people who believe that no action is likely to save humankind. That our insults to the natural world have already grown too great.

McPherson notes:

“We’ve never been here as a species and the implications are truly dire and profound for our species and the rest of the living planet.”

In this observation, Guy is probably right. But I sincerely hope that his and my own worst fears do not emerge.

It was Guy’s ongoing tracking of various dangerous alterations to world climate systems and assertion that human extinction may well be nigh that drew the attention of prominent journalist Dahr Jamail. Jamail recently penned the article: “The Great Dying Redux: Shocking Parallels Between Ancient Mass Extinction and Climate Change.

Reading professor emeritus Guy McPherson’s blog was enough to convince Mr. Jamail of the risk that current warming could result in an extinction event to rival that of the Great Dying so long ago. Mr. Jamail notes:

It is possible that, on top of the vast quantities of carbon dioxide from fossil fuels that continue to enter the atmosphere in record amounts yearly, an increased release of methane could signal the beginning of the sort of process that led to the Great Dying. Some scientists fear that the situation is already so serious and so many self-reinforcing feedback loops are already in play that we are in the process of causing our own extinction. Worse yet, some are convinced that it could happen far more quickly than generally believed possible — even in the course of just the next few decades.

And so we come full circle. Rapid human warming leads to troubling ocean changes that hint at those feared to have resulted in mass extinctions during the Permian-Triassic boundary event. And the very rapid human warming puts at risk the catastrophically rapid release of Arctic methane which would certainly consign Earth to a rapid jump from a glacial to a hothouse state and potentially produce the kind of Canfield Oceans Dr. Ward fears. It is a deadly transition for which we have growing evidence with almost each passing day, one that McPherson and others fear could truly make an end to us and to so many other living creatures on this world.

So many scientists, so much valid reason to be dreadfully concerned, and yet we continue on the path toward a great burning never before seen in Earth’s history…

Links (Read them!):

A Deadly Climb From Glaciation to Hothouse: Why the Permian-Triassic Extinction is Pertinent to Human Warming

Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age

The Great Dying Redux: Shocking Parallels Between Ancient Mass Extinction and Climate Change.

Deep Sea Corals Record Dramatic Long-Term Shift in Pacific Ocean Ecosystem

Nature Bats Last

Colorado Bob’s Climate Feed

Dead Dolphins

Mass Starfish Die-off

Climate Change Devastating Ocean Fishermen

NCAR A2 Model Run

Hat Tip to David Goldstein

Amplifying Feedbacks: Climate Model to Test Projections of Zero Sea Ice By Summer 2016, Stark Predictions by Wadhams, Duarte

Ever since 1995 and especially since 2007 Arctic sea ice area, volume and extent have been in rapid free-fall. By 2012 both sea ice area and extent had suffered losses greater than 55% when compared to end summer measures in 1979. Sea ice volume, meanwhile had shown a stunning loss of nearly 80% from 1979 volume observations. This staggering trend of losses means that any melt year comparable to 2007, 2010 (volume) or 2012 would result in the total or near total loss of all sea ice within the Arctic by end of summer.

The summer of 2013 was exceptional in that it was the first year that statistical averages indicated a potential for total summer sea ice loss. The risk at the time was considered to be low, only 10%. But the figure was historic in that, never before, had a statistical risk of total sea ice loss been identified. Following more typical trends, the 2013 melt season showed a bounce-back from 2012’s record melt year with levels roughly correlating with those seen in 2009. That said, even 2013’s pseudo-recovery did little to disturb an extraordinarily powerful melt trend:

Sea Ice Volume Exponential Trend Wipneus

(Sea Ice Volume Measurements For All Months as Observed By PIOMAS With Exponential Trend. Image source: Wipneus. Note that the exponential trend shows monthly volume measures for July, August, September and October reach zero sea ice volume all before 2019.)

Taken into context, the 2013 melt season was little more than a counter-trend year in a period of ongoing and apparently inexorable decline. In context to these massive losses, the heat forcing in the Arctic continues to grow with most regions showing at least a doubled rate of temperature increase when compared to the global norm. Total temperature change in the Arctic is now about 2 degrees Celsius hotter than the 1950 to 1980 global average. A recent study of the regions around Baffin Island showed temperatures are now hotter than at any time within at least the last 44,000 years and probably the last 120,000 years. And with temperatures rising by about .4 degrees Celsius each decade, the Arctic continues to rapidly transition toward ever more hot and unfamiliar territory.

A High Resolution Climate Model For An Arctic in Rapid Transition

These rapid and massive changes appear to have left conventional global climate models (GCMs) in the dust. Earlier global climate model runs of the Arctic assumed slow responses to temperature increases by the world’s ice sheets resulting in predictions for ice free Arctic Ocean conditions at much higher temperatures than those currently being observed. The result of these assumptions that Arctic sea ice generated high inertia and was more resilient to human caused climate change were predictions for ice free Arctic summers to hold off until at least 2100.

But, as we have seen in the above analysis, recent events have put the possibility for ice free Arctic conditions on a much shorter time-scale. And, until recently, only statistical analysis, exponential trends fitting, and direct observation were able to provide any direct guide that more closely fit the stark and ongoing changes in the Arctic. In a world where simulative models seemed to take precedence over even observed reality, the dearth of models describing what all could plainly see was a catastrophic and rapid melt trend cast doubt on the all-too-stark observations.

Now, a new tool to place these much more rapid than expected melt conditions into context appears to be coming together. The high resolution Regional Arctic Systems Model (RASM) constructed by US Navy Scientist Professor Wieslaw Maslowski finds its basis in a 2012 paper showing the potential for the Arctic to be ice free come 2016 +/- 3 years. This new model takes into account a more detailed summary of Arctic conditions including a more highly resolved interpretation of the impacts of warming-driven changes to:

“… sea ice deformation, ocean eddies, and associated ice-ocean boundary layer mixing, multiphase clouds as well as land-atmosphere-ice-ocean interactions.”

Dr. Maslowski notes that while no climate model simulation is perfectly accurate, the RASM simulation is likely to be much closer to what is actually happening in the Arctic environment. Maslowski notes:

“Given the estimated trend and the volume estimate for October–November of 2007 at less than 9,000 km3, one can project that at this rate it would take only 9 more years or until 2016 ± 3 years to reach a nearly ice-free Arctic Ocean in summer. Regardless of high uncertainty associated with such an estimate, it does provide a lower bound of the time range for projections of seasonal sea ice cover.”

It is important to note that RASM hasn’t yet run or provided projections. But the fact that it is taking into account the visibly rapid loss of sea ice as well as a more refined view of the Arctic environs means that such a tool could well generate more accurate measures or at least help explain the apparently very rapid melt trend. According to Maslowski:

“We do expect to compare sea ice volume results [from the RASM model] with our earlier model for the same period … possibly next year or so…”

Confirmation of the Most Pessimistic Predictions?

2012 and 2007 record minimum overlay

(2007 and 2012 record sea ice minimums — overlay. Image source: NSIDC)

Dr. Maslowki’s paper and RASM model runs may provide single source confirmation for some of the most pessimistic predictions by Arctic sea ice experts. Dr. Peter Wadhams, a world renown sea ice expert who has spent about 30 years monitoring the state of sea ice aboard British Navy submarines has projected that the Arctic could reach an ice-free state by the end of summer during 2015 or 2016.

Another climate expert, Dr. Carlos Duarte, head of the Ocean Institute at the University of Australia, has projected that the Arctic will reach an ice free state by 2015.

More moderate projections place total sea ice loss during summer at between 2025 and 2040.

IPCC Global Climate Model Sea Ice Melt Projections For Extent (Trend in Black)

(IPCC Global Climate Model Sea Ice Melt Projections. Figures are in Sea Ice Extent (not Volume as seen Above). It is worth noting that the Volume and Area melt trends are much more pronounced than the extent measure that fails to count holes in the ice (area) or add in the measure of ice thickness (volume). The above image, produced by Overland and Wang, also appears to be off the 2012 minimum extent measure by about 200,000 square kilometers.)

Meanwhile, global climate models (GCMs), provided above, continue to lag real time observation, and projections by noted experts. Even taking into account models that have gotten the current trend mostly correct show ice free conditions by around 2050 (mean). Meanwhile, the GCM overall mean continues to show near ice-free conditions by 2100.

These projections are questionable for a number of reasons, not the least of which is the fact that they only take into account the very low resolution of sea ice extent and not the higher resolution figures of sea ice area or volume. Sea ice area, for example, fell to a stunning record low of 2.1 million square kilometers during 2012, a total loss of about 3.6 million square kilometers since 1979 and a loss of about 1 million square kilometers off the previous record low (area) set in 2011. Such a low figure could already, arguably, be called ‘nearly ice free when compared to average area lows of nearly 6 million square kilometers during summers four decades ago.

sea ice area

(Sea Ice Area Measures Provided by NSIDC via Cryosphere Today. Note the extreme record low set in 2012, a measure well below comparable sea ice extent figures which fail to account for holes in the ice. See also: Arctic Ice Graphs.)

It is this lack of GCM resolution, combined with an ongoing trend of stunning losses that has resulted in serious changes in predictions by even somewhat conservative scientists from the National Snow and Ice Data Center. Professor Mark Serreze of Colorado’s branch of NSIDC, who is skeptical that ice free conditions could be reached as early as 2016, notes:

“I am on record stating that we may lose the summer ice cover as early as 2030, and I stand behind that statement. This is in itself much earlier than projections from nearly all climate model simulations. I would agree with Dr. Maslowski that the IPCC models have shortcomings.”

The question, then, is will higher resolution climate models like Maslowski’s RASM provide a better understanding of what appear to be chaotic, powerful and rapid changes to the Arctic environment well ahead of the previously predicted time-frame?

Loss of Summer Sea Ice to Unleash Amplifying Feedbacks

Because it covers such a large stretch of ocean with a white, reflective surface, sea ice is a primary governor of Arctic and global weather. It keeps the Arctic cool by insulating millions of square kilometers of dark Arctic Ocean waters from the near constant radiation of the polar summer sun.

As the sea ice retreats, more of this dark water becomes exposed to the sun’s rays. Because the ocean surface is dark, it traps most of this light. The result is far greater warming of the Arctic during the summer time.

The loss of sea ice and related ocean warming has a number of knock-on effects. The first is that increasing ocean heat delivers far more energy to the sea bed. In the case of the East Siberian Arctic Shelf, the warming shallow sea is one filled with carbon deposits from a massive expanse of submerged tundra. An estimated 1500 gigatons of methane lay sequestered in thawing permafrost beneath this rapidly warming sea. According to Wadhams, loss of sea ice can add up to 7 degrees Celsius of additional warming to this vulnerable sea bed.

Current estimates provided by Dr. Natalia Shakhova show that around 17 megatons of methane are being released from the ESAS each year. This emission is more than twice that of the entire global ocean system and accounts for about 2.8 percent of the current global methane emission. Given the massive volume of methane stored in the ESAS and the rapid pace of sea ice loss and related ocean warming, this region of the world is more than capable of providing significant additional volumes of this potent greenhouse gas.

ESAS methane froth and sea ice

(A frothy mixture of methane and sea ice near the East Siberian Arctic Shelf. Image source: Igor Semiletov, The University of Alaska)

Meanwhile, ship based observations show that methane levels at the surface of ESAS waters are a stunning 3800 ppb, about twice the global average:

“Ship-based observations show that methane concentrations in the air above the East Siberian Sea Shelf are nearly twice as high as the global average… Layers of sediment below the permafrost slowly emit methane gas, and this gas has been trapped for millennia beneath the permafrost. As sea levels rose at the end of the ice age, the shelf was once again covered by relatively warm ocean water, thawing the permafrost and releasing the trapped methane… In the short-term… methane has a global warming potential 86 times that of carbon dioxide. (NSIDC)”

More rapid Arctic Ocean warming during summer times also results in more rapid warming of nearby land masses. And recent years have seen a number of extraordinary Arctic heatwaves driving 80+ degree temperatures all the way to the shores of the Arctic Ocean. Rapid warming of this region also results in a rapid thaw of massive volumes of permafrost. The permafrost stores organic material that breaks down into both CO2 and methane, providing additional emissions that enhance an already very rapid human warming. Current emissions from the Arctic tundra system are estimated to be around 17 megatons of methane and hundreds of megatons of CO2. Like the emissions coming from the ESAS, these emissions provide a significant added contributor to the human GHG forcing and will likely continue to provide increasing emissions as the sea ice retreats further.

In addition to the combined amplifying feedback of loss of sea ice albedo and amplifying greenhouse gas emissions from the Arctic, sea ice erosion has now also been shown to have profound effects on the circumpolar Jet Stream. Research by Dr. Jennifer Francis, Dr. Quihang Tang, a number of other scientists, and confirming analysis by Dr. Jeff Masters, has noted a weakening in the Jet Stream caused by a lowering of the temperature differential between the lower latitudes and the poles. The Jet is driven by such high temperature extremes between north and south. But as the higher latitudes warm faster than the temperate zones this temperature differential drops and the Jet Stream weakens. The end result is higher amplitude Jet Stream waves that tend to get stuck, resulting in more persistent, extreme weather. Dr Quihang, in a recent paper, notes:

“As the high latitudes warm faster than the mid-latitudes because of amplifying effects of melting ice, the west-to-east jet-stream wind is weakened. Consequently, the atmospheric circulation change tends to favour more persistent weather systems and a higher likelihood of summer weather extremes.”

The end result of these alterations brought on by a very rapid loss of Arctic sea ice are chaotic changes to the Arctic Ocean and surrounding lands along with a severe disruption to Northern Hemisphere weather patterns. These changes also combine in a self-reinforcing pattern to further amplify the pace of human caused warming both in the Arctic and around the globe. And should the summer Arctic sea ice completely melt in the time-frame of now to 2019 as Maslowski, Wadhams and Duarte have projected as a ‘most rapid’ estimate, then the already stark changes we are seeing will become much more extreme and pronounced.


The Future of Sea Ice

US Navy Predicts Summer Ice Free Arctic by 2016 (Note, the Guardian article appears to be somewhat misinformed, conflating a 2012 paper by Maslowski with RASM model runs.)


Extreme Summer Weather Linked To Vanishing Cryosphere

Colorado Bob’s Climate Feed


Could Arctic Summers be Ice-Free Within Three Year’s Time?

When Will the Arctic Summer be Nearly Ice Free?

Arctic Sea Ice Graphs

Hat Tip to Aaron

(Updated December 17)

NASA GISS Shows November 2013 Hottest On Record. Mangled Jet Stream Brings 4-8 C Above Average Temps to Russia, Arctic.

November 2013 Temperature Anomaly

(Global Temperature Anomaly November 2013. Image source: NASA)

The temperature records just keep on falling. Despite a somewhat cooler than average fall and early winter for most of the US, the world continued an inexorable warming trend by shattering a previous record high global average temperature for the month of November. According to NASA GISS, November 2013 was the hottest since record keeping began in 1880. At .77 degrees Celsius above the 1951-1980 average, November 2013 was .02 degrees Celsius hotter than November of 2010, the previous hottest November.

Almost all regions of the globe showed hotter than average temperatures. The two exceptions were West Antarctica and adjacent ocean regions and central and eastern North America. Temperatures in these regions ranged from .5 to 4.1 degrees Celsius below normal. The hottest regions of the world included Antarctica, the Pacific Ocean south of Alaska and Alaska, and a large swath including Russia and the adjacent Arctic regions. The Antarctic hot patch ranged from 1 to 4 degrees Celsius above normal and covered most of the continent. Large regions of Alaska and adjacent Pacific and Arctic Ocean environs also ranged from .5 to 4 degrees Celsius above average.

But the hottest zone included a massive section of Russia and the adjacent Arctic Ocean. There, a persistent high amplitude ridge in the Jet Stream drove much warmer than average temperatures far into the north, forcing temperatures into a range of 4-8 degrees Celsius above average over a massive region and driving a wedge of heat all the way to the North Pole. According to Dr. Jennifer Francis and Dr. Jeff Masters, such high amplitude Jet Stream waves are both primary drivers of extreme weather and a direct result of massive losses of sea ice occurring since 2007.

November 2013 Prime Example of Polar Amplification

More rapid warming at the poles, or polar amplification, has been implicated in an observed slowing of the Jet Stream that has become more and more pronounced in recent years, resulting in both record heat waves and droughts as well extreme rain events. Observed temperatures showed a classic and pronounced amplification at the poles with northern hemisphere showing the most pronounced amplification. It is worth noting that the southern hemisphere is not expected to amplify as rapidly as the southern ocean acts as an enormous heat sink.

Zonal temperatures

(Zonal Temperature Anomalies for November 2013. Image source: NASA)

Observed CO2 and methane readings during the period were also very high over the Arctic and Northern Russia with numerous spikes in the range of 1900 to 2200 ppb methane and CO2 levels rising above 400 ppm for much of the Arctic region by late November. Though likely contributing to Arctic amplification, these values alone were not enough to account for the very high temperatures observed in Russia during the period which, as noted above, coincided with a ridge blocking pattern in the northern hemisphere Jet Stream. Anomalous heat in Alaska also coincided with a powerful ridge that has persisted over the region for much of this year.

These record hot conditions are exceptional, especially when one considers that ENSO remains in a neutral state. Such conditions do not bode well for the next El Nino year, when it does emerge.



Methane Tracker

Hat Tip to Colorado Bob

Arctic Methane Monster Shortens Tail: Shakova, Semiletov Study Shows ESAS Emitting Methane at Twice Expected Rate

ESAS emissions map

(ESAS Bathymetric and Methane Emissions Map. Image source: Nature)

Arctic Methane emissions have been a touchy subject ever since sporadic reports began trickling in during the mid-2000s that volumes of the gas coming from local sources were on the rise. Two of the scientists producing these reports, Igor Semiletov and Natalia Shakova have been observing a key region of the Arctic called the East Siberian Arctic Shelf (ESAS) since the mid 1990s. At that time, Semiletov and Shakova found no major emissions sources coming from this vast sea whose bottom is composed primarily of carbon-rich submerged tundra.

That all changed in 2010 when an expedition led by Semiletov and Shakova discovered bubbling structures tens of meters across on the shallow and vulnerable ESAS sea bed. Returning in 2011, the pair were surprised and terrified by methane bubbling up from structures as large as 1 kilometer across. During this time Semiletov noted:

“Earlier we found torch-like structures like this but they were only tens of metres in diameter. This is the first time that we’ve found continuous, powerful and impressive seeping structures, more than 1,000 metres in diameter. It’s amazing. I was most impressed by the sheer scale and high density of the plumes. Over a relatively small area we found more than 100, but over a wider area there should be thousands of them.”

In the period of 2010 to 2013, other regions of the Arctic were also found to be emitting high volumes of both methane and CO2. These regions included but were not limited to Yedoma in Russia, other portions of the Siberian continental shelf, regions off of Svalbard, regions off of Greenland, and regions over Arctic Alaska and Canada (see NASA’s CARVE mission). Though the reports were sporadic and isolated, a picture began to emerge that the vast stores of Arctic carbon — totaling around 5,000 gigatons or a little less than ten times that already emitted via human fossil fuel burning — were beginning to contribute to the world’s atmospheric greenhouse gas stores.

Concern, especially over methane which creates between 25-75 times more warming than an equal volume of CO2, was on the rise. ESAS again fell into focus because about 1,500 gigatons of carbon in the form of methane is thought to be sealed under a now perforated and rapidly melting layer of permafrost. And by winter of 2013, satellite measures were showing an increasing overburden of methane in the atmosphere above the Arctic.

(You can view the 2009 to 2013 time series for January 21-31 below. Note the rapid increase in relative methane concentration. Click on image for higher resolution.)


(Image source: AQUA Satellite, NASA. Image produced by Dr. Leonid Yurganov)

These increasing methane levels were a sign of higher Arctic emissions. And, though concerning, they hadn’t yet risen to the level to indicate the catastrophic release that some scientists feared was possible.

By summer of 2013, Peter Wadhams, a polar researcher with more than 30 years experience studying Arctic sea ice from the vantage of British navy submarines, chimed in with an article published in the prestigious journal Nature entitled Climate science: Vast costs of Arctic change. In the article, Wadhams and his co-authors projected the economic costs of a catastrophic 50 gigaton methane emission from the East Siberian Arctic Shelf over the coming decades. Though the article itself didn’t provide an estimate of how likely such a dangerous emission would be, Wadhams, in his later press interviews indicated that he believed it was certainly possible due to new mechanisms set in motion by melting sea ice.

Misplaced Mechanisms

The Nature article received numerous criticisms from prominent climate modelers. Chief among these were David Archer and Gavin Schmidt. Archer and Schmidt both adhere to the notion that it will take centuries or perhaps thousands of years for a significant volume of methane to be emitted from the Arctic. They conjecture that emissions from Arctic sources will increase, but at a very slow rate, and to a level that is not markedly significant when compared to overall human CO2 emissions. This relatively slow and low Arctic contribution view is based on a model assessment of the physical sciences that has yet to quantify a strong enough physical mechanism to break methane out of its traps and produce the kind of emissions Wadhams and others fear.

In the conjecture over the potential dangers of Arctic methane release, Schmidt and Archer provide support for a long tail of emissions rather than a more sudden and powerful release.

To these criticisms, Wadhams responded in Cambridge University Press:

“What is happening is that the summer sea ice now retreats so far, and for so long each summer, that there is a substantial ice-free season over the Siberian shelf, sufficient for solar irradiance to warm the surface water by a significant amount – up to 7C according to satellite data. That warming extends the 50 m or so to the seabed because we are dealing with only a polar surface water layer here (over the shelves the Arctic Ocean structure is one-layer rather than three layers)  and the surface warming is mixed down by wave-induced mixing because the extensive open water permits large fetches.  So long as some ice persisted on the shelf, the water mass was held to about 0C in summer because any further heat content in the water column was used for melting the ice underside. But once the ice disappears, as it has done, the temperature of the water can rise significantly, and the heat content reaching the seabed can melt the frozen sediments at a rate that was never before possible.

The 2008 US Climate Change Science Program report  needs to be seen in this context. Equally, David Archer’s 2010 comment that “so far no one has seen or proposed a mechanism to make that (a catastrophic methane release) happen” was not informed by the Semiletov/Shakhova field experiments and the mechanism described above. Carolyn Rupple’s review of 2011 equally does not reflect awareness of this new mechanism.”

It is worth noting that Dr. Wadhams has been very pessimistic about the state of the Arctic of late, predicting that a near complete loss of summer sea ice is likely by 2015 or 2016 — among the most rapid of such predictions. And the severe pessimism of one of the world’s premier sea ice researchers is not at all cause for comfort. This doesn’t mean that conditions are quite so bad as Wadhams suggests. But they could be. And this potential, along with the related potential for a more rapid ESAS release, is very unsettling, Archer’s and Schimdt’s reassurances aside.

Arctic no Longer in the Holocene

By October and November of 2013, the controversy over Wadhams Nature article had mostly faded. But with little in the way of new information, the details of the issue remained inconclusive as ever. Loss of Arctic sea ice had, at least, taken a pause. Sea ice area and extent had retrenched, under the continued assault of human warming, to levels last seen in 2009, but still remained near record low levels in all measures. This pause in the rate of loss was cause for some relief, if little comfort.

On the flip side, a new report had been issued showing that large regions of Arctic Canada were experiencing temperatures that were warmer than at any time in at least 44,000 years and probably 120,000 years. This report added to a long list of growing evidence that the Arctic was rapidly moving out of any reasonable context comparable to the Holocene and was probably well on its way toward something more closely resembling the Pliocene of about 3 million years ago (the last time CO2 levels hit 400 ppm) or worse.

And out of context, anomalous Arctic heat, meant out of context, anomalous stress on the ESAS’s frozen sea bed.

Arctic Methane Spikes as Shakhova Finds ESAS Emissions At Least Double Previous Estimates

Bad news was also coming from Arctic methane readings when, during September, October and November large spikes pushed local readings in some areas as high as 2500 parts per billion, more than a 600 parts per billion above the global average with large regions around the Arctic frequently showing readings above 1950 parts per billion.

By late November, another report had been issued by Shakhova and Semiletov. Published to the journal of Nature Geoscience, the report found that methane emissions from the East Siberian Arctic Shelf, one of the regions of greatest concern, was conservatively estimated to be about 17 megatons per year. This amount is twice that previously estimated by scientists, through the use of physical models and less refined observations, to be coming from this region. It also represents a total emission about twice that of the rest of the entire global ocean system.

The recent Shakhova paper also found the permafrost cap over the methane stored beneath the ESAS to be highly perforated and very close to thawing. Measurements taken from the permafrost showed the top layer had mostly already thawed while the still frozen layers lower down ranged in temperature between 30 and 32 degrees (Fahrenheit) — at the brink of melt. Furthermore, the composed data for the 1999 to 2013 period showed the seabed warming by .9 degrees Fahrenheit even as air temperatures warmed by 1.8 degrees (F) during the summer.

Increasing transport of warmer waters to ESAS bottom zones was facilitated by larger river outflows in the region, likely also a result of human-caused changes to Arctic weather patterns.

Dynamics of bottom water by the coastal zone

(ESAS bottom water temperature measurements from 1999 to 2012. Red = summer. Blue = winter. Green squares = historical data. Source: Nature)

Climate modelers had previously estimated it would take many hundreds of years, perhaps 5,000 to 7,000 years for ESAS permafrost to thaw under human warming. But Shakhova noted the models weren’t even accounting for the higher than estimated current rate of release:

“What we’re observing right now is much faster than what we anticipated and much faster than what was modeled,” Shakhova said. “We decided to be as conservative as possible. We’re actually talking the top of the iceberg.”

The methane beneath the ESAS was also found to be very responsive to environmental changes and conditions, no matter how transient or temporary. Storms, warming waters, and warmer ocean currents were observed to enhance release of methane from the ESAS. Yet one more sign of an increasingly fragile methane cap.

Models Wrong Again?

Anyone following the rapid pace of sea ice melt will recall how, up until very recently, sea ice melt models got the melt time frame dreadfully wrong. As recently as 2007, modellers were stating that near ice free conditions would not happen until the end of this century. Now, after two devastating record melt years in 2007 and 2012, bringing Arctic sea ice within a paltry 2.1 million square kilometers of zero, even the most conservative scientists project the potential for near ice free conditions by around 2035 to 2040, with the more aggressive among these putting the Arctic at a near ice-free end summer state by 2016 to 2020. Meanwhile, global climate model projections of sea ice loss continue to lag well behind observed trends. A mean of IPCC model runs still project a total or near total sea loss by 2100 in a mean of the models surveyed and those models that appear to be within the standard deviation of current observed ice loss trends predict, in their mean, an ice-free or near ice-free state by 2050. So what we have is a noted split between expert analysis of what is happening and what is likely happening to sea ice, and a continued set of highly conservative and apparently inaccurate (at least under current trends) projections by GCMs.

This observed conservatism in GCMs also calls into question their accuracy in predicting the response of global methane traps, especially the critical ESAS methane store. For the ESAS cap to even partly fail, as it now hints at doing, at any time this century would be another massive under-estimation by the climate models. It would also put at risk, as Wadhams warns, the release of gigatons of methane from its ever more permeable ESAS traps together with a number of very severe climate consequences.

Emission Rate Bad, But Not Catastrophic At This Time

Currently, however, it appears that such a very large release is not yet underway. A 17 megaton emission, though double previous estimates and outside the range projected by GCMs, represents about 2.8% of the global total methane emission from all sources (or 10% the total US emission). This puts ESAS on the map of very large single sources, but it does not yet provide enough methane to overwhelm the current methane balance. To do that, yearly rates would have to rise by an order of magnitude, reaching about 150 megatons a year or more.

Ironically, about a 150 megaton per year emission, averaged over thousands of years, is what climate models currently project (although the models show larger emissions happening much later). So it is worth noting that even getting on this track would be a bad consequence while exceeding it by any serious margin this century would be a very, very bad consequence indeed.

To put the size of the ESAS methane store into context it is worth considering that should the ESAS emit 1 gigaton of methane each year, it could continue that emission for more than a thousand years. Such a rate of emission would about effectively double the current forcing from human CO2 emissions and extend the time-frame of that forcing for up to 15 centuries.

Thankfully, we haven’t yet approached such a catastrophe. Instead, the current emission combines with other sources to continue to slowly push world methane levels higher, adding incrementally more heat forcing to an already stressed global system and adding to a yearly growth rate of about 10-20 ppb each year.

A Marker for Future Comparison

Shakhova’s research does, however, put a marker on the ESAS emissions map. Should we return in a few years to find emissions dramatically increased, we will have more evidence that ESAS is indeed rapidly destabilizing. Shakhova and Semiletov’s earlier observations provide some evidence for this already. However, with a quantifiable figure now available, it will be easier to gauge to what degree ESAS is increasing its already substantial, but not currently catastrophic, methane release.


Ebullition and Storm Induced Methane Release From the East Siberian Arctic Shelf

Arctic Ocean Leaking Methane At Alarming Rate

Arctic and Methane in Context (David Archer attempts to provide some comfort)

More Arctic Methane Bubbles Into the Atmosphere

Arctic warmer than at any time in at least 44,000 years and probably 120,000 years

Climate science: Vast costs of Arctic change

Wadhams Explains Mechanisms in Cambridge University Press

And the Wind Cries Methane

(Updated December 18)

Typhoon Season 2013: Anomalously Hot Pacific Disgorges Record 52 Cyclones by Early December

Back in January, on January 1rst in fact, the first cyclone of this year’s Eastern Pacific Typhoon season formed. It would be one of at least 52 tropical depressions, storms, and typhoons that would rake through this vulnerable region over the next 11 months — resulting in over 7,000 deaths and tying a record for the most storms set 49 years ago in 1964.

The typhoon season that would repeatedly rake the Phillippines with monster storms and disgorge the strongest cyclone — Haiyan — to ever make landfall came on, at least in part, due to anomalously hot Pacific Ocean waters. Throughout the year, a large swath of the Western Pacific remained between 2 and 5 degrees Celsius above the 1979-2000 average. This stretch of water reached 90 degrees Fahrenheit during the summer of 2013, contributing to the extremely hot air mass that set off temperature record after temperature record in southeastern China from late July through early August.

According to reports from NOAA, not only was this mass of water very warm, its warmth extended far into the depths of the Pacific. NOAA’s report: Deep Warm Water Fuels Haiyan Intensification linked the anomalously deep and hot water to Haiyan’s rapid intensification as well as provided a basis for understanding why so many cyclones had formed during the, very prolific, typhoon season of 2013.

Pacific Ocean Heat Intensity -- Available Energy in Joules

(Anomalously hot and deep Pacific Ocean waters detected by NOAA sensor in early November)

NOAA noted:

The intensification of Super Typhoon Haiyan is being fueled by “ideal” environmental conditions – namely low wind shear and warm ocean temperatures. Maximum sustained winds are currently at 195 mph, well above the Category 5 classification used for Atlantic and East Pacific hurricanes. Plotted here is the average Tropical Cyclone Heat Potential product for October 28 – November 3, 2013, taken directly from NOAA View. This dataset, developed by NOAA/AOML, shows the total amount of heat energy available for the storm to absorb, not just on the surface, but integrated through the water column. Deeper, warmer pools of water are colored purple, though any region colored from pink to purple has sufficient energy to fuel storm intensification. The dotted line represents the best-track and forecast data as of 16:00 UTC on November 7, 2013.

It will only take the formation of one more cyclone to break the all-time record number of storms formed back in 1964. With 6 cyclones having formed since Haiyan ripped through the Philippines in early November and with Pacific Ocean temperatures remaining anomalously hot, it appears possible that 2013 will break this long-standing record.

For years, researchers have debated whether increasing ocean heat content due to human caused global warming will result in more numerous tropical cyclones. Heat is the primary driver for the formation and strengthening of these storms and with average global temperatures increasing at the rate of at least .2 degrees Celsius per decade, that driver continues to strengthen. At the very least, researchers agree that the strongest storms will likely be stronger. But tropical cyclone formation is complex and other factors, such as large areas of dust stirred up from expanding deserts, may also act to suppress storms in a warming world, at least in some basins.

One factor that has not been explored in depth is what appears to be a steadily growing length of hurricane seasons. In almost all basins, storms appear to be forming earlier and earlier in the year. Climatological peaks for typhoon seasons are still occurring at the usual time. But the warming oceans appear to be setting the stage for year-round tropical cyclone formation. A tropical cyclone typically needs water temperatures of at least 75 degrees (Fahrenheit) to form. And with pools of water at this temperature and above expanding even during what is typically winter it would seem that the basic ingredients for year-round storm formation are steadily being provided.


Deep Warm Water Fuels Haiyan Intensification

Pacific Typhoon Season 2013

Winter 2013-2014: Sea Ice Loss Locks Jet Stream into Severe Winter Storm Pattern For Most of US

It happened to Europe last year. A persistent erosion of Arctic sea ice set off changes to the polar jet stream that locked in place a severe winter weather pattern that pummeled the central and western European countries for much of the winter. Storm after storm piled snow high in locations that typically saw only modest winter precipitation while other areas were simply buried. The US also took a glancing blow from this extreme storm configuration. But now, with a large trough in the polar Jet remaining locked in place for almost a year, the US from the Rockies eastward appears to be in the line of fire for some very severe winter weather.

In other regions from Alaska to Eastern Europe, record or near record warmth and dryness have settled in with a large swath of eastern Europe showing average temperatures more than 6 degrees Celsius above the seasonal average. Over the extreme northern Pacific, adjacent to Alaska and the Bering Sea, seasonal temperature range from 4-12 degrees Celsius above average. And it is this extreme northward invasion of warm air that is displacing polar and Arctic air masses toward the east and south, putting much of the US in the firing line for strange and severe winter weather.

Just this week, the tale was one of record ice storms throughout the central and eastern US with hundreds of flights cancelled, deadly traffic pile-ups, and holiday shopping disrupted. On the east coast, from Virginia to Maine, workers and shoppers alike were treated to three days straight of snow turning to sleet and freezing rain and then turning back again to snow. With storms like these hitting in early December and with the pattern in the Jet Stream taking on such an extreme configuration, it appears possible that the winter of 2013-2014 could be a very, very stormy one indeed.

A Tale of Jet Streams and Melting Sea Ice

To understand how human caused global warming can make winter storms more severe in some areas while other areas hardly experience winter at all, one should first take a look at two major governors of Northern Hemisphere weather: the circumpolar Jet Stream and Arctic sea ice.

An extreme difference between the temperatures at high northern latitudes and at more temperate latitudes has driven a very rapid flow of upper level air called the Jet Stream for almost all of human meteorological reckoning. This high temperature difference drove powerful upper level winds from west to east. These winds tended to modulate only slightly and when they did, powerful weather events tended to occur.

Locking a greater portion of this cold air in place was the northern hemisphere ice cap, most of which was composed of a large swath of sea ice covering much of the northern oceans. This high volume of cold, reflective ice kept temperatures up north very, very low and provided the massive temperature differences which kept the Jet Stream predominantly flat with only occasional and more moderate severe weather causing ripples and bulges.

But since 1979, massive volumes of sea ice have been lost due to an immense and ongoing human caused warming trend taking hold in the Arctic. As human greenhouse gas emissions sky-rocketed, Arctic temperatures rapidly increased far faster than the global average. By this year, human greenhouse gas emissions had driven CO2 levels to the highest seen in more than 3 million years while Arctic temperatures are now warmer than at any time in the past 150,000 years. Sea ice retreat has been equally unprecedented with average winter values now 15-20% below extent measures seen during 1979 and with end summer sea ice extent values now a stunning 35-50% below that of 1979. Sea ice volume, the measure of total ice including its thickness, has shown even more stunning losses since 1979 with seasonal winter values 30-35% lower than in 1979 and end summer values between 65 and 80% lower during recent years.

JAXA sea ice Dec 9 2013

(Sea ice extent measure composed by JAXA. The light gray dotted line on the top shows sea ice extent averages during the 1980s. The three record lowest years — 2007, 2011 and 2012 — are shown in green, blue, and orange. The most recent year, 2013, is shown in red. Note the persistent and rapid melt trend.)

The loss of hundreds of thousands of square kilometers of sea ice radically reduces the Arctic Ocean’s ability to keep the Arctic cold. To the contrary, we see larger areas of open water that, in turn, radiate ocean heat into the atmosphere throughout winter. As a result the temperature difference between the Arctic and temperate regions is less and this, in turn, slows down the Jet Stream.

When the Jet Stream slows, it tends to meander. And when it meanders it creates very deep troughs and very large ridges. In the ridges, we get unseasonably hot temperatures along with increased risk of drought. And in the troughs, Arctic air swoops down to collide with warmer, moist air in a series of powerful storms. During the summer time, the hot, dry zones can bring deadly heat waves, record droughts, and major wildfires while the cooler stormier zones can bring epic rainfall events or even link up with tropical cyclones to result in highly severe hybrid storms. During the winter time, the hot zones can almost completely obliterate the winter season, while the stormy cooler zones can result in snow storm after snow storm.

Don’t believe me? Then take a look at what weather experts Jeff Masters and Jennifer Francis have to say on the matter:

Polar Warmth and Rossby Wave Pattern Going into Winter 2013-2014

As noted above, a powerful and continuous ridge in the Jet Stream over the north eastern Pacific near Alaska has persistently provided an equally powerful down-sloping trough over much of the US over the past year. The December 10 Jet Stream configuration map shows this pattern remaining locked in place:

Northern Hemisphere Jet Stream 10 Dec 2013

(Image source: California Regional Weather Server)

Note the strong multi-channel ridge to the south of Alaska and to the west of Canada diving down into a deep trough with convergent upper level air flows over the central and eastern US.

On the map, we also see powerful ridges and correlating warmer regions over Europe, Central Asia, and the western Pacific. These large meanders are now typical to the highly weakened Jet Stream pattern we have seen in recent years due to loss of polar sea ice.

Global temperature maps also show anomalously warm temperature departures for much of the Arctic as well as for regions beneath these powerful jet stream ridges. Note that the only northern hemisphere region showing strong anomalously cool conditions is a large swath adjacent to the large trough over North America and southern Greenland.

Global Temperature Averages Dec 1-7 2013

(Global Temperature Averages and Anomalies vs 1981-2010 mean. Image source: NOAA)

Temperature averages in the Arctic region of Kamchatka, the Bering Sea, the Chukchi Sea and Alaska have ranged between 11- and 12 degrees Celsius above average for the first week of December with much of the Arctic showing 4-12 degrees Celsius above average readings. The US and southern Canada, conversely, have shown temperatures 4-10 degress Celsius below average. It is also worth noting the massive swath of 3-12 C above average temperatures stretching all the way from the Middle East to the west coast of Greenland.

Overall, the prevalence of high latitude warmth and a continued high amplitude Rossby wave pattern trough over much of the US is a very conducive pattern for severe winter weather over the coming weeks. Most likely, this pattern will continue to persist through at least early to mid winter. So for the US and especially from the Rockies to the east coast, a progression of strong storms is likely to continue as winter advances.


California Regional Weather Server



Supporting Research:

Evidence linking Arctic amplification to extreme weather in mid-latitudes

Impact of sea ice cover changes on Northern Hemisphere atmospheric winter circulation

Impact of declining sea ice on winter snowfall cover

Weather extremes provoked by trapping giant waves in the atmosphere

Quasi-resonant amplification of planetary waves and recent Northern Hemisphere weather extremes.

Climate Change Meets Sci-fi Dystopia in “The Martian Patriarch”

A few months ago, at about the time the most recent IPCC report was shifting closer and closer to a much needed alarm, at about the same time world ocean temperatures had, once again, broken a hottest (ever) monthly record, and at about the same time that consensus among scientists and meteorologists was rapidly shifting toward a new acceptance that climate change was making the world’s weather radically more dangerous, I picked up a little-known book called “The Martian Patriarch” by Robert Vella.

The Martian Patriarch

(Link: The Martian Patriarch by Robert Vella)

This diamond in the rough of a sci-fi novel was exactly what I needed to both put into context the strange and disturbing events affecting the world’s weather and the angst and anxiety-causing inaction and political blindness of many business and political leaders within the US and around the world.

Yet one more climate summit had passed without more than token action. The power of the world’s polluters — the fossil fuel companies — were as strong and entrenched as ever. A radical right-wing political ideology, backed by many of the world’s monied special interests, had taken root in many western nations, bent on austerity and deconstruction rather than effective action and progress. And the climate movement response, though strong, had yet to dislodge these enduring and powerful forces from their now globalized strongholds.

Fast forward for another 60-80 years of today’s terrible business as usual and we arrive at the future envisioned by Robert Vella’s “Martian Patriarch.” The world’s governments are a fractured coalition of totalitarian regimes. The United States is the victim of an extreme right-wing coup d’etat and now suffers in the iron grip of a predatory, fascist dictator. The world’s ice caps have undergone a rapid melt-down, resulting in the flooding of many coastal cities and weather events can only be described as strange and horrific, spawning periodic great disasters that serve as high points in an ongoing trend of climate degradation.

Thrown into this dark mix, however, are a few points of light. Far away on Mars, a colony of enlightened ecologists, scientists, egalitarians and space travelers have managed the scrape together a bright civilization that is the backdrop to Earth’s dark decline. Space travel between planets, though rare and expensive, has now expanded to the point that massive ships carrying hundreds of souls can leap the distance between planets. And our protagonist, a refreshingly down-to-earth man by the name of Marc Bolton, sets out on a journey that will unlock both the wisdom in his own heart and that of an ancient race who, unbelieving, still extends a helping hand to human beings in the hope that they will progress past their current age of darkness.

“The Martian Patriarch” is both visionary in its willingness to expand on the current troubles of our day and bring them to darker fruition as well as for its ability to provide heroes to give us hope that the future won’t be quite so dark as we fear, to give us hope that, somehow, we will find a way out of the terrible fix we’ve made for ourselves. So at its darkest, “The Martian Patriarch” is an unflinching expose of the most terrible demons of humankind while at its brightest, the book also manages to touch our highest ideals. It is a strange paradox of opposites that seems extraordinarily difficult to pull off, but Robert Vella manages with flying colors.

Last of all, the book is almost impossible to put down. The pacing demands that the next page be turned, and then the next, and then the next, until the book is finished and you are left with the wonderful mental aftertaste of space opera meets environmental catastrophe meets dystopian Earth, meets the seeding of a multi-planet humanity. There is romance (both tragic and otherworldly), there are battles in the dark of space between worlds, there are tales of disaster after disaster, and there is the shining hope of a new world and a new people willing to work together selflessly to help one another. All crammed into 300 pages in a way that gives the book a nigh-irresistible pull.

Though “The Martian Patriarch” possesses a few of the expected rough edges — a couple of grammar errors, a few awkward sentences, and a cover presentation that does this amazingly creative work little justice — they do not at all detract from this masterful story. In fact, I’ve read a number of mainstream novels that offend more in this regard. If I had one complaint it would be due to my effort to suspend disbelief that a humanity afflicted with the same small-minded, selfish, and brutish leaders of today would even be capable of organizing the resources needed to begin the arduous and complex process of interplanetary colonization. In my view, a civilization unable to tackle the simpler, though still very difficult, problems of climate change, resource depletion, overpopulation, and institutionalized human greed, would also be unable to mount the massive effort needed to reach new planets and develop effective civilizations there. In my view, the overthrow and diminishment of the brutes would have to happen first, not later.

But this minor niggle of opinion did not at all detract from my enjoyment of what was, by equal parts, a visionary, entertaining, and masterful tale worthy of the greats of science fiction. Hats off to Robert who is obviously possessed of great heart, stunning imagination, and a vision for extraordinary tale-telling. I highly recommend the work to anyone interested in sci-fi, the environment, or humanity’s future.

Links: The Martian Patriarch

%d bloggers like this: