“Too Huge to Manage” — New Studies Highlight Danger in Failing to Rapidly Cut Carbon Emissions Now

“If we continue burning coal and oil the way we do today and regret our inaction later, the amounts of greenhouse gas we would need to take out of the atmosphere in order to stabilize the climate would be too huge to manage,” — Lena Boysen from the Potsdam Institute for Climate Impact Research (PIK) in Phys.org.

******

When it comes to dealing with global warming and human-forced climate change, the best options for response have always been rapid carbon emissions cuts and an equally rapid energy transition away from fossil fuel burning. And while swiftly transitioning energy systems away from fossil fuel burning, cutting carbon-based consumption, and aggressively increasing energy efficiency may all be seen as difficult or unsavory to the vocal and powerful special interests invested in continued burning of oil, gas, and coal, such cuts and transformations remain the safest path forward.

At issue is the fact that the two other chief climate change response ‘options’ are either inadequate on their own or, worse, can simply amount to so much reckless and harmful flailing about. Atmospheric geo-engineering and rapid removal of carbon from the Earth System — are either costly, difficult to scale to the level needed to remove carbon from the atmosphere fast enough to prevent serious harms under continuing fossil fuel burning, or, in the case of the solar radiation management version of geo-engineering, flat-out dangerous.

(New scientific studies highlight the fact that there is no substitute for a rapid halt to fossil fuel burning when it comes to preventing the worst impacts of human-caused climate change. Image source: The Sierra Club.)

Some of these basic facts were highlighted this week by a new study in the journal Science. The study — Rightsizing Carbon Dioxide Removal — found that under worst-case carbon emissions scenarios, there is practically not enough forested land area to grow the amount of switch grass and other biomass needed to recapture even half of the projected carbon emission. It also found that land mass dedicated to biomass production would need to equal roughly 1/3 of all forested lands under present emissions cuts goals under the Paris Climate Summit in order to prevent 2 C warming. A level of land use that would likely put global food security at risk.

Study Authors Katherine March and Christopher Field note that:

“The models generating possible trajectories of climate change mitigation bet on planetary-scale carbon removal in the second half of the century. For policymakers trying to limit the worst damages from climate change, that bet is reckless. This puts climate change mitigation, global food security and biodiversity protection on a collision course with no easy off-ramps.”

Only the most ambitious cuts to emissions combined with a moderate assist through considerable advances in atmospheric carbon capture provide a reasonable path to avoiding 2 C warming, according to the study.

A separate but similar study also published in May provides some confirmation to the Stanford study’s results. The co-author of that study, entitled The Limits to Global Warming Mitigation by Terrestrial Carbon Removal,Wolfgang Lucht from PIK notes in Phys.org:

“As scientists we are looking at all possible futures, not just the positive ones. What happens in the worst case, a widespread disruption and failure of mitigation policies? Would plants allow us to still stabilize climate in emergency mode? The answer is: no. There is no alternative for successful mitigation [cutting carbon emissions]. In that scenario plants can potentially play a limited, but important role, if managed well. [Emphasis Added]”

The issue is the fact that while methods like planting trees, changing the way we manage farmland, or even adding various carbon capturing biofuel plants and enhanced weathering materials to capture more carbon from the air is likely only capable of drawing down a fraction of the carbon we presently emit each year (and an even smaller fraction of carbon if emissions keep growing). At best, under practical considerations, we might be able to take down 1-3 billion tons of carbon every year compared to a present emission in excess of 10 billion tons and a BAU emission that could hit 20 billion tons of carbon per year or more.

 

(This graphic, produced by Greenpeace, provides a good illustration of basic carbon math. However, given the fact that warming will tend to push more carbon into the atmosphere from the Earth System and keep it there for a longer period, it’s likely that some assist by enhanced atmospheric carbon capture will be necessary even if carbon emissions are rapidly cut to zero. That said, atmospheric carbon capture at best provides an avenue for moderately enhancing atmospheric carbon draw-down. New studies warn that atmospheric carbon capture by itself and without coordinate rapid cuts to fossil fuel burning is not a practical solution. Image source: Greenpeace.)

Such levels of carbon capture, even if they were achieved in as short a time as two decades, would not be enough to prevent 2 C warming under anything but the most modest future emissions pathways. As a result, the primary climate change response strategy should continue to focus on increasing and rapidly scaling the size of planned emissions cuts. Meanwhile, atmospheric carbon capture is a good potential option as a follow-on to rapid emissions cuts to zero as soon as possible — providing a means eventually, over many decades, to possibly start to claw atmospheric greenhouse gases down from very dangerous and harmful levels. But such an option alone should not be viewed as something that will magically swoop in to save us from climate destruction if we continue to burn fossil fuels willy-nilly.

Chris Field — professor of biology & Earth System science and director of the Stanford Woods Institute for the Environment provides this urgent observation following his study’s publication:

“For any temperature limit, we’ve got a finite budget of how much heat-trapping gases we can put into the atmosphere. Relying on big future deployments of carbon removal technologies is like eating lots of dessert today, with great hopes for liposuction tomorrow.”

With the caveat being that eating lots of dessert today is likely to have far more limited and less disastrous consequences than continuing to burn oil, gas and coal.

Links:

Rightsizing Carbon Dioxide Removal

The Limits to Global Warming Mitigation by Terrestrial Carbon Removal

Assuming Easy Carbon Removal is High-Stakes Gamble

Planting Trees Cannot Replace Carbon Emissions Cuts

April of 2017 was the Second Hottest in 137 Year Climate Record

According to measurements by NASA’s GISS global temperature monitoring service, April of 2017 was warmer than all past Aprils in the climate record with the single exception of 2016.

The month came in at 0.88 degrees Celsius above NASA’s 20th Century baseline and fully 1.1 degrees Celsius above 1880s averages. This measure was just 0.01 C warmer than now third warmest 2010 and 0.18 C shy of last year’s record. All of the top ten hottest Aprils on record have occurred since 1998 and six of the top ten hottest Aprils have occurred since 2010.

(During April of 2017, and with only a few moderate exceptions, most of the world experienced above normal to considerably above normal surface temperatures. Image source: NASA GISS.)

The first four months of 2017 now average around 1.21 degrees Celsius warmer than 1880s ranges. This number is about tied with 2016’s overall record warmth which was spurred by a combined strong El Nino and the incredible buildup of greenhouse gasses in the Earth’s atmosphere that we have seen for over more than a century. It is also a warming that is now strong enough to start bringing on serious geophysical changes to the Earth System. The longer readings remain so warm or continue to increase, the more likely it is that instances of global harm in the form of glacial melt, sea level rise, ocean health decline, severe storms and other extreme weather will worsen or emerge.

This year, ENSO neutral conditions trending toward the cooler side of average during the first quarter should have helped to moderate global temperatures somewhat. As is, though a slight cooling vs the first quarter of 2016 is somewhat evident, the broader, more general counter-trend cooling that we would expect following a strong El Nino is practically non-apparent.

(A mildly warm Kelvin Wave forming in the Equatorial Pacific brings with it the chance of a weak El Nino by summer of 2017. This warming of such a broad region of surface waters may combine with atmospheric CO2 and CO2e in the range of 405 and 493 ppm respectively to keep global temperatures near record highs of around 1.2 C above 1880s averages during 2017. Image source: NOAA EL Nino.)

Very strong Northern Hemisphere polar warming during the winter months appears to be a primary driver pushing overall global temperatures higher during recent months. Meanwhile, southern hemisphere polar amplification is becoming more and more apparent over time.

In April, the trend of Northern Hemisphere polar amplification/warming was readily apparent in the NASA measure despite a seasonal relative cooling. Under global warming related heat forcing, we would expect to see the highest temperature departures during late fall through winter. And as 2016 transitioned into 2017, this kind of warming was amazingly evident.

(Only the very far north and the very far south saw below average temperatures in NASA’s zonal measure. Meanwhile, temperatures in the lower Arctic were particularly warm. Image source: NASA GISS.)

Anomalies during April in the higher latitudes did cool somewhat to 2 to 2.6 C above average in the key 65 to 75 N Latitude zone. Highest departures continued to be very considerable for April — ranging from 4 C to as much as 7.5 C above average over Northeastern Siberian, the East Siberian Arctic Shelf, the Bering Sea and parts of Northwest Alaska. Meanwhile, temperatures over the Central Arctic dipped to slightly below average as polar amplification in the southern hemisphere appeared to take a break before warming again in March.

Globally, according to GFS model reanalysis data, temperatures appeared to cool through the end of April. However, by early May another warm-up was underway and, if the GFS measure is any guide, it appears that May will likely be about as warm as April overall. This track would tend to make May of 2017 the 1rst to 4th warmest on record if the trends analysis bears out.

Links:

NASA GISS

NOAA EL Nino

Global and Regional Climate Anomalies

 

Record-Thin Sea Ice Faces Big Predicted Arctic Warm-up This Week

If you’re someone who tends to worry about Arctic sea ice losses, this coming week’s weather forecast looks like a bit of a doozy. And when you consider that the sea ice is both greatly weakened and thinned in a number of the major monitors, prospects don’t look very good, presently, for 2017’s summer melt season as whole.

Abnormal Warmth Over Greenland and Baffin and Hudson Bays

Over the next 48 hours, Baffin and Hudson Bays will experience the tail end of what an extreme warm-up that produced exceptional May surface melt over the Greenland Ice Sheet and then shifted westward.

(An extreme early May warming over Greenland this week produced considerable surface melt well outside the 2 standard deviation range. Today, the warmth has shifted west over Baffin and Hudson Bays. Later this week, a similar strong warm-up is predicted to impact the Pacific side of the Arctic Ocean. Image source: NSIDC.)

Temperatures for Hudson and Central and Southern Baffin, according to GFS model runs, will range above freezing over this time period — hitting as high as the low 40s (F) in Eastern sections of Hudson Bay. Over-ocean readings (which tend to moderate, but not, apparently, in this case) that will range from 5 to 15 degrees Celsius above average. These rather high surface temperatures will help to kick sea ice melt throughout these regions into higher gear.

Pacific Side of Arctic Ocean Predicted to Heat Up

Following the Baffin-Hudson warm-up, a large bulge of much warmer than normal air is predicted to extend northward from a broad region extending from Eastern Siberia through the Bering Sea and Alaska and on into Northwestern Canada. This bulge will, according to GFS model runs, by early next week inject periods of above freezing temperatures over a wide region of the Arctic Ocean that includes the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. And by this time next week, these same model runs project that 10-16 C above average temperatures will dominate a large region of the Central Arctic — forcing above-freezing temperatures over a broad cross-section of the North Pole zone by May 17.

(The Arctic is expected to experience nearly 2 C above average temperatures with some regions over the Arctic Ocean hitting 16 C [28 F] above average. These are considerable departures for May when temperatures in the Arctic tend to moderate. So much warmth is likely to have an impact on the already greatly thinned Arctic sea ice. Image source: Global and Regional Climate Anomalies.)

So much early season warmth is likely to further impact an already greatly weakened and thinned veil of sea ice covering the Arctic Ocean. A cooling cap that even more conservative scientists estimate could be completely removed during a summer as soon as the early 2030s. But in the worst case scenario, and when considering how thin the ice is now, a nearly ice free summer could happen as soon as this year. Few scientists really want to talk about that now — given the likely controversy that would result. But we shouldn’t entirely ignore that possibility for fear of backlash or criticism. Nor should we ignore how such an event would tend to further distort an already disrupted Northern Hemisphere atmospheric circulation.

Indicators Show Very Thin Ice

Over recent weeks, sea ice area and extent measures have recovered somewhat as temperatures over the Arctic Ocean have moderated a bit from very warm conditions during October through March. However, a number of indicators including PIOMAS’s sea ice volume measure show that despite this mild surface extent recovery, the ice is very weak and significantly thinned.

(PIOMAS sea ice volume measure shows a considerable record low departure through mid April of 2017. Image source: PIOMAS.)

It’s worth noting that a significant portion of the extent recovery over recent weeks can be attributed to strong winds blowing ice out of the Arctic Ocean and into the Barents Sea as well as out through the Fram Strait. Such conditions are not normally considered to be healthy ones for ice retention through summer as ice in the Barents and Fram tends to melt far more swiftly than ice secured in the Central Arctic. And the Fram itself is often considered to be a graveyard for sea ice.

As for PIOMAS, the most recent measurement through the middle of April found that sea ice volume had topped out at 20,600 cubic kilometers. This measure was fully 1,800 cubic kilometers below the previous record low set for the month. It’s a tremendous negative departure that, if valid, shows that the state of the sea ice as of this time was terribly unhealthy. A situation that prompted the typically conservative Neven over at the Arctic Ice Blog to state that it’s:

Not looking good. Not looking good at all… with a maximum that was almost 2000 km3 lower than the previous record reached in 2011, it’s obvious that anything is possible this coming melting season.

(According to the EASE NSIDC sea ice age monitor, the multi-year sea ice is now almost entirely removed from the Pacific side of the Arctic. Strong, persistent winds have continued to push a good portion of the frail remainder of this ice out toward the Fram Strait — a graveyard for sea ice. And a big warm-up predicted for this week will begin to test the greatly thinned ice over the Beaufort, Chukchi and East Siberian Seas. Image source: NSIDC and The Arctic Ice Blog.)

Moreover, Neven last week pointed out that according a separate measure (see image above), typically thicker multi-year ice is presently absent from the Beaufort Sea. And, to this point, it’s worth noting that the amazing above normal temperatures that plagued the Arctic cold season for multiple years now have resulted in vast losses among this most healthy subset of sea ice.

Such considerably thinned ice presents practically no barrier to the effects of warming. It can melt quite rapidly and it is far more subject to the physical forces of wind and waves. With strong southerly winds and a big warm-up now in the pipe, it appears that this considerably thinned ice will get its first test in mid-May. Potentially creating large sections of permanently open water very early in the melt season and very close to the ever-more vulnerable High Arctic.

Links:

NSIDC

PIOMAS

Climate Reanalyzer

Earth Nullschool

Hat tip to Neven and…

to the researchers over at The Arctic Ice Blog

 

New Crack Found in Delaware-Sized Chunk of Larsen C Ice Shelf as it Heads Toward Southern Ocean

A 2,000 square mile section of the Larsen C Ice Shelf is hanging by a thread as it continues to drift toward the Weddell Sea.

(A second crack develops in Larsen C Ice Shelf. Image source: Project MIDAS.)

The break-off section represents fully 10 percent of all the ice contained in the Larsen C system. It has been divided from the larger ice shelf by a 180 kilometer long crack that began to develop in 2009 and that swiftly lengthened during recent years. Now only a 10 kilometer wide bridge links the breaking section to the larger ice shelf. And considering the enormous stresses now being placed on this break-off section it is expected to go at any time.

Since January, according to researchers at Project MIDAS, the large crack has been widening but its length growth has stalled. However, recent reports out this week from MIDAS found that a new crack had developed at the ice-bridge end of the break-off section. The new crack appears to be rounding the corner of the bridge to begin a quicker path to segmenting the massive ice berg away from Larsen C. A testament to the powerful forces that are inevitably forcing this enormous section of ice to relinquish its hold.

(Large section of Larsen C is moving far faster than the rest of the ice shelf toward the Southern Ocean. Image source: Project MIDAS.)

At issue is the fact that the break-off section is moving toward the Weddell Sea considerably faster than the rest of the Larsen C ice shelf. Much of this large section of ice is proceeding away from the Antarctic mainland at 3 meters per day. Surrounding sections of Larsen C are moving at only 1-2 meters per day. As a result, the toe end of the break-off mass is tipping out into Weddell’s waters and the crack separating it from Larsen C is widening.

It’s not really a question of if this massive block of ice will separate from Larsen C. More an issue of how soon.

Loss of so large a section of ice from Larsen C threatens the entire ice shelf’s stability. And some scientists are questioning whether the whole ice shelf will destabilize and eventually splinter — as happened to Larsen A and Larsen B during recent years.

(Rapid loss of buttressing ice shelves like Larsen C lock in higher and higher ranges for sea level rise. A worrying risk for rapid sea level rise occurs as global temperatures warm to between 1.5 and 2.5 C. A level we are fast approaching. Scientists like James Hansen identify a significant risk for multi-meter sea level rise this Century if 2 C warming thresholds are breached. Video Source: Carbon Freeze.)

Warming ocean waters due to human-forced climate change are the primary driver for loss of ice shelves around the world. These ice shelves hold back land glaciers — preventing them from more rapidly sliding into the world’s oceans. Larsen C alone holds back glaciers capable of lifting global ocean levels by 4 inches. But there are numerous such ice shelves and many are now facing thinning and increasing instability due to warming ocean waters. As a result, a growing number of scientists are concerned about the possibility for multi-meter sea level rise this Century if fossil fuel burning is not swiftly halted.

Links:

Project MIDAS

Carbon Freeze

Second Giant Crack Appears on Larsen C

Crack in Larsen C Forks

Larsen C Destabilization Could Trigger 4 Inch Sea Level Rise

Hat tip to June

Hat tip to Andy in San Diego

Early Season Russia-Siberia Wildfire Outbreak Expands Due to Heat

An early Siberian and Asian wildfire outbreak that became apparent last week has continued to flare just south of the swiftly retreating freeze line. And while wildfires near Lake Baikal and further south and east toward the Russia-China border continue to flicker, a considerable outbreak has now flared up in Western Russian and Siberia along a zone straddling the Urals and just south of the Yamal Peninsula.

(Wildfires and hotspots run west to east across Russia and Siberia in this May 3 NASA satellite shot. Note the storm system near Lake Baikal which has recently suppressed early season wildfire activity there. Image source: LANCE MODIS.)

A trough dipping through Central Russia and Siberia has brought rain and cooler conditions — which has suppressed some of the previously extensive wildfire activity near and to the north of Lake Baikal. But temperatures in the range of 5-15 C above average along both the Russia-China border and in Western Russia have combined with warm, southerly winds to spur wildfire activity throughout these regions. In these zones, temperatures have been flaring into the 60s, 70s, and even lower 80s F (16-27 C) through sections. And such abnormal heat has helped to generate a high prevalence of newly-flaring early May wildfires.

Though wildfires in the east along the Russia-China border are still small and lack intensity, the region near the Urals is showing some significant flare-ups. Just west of the Urals near 56 north latitude burn scars as large as ten miles long by five miles wide appeared in the satellite imagery as fires ripped through the area on April 29 through May 3. These fires blanketed the region with 100 to 200 mile long smoke plumes even as the blazes steadily march northward.

(Wildfire flare up near 56 N just west of the Urals. For reference, north is left side of frame, south right side. Bottom edge of frame is approximately 80 miles. Image source: LANCE MODIS.)

In the east and near Lake Baikal permafrost often extends as far south as the Russia-China border. So many of the fires in this region are already burning in or near permafrost zones. In the west, permafrost is removed further north — becoming more common beyond the 60 degree north latitude line. Hotspots in the west are now approaching this zone, flaring as far north as the 59th parallel, but have yet to fully cross into it.

Over the coming days and weeks, wildfires in the permafrost zone will tend to become more extensive as spring advances. Such burning, during recent years, is now much more common than in the past. The increase is due to a considerable and rapid warming near the polar region that has averaged 2 times the larger global warming rate (about 0.15 to 0.2 C per decade for the world and 0.3 to 0.4 C per decade for the Arctic).

(Anomalous warmth is spurring wildfire flare-ups in both eastern and western Siberia and Russia today. Over the coming weak, abnormally warm temperatures are again predicted to flare again over the Lake Baikal region — which will likely reinvigorate the wildfires that have already begun burning there. Image source: Climate Reanalyzer.)

This human-forced warming due to fossil fuel burning is producing considerable permafrost thaw and creating new fuels for fires in a previously-frozen region. In addition, the added heat has generated more thunderstorms — producing more lightning strikes and other ignition sources. As a result of this warming, the added fuels, and a multiplication of fire ignition sources, Siberian wildfire season now ranges from April through September and often produces fires of a terrible magnitude.

Links:

LANCE MODIS

Climate Reanalyzer

Hauntingly Freakish Siberian Wildfires Now Flicker to Life in April

Hat tip to MlParrish

India to Fight Airpocalypse by Making Every Car Electric by 2030

Stricken by air pollution, tired of paying so much for fuel imports, fearful of climate change, and looking to cut vehicle ownership costs, India now plans to have all new cars purchased in the country be electric-powered by 2030.

A Crisis Brought on by Fossil Fuel Dependence

If you thought air pollution in China was bad, you haven’t really taken a good look at India.

According to a 2015 ‘Airpocalypse’ report from Greenpeace, the massive country sees 1.2 million people die from toxic air pollution every year. This number, according to the report, was only slightly less than total deaths attributed to tobacco use.

(Smoke, dust, and industrial pollution choke India’s skies in this 2012 NASA Satellite Photo. During recent years, air quality decline in India has been attributed both to increasing air pollution and to rising instances of wildfire ignition spurred by human-caused climate change.)

Over recent years India’s air pollution death rate, according to Greenpeace, has been steadily ticking upward. And in 2015, the country surpassed China’s annual loss of life due to bad air. In places like the capital city of Dehli, the amount of harmful particulate pollution now often rises to 13 times the maximum safe level recommended by the World Health Organization.

A large share of the pollution that causes these deaths comes from automobile emissions. Add in the worsening instances of heat and drought caused by fossil-fuel-emissions-based climate change — which are already hitting India’s farmers and water security hard — and the incentive to move to clean energy sources couldn’t be higher. Facing multiple and worsening but related crises, it is now the goal of the country’s energy minister — Piyush Goyal — to begin a massive vehicle electrification program that first targets the country’s most heavily polluted population centers and then aims to encompass the entire nation.

100 Percent Electric Vehicles by 2030

The program would both add electrical vehicle charging infrastructure even as it incentivizes India’s citizens to purchase zero emissions vehicles. Individuals would be offered electrical vehicles for zero money down and then would pay back the price of purchase in installments from money saved due to far lower fuel costs. The plan would ramp up in 2020, leverage subsidies of around 4.3 billion dollars equivalent value per year, and would aim to build demand for between 4-7 million electrical vehicles annually.

Goyal says that the goal is to have 100 percent of all new cars sold as electrical vehicles by 2030. And it’s a goal that not only aims to reduce harmful pollution — but also to significantly lower fuel imports which presently stand at around 4.5 million barrels of oil per day even as it tamps down the overall cost of running a vehicle. As an added benefit, the program would spur rapid growth in the country’s automotive sector which, if successful, has the potential to leap-frog the country into a far more competitive economic position vis-a-vis the rest of the world. Especially considering the backward energy and climate policies of western heads of state like coal promoters Donald J. Trump and Malcolm Turnbull which threaten to put countries like the U.S. and Australia behind the energy transition curve.

(Are electrical vehicles about to hit an S-Curve type adoption rate? Policies in India and in other nations and cities around the world seem set to help enable an electrical vehicle and renewable energy based transition away from fossil fuels. Image source: Solar Feeds.)

India’s clean energy ambitions do not start or end with electrical vehicles, however. The country is also involved in major efforts to promote wind and solar energy. India’s solar bid process has been very successful in both lowering costs and spurring mass adoption of clean energy sources. This year the program will help to add fully 10 gigawatts of solar power capacity to the country’s electricity sector. A recent wind energy bid program now appears set to achieve similar gains — with another 6 gigawatts of capacity from that clean energy source on tap in 2017. So it’s likely that these new electrical vehicles will be powered more and more by renewable sources even in previously coal-dependent India.

India is among a growing group of nations announcing ambitions to switch entire vehicle fleets over to electric and renewables. The Netherlands is mulling over a ban on petroleum and diesel based vehicles by 2025. Sweden, Norway and Belgium are planning similar bans by 2025 through 2030. And these countries join an expanding number of major cities around the world like Athens, Paris, Mexico City and Madrid who have announced bans on pollution-causing fossil fuel based cars by 2025.

Links:

India Eyes All-Electric Car Fleet by 2030

India to Make Every Single Car Electric by 2030

Airpocalypse

NASA

India Expects to Add 10 Gigawatts of Solar Power in 2017

Wind Power Passes Inflection Point in India

Diesel Controls at Critical Technological Junction in Transport

Solar Feeds

Duration of Indian Hot Season Nearly Doubles

Hat tip to Mblanc

Hat tip to Henri

Hat tip to Matt

Early Greenland Melt Spike Possible as Forecast Calls for Temperatures of up to 50 F Above Average

Greenland — a region vulnerable to the slings and arrows of human-forced climate change — appears set to experience both considerable warming and a significant melt spike this week.

Starting on Wednesday, May 3, a sprawling dome of high pressure is expected to begin to extend westward from the far North Atlantic and out over Iceland. As the high pressure dome builds to 1040 mb over the next couple of days, its clockwise flow will thrust abnormally warm and moist air northward out of the Atlantic. This air-mass is expected first to over-ride eastern Greenland, then run up into Baffin Bay, finally encompassing most of the island and its vast, receding glaciers.

(May 5, 2017 GFS model run as shown by Earth Nullschool is predicted to produce widespread above-freezing temperatures over the surface of the Greenland Ice Sheet. Such warming is expected to be accompanied by rainfall over a number of glaciers. Image source: Earth Nullschool.)

Liquid precipitation is then expected to start falling over southern sections of the Greenland Ice Sheet as temperatures rise to 1-6 C (33 to 43 F) or warmer. Since water contains more latent heat energy than air, such rainfall is likely to produce more melt than would otherwise be caused by a simple temperature rise.

For those of us living in more southerly climes, a temperature of 6 C (43 F) may not sound very warm. But for the northeastern region of Greenland shared by the ZachariaeBrittania, Freja, and Violin Glaciers, such temperatures far exceed ordinary expectations for early May. They are anything but normal. In fact, the building influx of heat is more reminiscent to readings Greenland would have tended to experience during summer — if at all — under past climate averages.

(GFS model predictions for May 4 show widespread liquid precipitation falling over southern Greenland. Image source: Climate Reanalyzer.)

Unfortunately, the new climate presented by human-forced warming is now capable of producing some rather extraordinary temperature extremes. And the anomaly ranges that are predicted for the coming week are nothing short of outlandish.

According to climate reanalysis data, by May 5th, temperatures over northern and eastern Greenland are expected to range between 15 C above average over a wide region and between 20 and 28 C above average in the northeast. For the Fahrenheit-minded, that’s 27 to 50 degrees F above normal. Or the equivalent of a 102 F to 125 F May day high in Gaithersburg, MD.

(An amazing temperature spike is expected to ride up and over Greenland on May 3 to May 5. This warming is expected to produce very extreme above average temperatures for this time of year. Image source: Global and Regional Climate Anomalies.)

Overall excessions for Greenland temperature are also predicted to be quite extraordinary for the day — hitting nearly 9 degrees Celsius (16 F) above average for the whole of this large island. So much warmth extending so far inland and combining with liquid precipitation, if it emerges as predicted in these GFS climate models, is likely to produce a significant early season melt spike — especially over southern and eastern Greenland. In places, these temperatures exceed expected normal summer conditions for Greenland’s glaciers. So it is difficult to imagine a situation where a significant surface melt spike does not occur if these predicted temperatures emerge.

Links:

Earth Nullschool

Global and Regional Climate Anomalies

Climate Reanalyzer

Two Days After Climate March 80 Million U.S. Residents are Under Threat of Severe Weather

This weekend, tens of thousands across the U.S. and around the world took part in a people’s march for climate action.

In the Nation’s Capital alone, it’s estimated that more than 200,000 took to the streets — doubling a projected attendance of 100,000. In a bit of dark irony, DC marchers faced scorching record heat in the low 90s. A late April day that felt more like a hotter than usual mid-July as the streets thundered with loud concern over a warming climate.

In storm-tossed Chicago, thousands braved wind and rain to make their own concerns heard. And in Oklahoma, the Capital of Tulsa echoed with the shouts of a doggedly determined group of climate marchers as the governor declared a state of emergency due to flooding.

Fully 370 sister marches in places as far-flung as West Palm Beach near Trump’s Mar-a-Lago and Dutch Harbor in Alaska occurred across a country wracked by extreme weather all-too-likely related to climate change.

Massive Jet Stream Wave Produces Severe Heat, Storms

Still vastly under-reported in mainstream broadcast weather media is the fact that polar warming in the Northern Hemisphere appears to be having a harmful influence on middle latitude atmospheric circulation. The south-to-north energy transfers contributing to a more rapid warming of the northern polar region as the world heats up overall is combining with larger warming producing more powerful heatwaves and droughts over highly populated areas.

In contrast, as more warm air centers at the poles, more cold air tends to spill southward into large troughs as the Jet Stream slows down. These troughs encounter an atmosphere that is generally more heavily loaded with moisture and charged with convective lift that tends to produce higher cloud tops. An atmosphere that is therefore predisposed to generating far more intense precipitation episodes in these regions.

(A massive jet stream trough in the western and central U.S. produced cooler conditions, blizzards, severe rains and storms during this weekend’s climate march. A facing ridge in the east produced record-shattering heatwaves in DC. North and west, into Alaska, temperatures were 5-10 F above normal. Image source: Earth Nullschool.)

The result is an overall increasing prevalence of extreme weather events. Scientific model studies indicate a heightened tendency for extreme middle latitude storms and heatwaves as the Earth warms and the pole heats up. And this weekend, a persistent trough and storm track that, this year, has consistently produced extreme weather and heavy rainfall across the U.S. in 2017 (large sections of the U.S. experienced far wetter than normal conditions this winter with a substantial number of locations experiencing their wettest January through March on record) again deepened — with significant results.

80 Million Under Severe Weather Threat

Saturday and Sunday, this storm system generated record river crests and related extreme flooding as 5-10 inches of rainfall inundated a region including Oklahoma, Missouri, Arkansas and Louisiana. Vicious tornado strikes ripped through East Texas. A late-season blizzard dumped as much as 20 inches of snow on the high plains. And, as mentioned above, record heat stifled the Eastern U.S. ahead of the storm.

(80 million people under threat from severe weather today as a spring storm heads eastward. From the satellite, it looks like a classic spring weather pattern. But record heat in the east, blizzards in the high plains, and record floods in the Central U.S. tell a tale of continued abnormal conditions. Image source: NOAA.)

Unfortunately, though the climate march has ended, the severe weather threat has remained. According to CNN, the same storms that resulted in the tragic loss of 15 souls as floods, savage winds, snow, and tornadoes raged over the Central U.S. this weekend are moving east. Today, reports now indicate that 80 million people from Georgia through New England are again under the threat of severe weather as a result.

Links:

Sprawling U.S. Storm Takes at Least 15 Lives

People’s Climate March

Floods Inundate Plains

Weekend Storms that Ravaged Central U.S. Move East

NOAA

National Center for Environmental Information

Hat tip to Suzanne

Hat tip to Colorado Bob

Hat tip to Cate

Hat tip to Jean

In Defense of Our Earth — A People’s Climate March

I think it can be fairly said that we are a people who believe in a better future. That the ideals of America are founded on building prosperity and expanding prospects — not only for ourselves, but for our fellows and for those generations that are to follow.

Americans have often been described as a ‘can-do’ kind of people. A people who will undertake any challenge to advance or protect our nation and to graciously extend her kind virtues to the huddled masses of a troubled world. Be it the freeing of slaves, the emancipation of women, the facing down of tyrannical dictators, the liberation of scientific inquiry, or the exploration of our Earth and the vast realm of space we have doggedly decided to march forward and on.

But today we are confronted by a new trouble. A trouble that was, in many ways, an unintended consequence of past progress. For as we industrialized, as a nation and as a global society, we also burned ancient carbon deposits long buried beneath the Earth. And so we expelled a great cloud of the most dangerous of gasses into the Earth’s atmosphere.

We didn’t know it so well at the time. But the carbon dioxide spewing from William Blake’s dark Satanic Mills was the same gas that in excess produced the worst and most horrific global die-offs in the great and deep, deep history of our Earth. Times of great mass extinction due to rising global heat that bear the infamous names — Permian, Triassic, Paleocene, Devonian and Ordovician. Blake, living today, would be terrified how right he was to call those mills Satanic. To learn what our scientists now have told us. But even then, he surely had an inkling. For the Bible itself warns — those who destroy the Earth shall be destroyed. And in 1808 the wanton destruction of the Earth and its airs by the pollution caused by fossil fuel burning was visibly evident if not so scientifically proven and explored as it is today.

Today, if we continue to burn fossil fuels as we have for the past 200 years or so, the world will again surely experience another such extinction. We already see the outliers of this crisis now — in the growing number of people bereft of land and home and livelihood as seas rose, or crops were destroyed by worsening storms and droughts, or lands and animals were lost to wildfires, or as reefs and fisheries were killed off by the warming, acidifying waters of our oceans. But what will come over the years and decades and centuries if we do not turn back from this horrid burning of fossil fuels and the dumping of their carbon into the atmosphere will be far, far worse.

What kind of world is this to make for our fellow human beings? What kind of future to leave for the generations that follow? Surely not the better one that we all work and hope for. Surely not one that honors the can-do, make the world a better place spirit of America.

But despite our worsening prospects and the dark and heavy clouds that now hang over the global climate, we have a window of opportunity in which to act. Our tools to confront climate change in the form of renewable energy systems like wind and solar and electrified transportation are growing more capable. And further innovation and change in our actions as people and nations can yet enable us to draw down the awful pall of heat trapping gasses that now hangs above us. These are things we can and must do if we are a moral people with any kind of vision, foresight and compassion.

This is our moment. The moment when we decide to make the choice to act and to save so many of the very precious things we all hold dear or to turn away from action and condemn each and every person and being now living or that will live to an age of terror and darkness the likes of which Earth has not seen in all of half a billion years.

So I’m asking you for your help. I’m asking you to make the choice to act. To join the People in their march for climate justice tomorrow. To support all the voices that are now speaking out. To lift your own voice to our growing chorus.

For the love of life and of all good things — we simply must act now.

With Mass Vehicle Electrification on the Horizon, New Oil Development hits a 70 Year Low

“One thing is certain: Whenever the oil crash comes, it will be only the beginning. Every year that follows will bring more electric cars to the road, and less demand for oil. Someone will be left holding the barrel.”Bloomberg

*****

As the global climate situation worsens, the rickety and destructive old energy sources that caused the problem in the first place continue to look less and less secure. Meanwhile, the new energy sources that will help to address what is now a very serious crisis continue to gain strength.

Plummeting Oil Discoveries, Investments

A report out from the International Energy Agency this week showed that new oil discoveries had fallen to 2.4 billion barrels — less than 1/3 of the 15 year average. Meanwhile, the volume of conventional resources sanctioned for development fell to 4.7 billion barrels or the lowest level seen since the 1940s.

(Global oil discoveries and sanctioned developments hit historic lows during 2016. A structural trend due to new energy market factors that is likely to continue through at least the end of 2017. Image source: International Energy Agency.)

Sanctioned development is a direct measure of investment in new oil extraction infrastructure while new discoveries are a key factor in maintaining or expanding present oil supply rates of around 85 million barrels per day globally (total liquid fuels including biofuels are now 92 million barrels per day). If investments are falling along with new discoveries, at some point daily production rates will start to lag.

A combination of low oil prices, strong opposition to new oil projects, divestment of fossil fuel market capital, concern over climate change, loss of good faith in the oil industry, and rapidly falling renewable energy prices have all weighed heavily on oil exploration and new project investment. Intense efforts to extract unconventional oil (shale oil and tar sands) in the U.S. and Canada also depressed the broader global markets. IEA sees this trend continuing through at least 2017. A potential for price increases may emerge post-2017 due to supply tightening despite a feeble expected demand growth of 1.2 million barrels per day over the next five years. Given such weak expected increases in demand, most of any supply tightening would tend to come as flagging new project investments fail to make up the gap in falling well production rates.

Oil Major Predicts Electric Future

But over the same 5-year timeframe another factor pushing down global oil demand is expected to begin to emerge. Electric vehicle purchases, which now make up about 1 percent of the global market, are expected to dramatically expand in the coming years. A fact that even oil major Total acknowledges.

(Bloomberg New Energy Finance projects rapid adoption trend for electric vehicles. However, once this kind of market momentum starts, it can tend to snowball very rapidly. Potentially even more rapidly than this trend graph suggests.)

According to a recent report from Gas2:

At the Bloomberg New Energy Finance conference in New York on April 25, Joel Couse, chief economist for Total, predicted that sales of electric cars will surge from about 1% globally in today’s new car market to up to 30% of the market by 2030. If that happens, he says, demand for petroleum based fuels “will flatten out, maybe even decline.”

Coming from an oil major, this is a big admission. And one that jibes with past reports made by Bloomberg showing electric vehicles dramatically eating into global oil demand by the 2020s. Since Bloomberg’s 2016 report, new revelations have continued to emerge showing EV market strength. Battery prices are falling by 20 percent per year — which just keeps making both EVs and related battery storage more accessible. Meanwhile, EVs continue to develop in ways that surpass their conventional counterparts. Michael Liebreich, who founded Bloomberg New Energy Finance, expects that by “2020 there will be over 120 different models of EV across the spectrum. These are great cars. They will make the internal combustion equivalent look old fashioned.”

Potential to Decimate Oil Demand in Just One Decade

More than 50 percent of global oil demand comes from gasoline use. Another 15 percent of that demand comes from distillate use which includes diesel — which is also a motor vehicle based fuel. Start replacing significant portions of the global vehicle fleet with EVs and that demand is going to fall.

(Total oil demand is significantly vulnerable to fluctuations in gasoline and distillate products demand — both of which are heavily impacted by electric vehicle and solar energy adoption rates. Image source: Quora.)

This is arguably already a marginal feature of the oil market with EVs making up 1 percent of global vehicle sales and with solar now acting to directly replace diesel based electric generation. But the ground swell we are beginning to see in the energy markets appears to be the start of transformational trend.

Cities and countries are banning (or planning to ban) petrol-based vehicles. Automakers like Volkswagon, GM, Nissan, BMW, Audi, Ford, and Toyota are dedicating increasing portions of their vehicle fleets to electrics even as all-electric manufacturers like Tesla are growing more dominant. And fast charging stations that are capable of 5-10 minute charge times are on the horizon. Given the emerging confluence of affordability, capability and desirability — it appears that a big, S-curve-like, EV adoption bump is coming on fast. If and when such an event occurs, a crash in oil production rates is likely to follow soon after.

Links:

International Energy Agency

Total Predicts Electric Cars Will Decrease Oil Demand

Bloomberg New Energy Finance

How Goliath Might Fall

The 5-10 Minute EV Charging Stations are Coming

Quora

Hat tip to Steve Piper

Key Heat Trapping Gas Crosses 410 Parts Per Million Threshold — Highest Level in Past 5-20 Million Years

This past week, atmospheric carbon dioxide levels passed a new ominous milestone.

Clocking in at 410.7 parts per million at the Mauna Loa Observatory, this key heat trapping gas hit a range not seen on Earth for many millions of years.

(The world crossed the 410 part per million milestone in the daily measure this week. Image source: The Keeling Curve.)

These levels now correspond with the Miocene Climate Epoch when seas were 120 to 190 feet higher than today and when global temperatures ranged from 3 to 5 degrees Celsius hotter than preindustrial averages.

Record Rates of Accumulation

These new records come following two years of record rates of atmospheric CO2 accumulation. According to NOAA, carbon dioxide accumulated by 3.03 parts per million during 2015 and by 3.00 parts per million during 2016. These now represent the two fastest rates of carbon dioxide accumulation in the climate record to date. By comparison, the substantial warming at the end of the last ice age was accompanied by an approximate 0.01 part per million per year rate of CO2 increase averaged over 10,000 years.

2017 rates of atmospheric CO2 accumulation, according to NOAA, appear to have backed off somewhat in the first quarter. Comparative gains from Q1 2016 to Q1 2017 are about 2.8 parts per million. A weak La Nina in the Pacific during late 2016 probably helped ocean surfaces to cool and to draw down a bit more CO2. However, the rate of increase is still disturbingly rapid. A 2.8 ppm increase in 2017, should it emerge, would be the 4th highest annual rate of increase in the record and would be substantially above past decadal averages. Hopefully, this still-disturbingly-rapid rate of increase will continue to tail off a bit through the year. But it is increasingly clear that the time for urgent action to reduce carbon emissions and this very harmful related rate of accumulation is now upon us.

(The CO2 growth rate has recently been ramping higher due to record carbon emissions during the present decade. Rates of carbon emission will need to fall away from record high rates in order to tamp down the presently high rate of accumulation which will tend to trend higher even if such emissions remain at plateau due to various faltering carbon sinks and leaking natural carbon stores. Image source: NOAA.)

The total CO2 increase since major fossil fuel burning began in the 19th Century is now in the range of 130 parts per million from 280 (ppm) to today’s high of 410 (ppm). By comparison, during the end of the last ice age, levels of this heat trapping gas jumped by about 100 (ppm) from around 180 (ppm) to 280 (ppm). Atmospheric averages for 2017 should range about 3-4 ppm lower than the April-May high mark (which might still hit daily highs of 411 ppm or more). But at present rates of increase, we’ll be leaving the 410 ppm threshold level in even the lower average months behind in just a handful of years.

Depending on How You Look at it, We’re 5 to 30 Million Years Out of the Holocene Context

The primary driver of the present extreme rate of CO2 increase is global carbon emissions (primarily from fossil fuel burning) in a record range near 11 billion tons per year (or nearly 50 billion tons of CO2 equivalent gas each year). Though 2014 through 2016 saw a plateau in the rate of global carbon emission, the decadal average accumulation of this emission is still at record highs. Meanwhile, it appears that warming oceans, lands more susceptible to deluges and wildfires, increasingly deforested regions like the Amazon, and thawing Arctic permafrost are less able to take in this record excess. As a result of these factors, human fossil fuel emissions will need to fall for a number of years before we are likely to see an impact on the average annual rate of atmospheric accumulation of this potent heat-trapping gas.

(Past paleoclimate proxy records show that we are millions of years out of the Holocene context when it comes to present levels of atmospheric CO2 accumulation. Image source: Skeptical Science.)

Paleoclimate studies of past epochs are unable to provide 100 percent accuracy for past atmospheric CO2 levels. However, proxy data provides a good range of estimates. Based on these measures, it appears that the most recent likely time when atmospheric CO2 levels were comparable to those we now see today occurred around 5 million years ago. Meanwhile, it appears possible that the last time CO2 levels were so high extended as far back as 20 to 25 million years ago.

Unfortunately, carbon dioxide is not the only heat trapping gas humans have emitted into the atmosphere. Add in methane and other greenhouse gasses and you end up with a heat forcing roughly equivalent to 493 parts per million of CO2 (CO2e) during 2017 at present rates of increase. This level is very close to the maximum Miocene boundary level of 500 parts per million — a total amount of heat forcing that likely hasn’t been seen in 20-30 million years.

Serious, Concerted Action Required to Avoid Worsening Disasters

The only safe and reliable way to halt the rapid rise of heat trapping gasses and concurrent warming is to cease emitting carbon to the atmosphere. Such an undertaking would primarily involve a major shift away from fossil fuel burning machines and infrastructure. Present low-cost renewable energy provides a powerful option for just such a transition. In addition, various forms of atmospheric carbon capture from changes to land use, to biofuel-based carbon capture, to materials-based carbon capture will be necessary to draw down the extraordinarily high level of carbon overburden that has already been emitted. Failing such an undertaking, however ambitious, would consign the world to increasingly harmful temperature increases and related damaging geophysical changes for the foreseeable future.

Links:

The Keeling Curve

NOAA

Skeptical Science

Entering the Middle Miocene

Renewable Energy Technology is Now Powerful Enough to Significantly Soften the Climate Crisis

Hat tip to Ryan in New England

Hat tip to Wili

Hat tip to Erik Frederickson

Broadcast Media’s Deafening Silence as Hundreds of Thousands March in Defense of Science

I just want to remind the administration that science is political. It is inherently political like everything else … It’s in the U.S. Constitution, Article 1, Section 8, to promote the progress of science and useful arts. That’s what enables innovation, and if our country stops innovating, it will not be able to compete worldwide. —  Bill Nye

*****

Scientists — from luminaries like Michael Mann, Bill Nye, Richard Alley, Gavin Schmidt, Stefan Rahmstorf and Neil deGrasse Tyson, to thousands of humbly toiling researchers for the public good whom you’ve probably never heard of — need our help now more than ever.

(Earth Day’s 2017 March for Science produced an unprecedented outpouring of support for public, non-special-interest-based scientific advancement and research around the world. Unfortunately, despite widespread internet and print coverage, broadcast media barely mentioned the historic event.)

Around the world and in the United States, science budgets are under threat, politically motivated individuals attempt to delete factual information related to public health and safety from science websites, individual scientists are subject to politically motivated attacks by quacks and climate change deniers in the hallowed halls of the U.S. Congress, and the person elected president is willfully scientifically illiterate while openly expressing opinions and pursuing policies that are hostile to fact-based science.

Public Rallies in Support of Scientists Under Threat

On Saturday, April 22nd, in honor of Earth Day, hundreds of thousands of people around the world marched in solidarity with scientists. Their essential jobs, often health, safety, and national security-related, are under threat of expungement by individuals and industries now empowered to attack the very basis of scientific truth. Though spearheaded by anti-science climate change deniers and those who harmfully attack public vaccination programs, the gamut of attacks on scientific understanding extends to research on toxic substances, water quality and security, endangered species, food safety and sustainability, forest resiliency, earth and weather observation and many, many more helpful endeavors.

 

(Saturday’s March for Science drew amazing support from around the globe.)

Weather Underground’s Bob Henson, in his own poignant and heartfelt call to join the march, noted:

For many of us, a prime motivation for marching on Saturday is to express our dismay and anger at the proposed slashing of U.S. federal funding of science that’s now on the table… These proposals run the gamut from medical to atmospheric research; in many areas, they would be the deepest cutbacks in decades. Cuts to ongoing scientific research can be especially problematic. It can take years to gather the people and resources needed for a major study. Once the momentum is disrupted and people scatter, a project may never fully recover. In the world of atmospheric science, satellites and other critical observing tools are especially vulnerable to funding-related problems. We only have one global atmosphere, and there is no substitute for monitoring it as closely as possible—including the effects that human-produced greenhouse gases are having on it. [emphasis added]

The public outpouring in support of these scientists — who often work for modest salaries and generate considerable public good for years and decades following the completion of their work — was tremendous. 610 demonstrations blanketed not just the U.S. but scores of countries and hundreds of cities around the world. Washington, New York, Sydney, London, Denver, L.A. and even Antarctica got involved. Never before in modern history has such an amazing show of support for scientific endeavors by climate scientists and others occurred.

Broadcast Media’s Increasingly Irresponsible Coverage — Or Lack Thereof

And though print media outlets like The Guardian, The New York Times, and The Washington Post provided almost continuous coverage of this historic event, television broadcast news media on Sunday morning following the protest was deafeningly silent. According to Media Matters:

Sunday news shows generally ignored the events that attracted hundreds of thousands of protesters. ABC’s This Week, CBS’ Face the Nation, and NBC’s Meet the Press failed to mention the March for Science at all, according to a Media Matters review. CNN’s State of the Union only had a brief headline about the demonstrations, and Fox Broadcasting Co.’s Fox News Sunday only dedicated about one and a half minutes to the story.

Such failure to cover follows a long-running pattern of apparently oblivious or even anti-science-based activity in TV news media. For example, the Presidential debates hosted by big TV networks included zero questions on the key scientific issue of climate change. Broadcast media sources often host climate change deniers — giving quackery, politicization, and long-disproven claims equal time to actual established science. Meanwhile, TV coverage of climate change-related science and events has plummeted even as climate change-related impacts have steadily worsened. At a time when the Earth is the warmest it has ever been since the dawn of human civilization (and probably in at least 115,000 years), when ice caps are melting, seas are rising, the Great Barrier Reef is dying, crops are endangered and cities like Miami are slowly succumbing to the rising tides, such a dearth of coverage is both unconscionable and amoral.

(My father-in-law, a retired rocket scientist for the U.S. Navy, braves the rain to show his support for the Science March. Mainstream broadcast media, however, was sadly mostly AWOL.)

Over the weekend, many of the same networks that have failed to cover the climate crisis also failed to report on the issue of special-interest-based attacks on science, as well as the public protest and outrage over such attacks. This neglectful non-reporting serves to enable climate bad actors and provides cover for those who attack scientists. Even worse, many of these same broadcast news organizations, in the few rare instances when it was mentioned, used the March to provide a platform for climate-change deniers to level attacks against those who support science. Such actions make these broadcast news organizations (of which Fox News is almost always first and worst) at least partially complicit in the assault on science that spurred the Marches in the first place.

At the start of the Science March this past Saturday, Bill Nye so eloquently reminded us that science and its underlying and ever-expanding quest for fact-based truth is a critical cornerstone of our democracy. However, in order for a healthy democracy supportive of the public good to exist, broadcast media’s silence over or denial of critical scientific issues needs to stop. A large subset of the fourth estate of government in the form of independent internet media and various mainstream print media sources have stepped up to the plate when it comes to providing more responsible coverage of climate change and other key science-based issues. It’s time for broadcast media to pull the gigantic plank out of its own eye, wash its mouth out with a large dollop of soap, and follow suit.

(Broadcast media’s failure to adequately or responsibly cover the Science March follows a longer-term trend of reduced science and climate coverage by major TV outlets. In addition, networks like Fox often host climate-change skeptics or deniers, providing a false balance to actual mainstream scientists. Image source: Media Matters.)

The science, along with the foundations of a healthily functioning democracy, is under attack by politically motivated anti-science interests at the exact time that dangers to public health and safety in the form of climate change and increasingly virulent diseases are on the rise. This is a story that needs to be covered. And it is arguably the biggest, most important story in the history of our nation and our race. So to broadcast media we say — pitch in, or get the hell out of the way.

Links:

The March for Science

Why We are Taking Part in the March for Science

March for Science on Earth Day

Sunday Shows Mostly Silent on the March for Science

Historians Say March for Science is Pretty Unprecedented

Every Continent Turned out For Science March

Networks Providing Coverage of Science March Gave Platform to Climate Change Deniers

Why Has Climate Change Been Ignored in U.S. Electoral Debates?

Trump Presses Control+Alt+Delete on Science

Lamar Smith’s Attacks on Science are Funded by the Fossil Fuel Industry

Hat tip to Suzzanne

Hat tip to Robert in New Orleans

Hat tip to Ryan in New England

Hat tip to Colorado Bob

Scientific hat tip to Bob Henson

Special thanks to everyone here and elsewhere who showed up this weekend in support of science

Hauntingly Freakish Siberian Wildfires Now Flicker to Life in April

This past winter has been ridiculously warm for large sections of Siberia. From the Yamal Peninsula to Lake Baikal to the thinning ice of the Arctic Ocean and back down to the Sea of Okhotsk, temperatures have ranged from 4 to nearly 7 degrees Celsius above normal throughout the entire first quarter of 2017.

(4th Consecutive year of extreme Siberian cold season warmth brings with it the heightened risk of early wildfires. Image source: NASA GISS.)

Climate reanalysis shows these far above average temperatures extending well into April. And, as a result, the Arctic chill that typically settles over this often-frozen region has been greatly reduced throughout winter and on into early spring.

2017 marks the 4th consecutive year of excessive winter warmth for this section of our world. A human-emissions-driven rise of abnormal heat that brings with it consistently earlier thaws, disruptive permafrost melt, and the freeing of new, deep-running, peat-like fuels for wildfires. A fuel that can smolder on through winter to again mar the land with new surface fires once the thin covering of snow draws back. An event that is occurring earlier and earlier as the decades and the great outpourings of oil, gas, and coal based carbon into the atmosphere wear on.

(Multiple wildfires and hotspots visible in this Sunday, April 22nd LANCE MODIS satellite shot of Siberia.)

On Saturday, April 22nd, the same day that tens of thousands of people marched to support climate scientists besieged by amoral corporate and political powers linked to the fossil fuel industry, multiple small fires flared along the thawing edge of that greatly warmed Siberia. A number of the more western blazes, intense enough to emit smoke plumes visible in these LANCE-MODIS satellite shots, appeared to have already expanded to over 1,000 acres.

By Sunday, the fires sparking closer to Lake Baikal further east had also grown their own series of tell-tale smoke plumes. One particular blaze in central Siberia appeared to have produced a 2.5 x 6 mile long burn scar in just one day (about 10,000 acres).

(40×60 mile section of Central Siberia on April 23 of 2017 shows large wildfires burning near the thaw line. Image source: LANCE MODIS.)

This year’s early wildfire eruption in Siberia comes after 2014, 2015, and 2016 wildfire outbreaks during similar timeframes and following similarly abnormal warm periods. These fires tended to crop up south of Lake Baikal or closer to the China-Russia border. This year, the early fire outbreak appears to have emerged both further north and generally along a wider expanse than during past years.

If past years are any guide, we can expect the present fire season’s early start to produce blazes that continue through September and that peak sometime during late June through August. The fires will tend to be very large and will probably range as far north as the Arctic Ocean.

(By summer, wildfires in Siberia are now capable of repeatedly producing massive smoke plumes like this 2,500 mile long monstrosity that was visible from 1 million miles away in space during a 2014 event. Image source: LANCE MODIS.)

These fires will gain ignition from new Arctic thunderstorms. They will be fed by new fuels such as thawing permafrost and trees harmed by northward invading species or by climates warming at rates far faster than they can handle.  And they will be capable of casting off gigantic smoke plumes that encircle the higher latitude reaches of the globe.

Instances of this kind are the upshot of new climate change related impacts. We wouldn’t have expected such a vast amount of Arctic and near Arctic burning over a 5 month fire season during the 19th or 20th Centuries. But the new very large cold-region fire outbreaks are happening in a world at around 1.2 C hotter than 1880s averages and warming. And, unfortunately, if we keep warming, we can expect a considerable worsening of these already troubling events.

Links:

NASA GISS

LANCE MODIS

Siberian Wildfires in April

Tens of Thousands turn out for Science March

Hat tip to Wili

Hat tip to Colorado Bob

Duration of Indian Hot Season Nearly Doubles as Crushing Drought and Heat Expand Across the Subcontinent

“It is a drought we have not seen in 110 years. Extreme weather events are becoming more frequent and it is due to global climate change.” — S. Thirunavukkarasu, a retired Tamil Nadu Public Works official.

****

For India, the hot-season-like temperatures began in late February — two months earlier than usual. After a brief respite, they fired again in March, bringing April-like temperatures a month too soon. The hot season for this region typically begins in mid-April and extends through mid-June. In 2017, hot-season conditions sparked in late February. Today, life-threatening temperatures of between 100 and 115 F blanket much of this vast, densely populated land.

The early onset of heat comes after years of expanding drought, warming temperatures, melting glaciers and drying rivers, bringing with it a deepening hardship. Farmers across the country report a sense of deepening desperation as cries for help in the form of nationwide protests break out. Meanwhile, those working outdoors increasingly suffer from heat- and dehydration-related kidney failure. This year, conditions that threaten heat injury and loss of life have spurred schools across the country to close early.

(GFS model runs indicate temperatures in excess of 47 C or 115 F over parts of India tomorrow, April 22nd. Meanwhile, forecasters predict that 50 C or 122 F readings are possible in the coming days and weeks. Image source: Earth Nullschool.)

In two southern provinces, Kerala and Tamil Nadu, the situation is one of extreme drought. In Kerala, water stress has now reached an intensity not seen in all of the past 115 years. Tamil Nadu’s own drought crisis is the worst in 110 years. And in Karnataka, Andhra Pradesh, and Telangana, the situation is nearly as calamitous (see map of India’s provinces here).

Retired Tamil Nadu public works official S. Thirunavukkarasu recently noted:

“It is a drought we have not seen in 110 years. Extreme weather events are becoming more frequent and it is due to global climate change. We may see a repeat of 2015 [floods] next year or the rains may fail again like they did in 2016. We cannot figure the weather out. But we need to ensure that we are prepared.”

Throughout the region and over other parts of India, residents are relying on ground water or water supply trucks as lakes and rivers run dry. Ground water supplies are being drawn down at an alarming rate. Water depths that should comfortably sit at 2-3 meters underground have been driven back to 8-15 meters or more. In some locations, wells are being driven as deep as 80 to 90 meters in search of water.

(Though southern India and Sri Lanka are hardest hit, long-term drought is impacting nearly all of India. Image source: NOAA.)

It’s a water crisis that is wide-ranging — impacting both rural locales and population centers like Delhi. Public officials are being forced to divert water from construction and other industries in order to ensure that residents receive access to life-giving supplies.

As with last year, reports are trickling in that tens of millions of people across India are experiencing water stress. Two years of delayed monsoons and severe hot seasons have already left the country reeling. This year’s extended hot season adds insult to injury. And with Pacific Ocean surface temperatures in the Equatorial region tracking above average for this time of year, it is again uncertain that present assurances of a ‘normal monsoon season’ will bear out.

Cyclical droughts and heatwaves are normal for India. What is not normal is the present situation of continuously worsening conditions. These ever-intensifying droughts and heatwaves are being driven by a global warming primarily brought on by fossil fuel burning. And, in the end, relief for India will only come when the warming ceases.

Links:

Five States Face Drought Made Worse by Early Onset of Summer

NOAA

Earth Nullschool

One-Third of Indian Population Stares at Drought This Summer

Delhi on the Verge of Groundwater Crisis

Capital City Reels Under Severe Water Shortage

Heatwave Across North, Central and Western India

The Indian Hot Season Began Two Months Early This Year

Hat tip to Colorado Bob

Renewable Energy Technology is Now Powerful Enough to Significantly Soften the Climate Crisis

In order for the world to begin to solve the climate crisis, one critical thing has to happen. Global carbon emissions need to start falling. And they need to start falling soon before the serious impacts that we are already seeing considerably worsen and begin to overwhelm us.

Carbon Emissions Plateau For Last Three Years

Over the past three years, countries around the world have been engaged in a major switch away from the biggest carbon emitter — coal. China is shutting down hundreds of its worst polluting coal plants, India is following suit, the U.S. is shuttering many of its own facilities, and in Europe the trend is much the same. Around the world, investment in new coal fired plants continues to fall even as the old plants are pressured more and more to halt operations.

(It’s starting to look like cheap renewable energy and the drive to reduce pollution and to solve the climate crisis are a stronger factor in the present carbon emissions plateau than a cyclical switch to natural gas fired power generation. Image source: The International Energy Agency.)

In many places, coal generation is being replaced by natural gas. This fuel emits about 30-50 percent less carbon than coal, but it’s still a big source. In the past, a switch to natural gas due to lower prices has driven a cyclical but temporary reduction in global carbon emissions. And falling coal prices have often driven a price-forced switch back to coal and a return to rising emissions rates. But after years of rock-bottom coal prices due to continuously falling demand this, today, is not the case.

Low-Cost, More Desirable Renewable Energy Blocks a Cyclical Switch back to Coal

And the primary reason for this break in traditional energy cycling is that renewable energy in the form of wind and solar are now less expensive than coal and gas fired power generation in many places. Add that wind and solar are considerably more desirable due to the fact that they produce practically zero negative health impacts from pollution and that such zero-emitting sources are critical to solving an ever-worsening climate crisis and you end up with something seldom seen in markets anywhere. A rare synergy between a public interest based drive for a more moral energy industry and a, typically callous to such concerns, market-based profit motive.

(In Western Europe basic economics and a desire for cleaner power sources has resulted in both wind and solar overtaking coal fired power generation capacity. Image source: Bloomberg.)

Consider the fact that now, in Western Europe, both solar and wind energy have higher installed capacities than coal. Combined, the two sources have more than double the present energy producing capacity of this dirty fuel. Coal just can’t compete any longer. And an increasing glut of low-cost, non-polluting renewable energy is forcing even the largest, most economically viable, coal fired power plants such as the 2.2 gigawatt facility in  Voerde, Germany to shut down.

In Australia, despite the mad-hatter attempts by coal cheerleader politicians to supply more of this dirty carbon to a dwindling world market, renewable energy just keeps on advancing. This week, Queensland announced a new solar + storage project that would at first supply 350 megawatts of renewable energy and would ultimately expand to 800 megawatts. The drive for the project comes as solar prices in Australia are now beating out gas fired power generation. Meanwhile, market analysts are saying that solar+storage will soon be in the same position. And, even more ironically, many of the new solar and battery storage promoters in Queensland are past coal industry investors.

Simple Technologies Leverage Economies of Scale

The technologies driving this fundamental energy market transformation — wind, solar, batteries — are not new silver bullet advances. They are older technologies that are simple and easy to reproduce, improve, and that readily benefit from increasing economies of scale. This combination of simplicity, improvability and scaling is a very powerful transformational force. It enables companies like Tesla to spin core products like mass produced batteries into multiple offerings like electrical automobiles, trucks, and residential, commercial and industry scale energy storage systems. A new capability and advantage that is now beginning to significantly disrupt traditional fossil fuel based markets world-wide.

A fact that was underscored by the shockwaves sent through combustion engine manufacturers recently after Tesla’s simple announcement that it would begin producing electric long-haul trucks.

The announcement almost immediately prompted downgrades in conventional truck engine manufacturer stock values. In the past, competition by electric vehicle manufacturers like Tesla have forced traditional, fossil fuel based vehicle and engine manufacturers to produce their own electric products in order to protect market share. But since these companies are heavily invested in older, more polluting technology it is more difficult for them to produce electric vehicles at a profit than it is for pure electric manufacturers like Tesla.

Renewable Energy Technology Capable of Removing Lion’s Share of Global Carbon Emissions

In light of these positive trends, we should consider the larger goals of the energy transition with regards to climate change.

  1. To slow and plateau the rate of carbon emissions increases.
  2. To begin to reduce global carbon emissions on an annual basis.
  3. To bring carbon emissions to net zero globally.
  4. To bring carbon emission to net negative globally.

By itself, market based energy switches to renewable energy systems can cut global carbon emissions from their present rate of approximately 33 billion tons of CO2 each year to 1-5 billion tons of CO2 each year through full removal of fossil fuels from thermal, power, fuel, manufacturing, materials production and other uses. In other words, by itself, this now rapidly scaling set of technologies is capable of removing the lion’s share of the human carbon emission problem. And given the rapid cost reductions and increasing competitiveness of these systems, these kinds of needed reductions in emissions are now possible on much shorter timescales than previously envisioned.

(UPDATED)

Links:

Europe’s Coal Power is Going up in Smoke — Fast

The International Energy Agency

Plans Laid for 800 MW Solar + Storage Facility in Queensland

Tesla Semi Announcement Causes Analysts to Start Downgrading Traditional Truck Stocks

Coal Plants are in Decline

Hat tip to Phil

Hat tip to Spike

Hat tip to Brian

North Atlantic May Cough up Another Out of Season Tropical Cyclone this Week

Like pretty much everywhere else in the world ocean these days, and due primarily to a rampant injection of greenhouse gasses into the Earth’s atmosphere through fossil fuel burning, the North Atlantic is now considerably warmer than during the 19th and 20th Centuries…

Warming Waters and An Angry Jet Stream

That extra heat provides more available fuel for tropical storm and hurricane formation. It increases the top potential peak intensity of the most powerful storms. And it extends the period in which such tropical cyclones are capable of forming — for sea surface temperatures of at least 70-75 degrees Fahrenheit are often necessary to fuel such systems (please also see the present science on how climate change is impacting tropical cyclones).

(Sea surface temperatures in the North Atlantic now range between 1 and 7 degrees Celsius above average for most regions. These warmer than normal sea surfaces provide more fuel for storms even as they extend the period during which tropical storm and hurricane formation is possible. Image source: Earth Nullschool.)

But it’s worth noting that warm ocean waters are not the only ingredient that add to the potential for the formation and strengthening of these powerful storms. Instability and cloud formation are often necessary to seed such systems. And the more extreme warm and cold temperature anomalies associated with wavier Jet Stream patterns inject exactly this form of instability into the middle latitudes at a higher rate than was witnessed during past decades.

Due to its proximity both to a melting Greenland and to a rapidly warming Arctic, the North Atlantic is particularly vulnerable to the production of powerful swirls of warm and cold air. Warming tropics collide with the cold air producing pools of glacial freshwater melt and the enlarging meanders of the Northern Hemisphere Jet Stream. And it’s the proliferation of these unstable vortices forming over warming waters throughout the North Atlantic that may start to generate a more and more noticeable higher incidence of both out of season cyclones and stronger storm systems.

(A persistent swirl of disorganized clouds in the Central North Atlantic — continuously re-charged by frontal systems sweeping down from Baffin Bay and feeding on warmer than normal sea surface temperatures may become the first tropical cyclone of 2017. If it later forms into a tropical storm, it will become the third out-of-season named storm to form in the Atlantic over the last 15 months. Image source: LANCE MODIS.)

Last year, extremely warm sea surface temperatures combined with this kind of observed instability to spur the formation of Hurricane Alex during January. Tropical storm Bonnie also formed out of season during May. Similar very warm ocean conditions then helped to kick-start the late November formation of Category 3 Hurricane Otto (though November is still technically hurricane season, it’s supposed to be very rare to see so strong a storm form so late in the year).

Possible April Cyclone Underlines Recent High Incidence of Out of Season Storms

Fast forward to April of 2017. According to the National Hurricane Center, there’s now a 30 percent chance that a tropical depression may form in the Central Atlantic over the next 48 hours. Ultimately, such a system could gather into the first Atlantic named storm of 2017 — Arlene. Such an event would mark the third time in just 15 months that the Atlantic basin had produced an out-of-season tropical storm or hurricane.

(A vast majority — 97 percent — of tropical storms and hurricanes in the Atlantic form during hurricane season from June 1 to November 30. That said, human forced climate change may now be in the process of providing more fuel for the formation of out-of-season storms. Image source: North Atlantic Tropical Cyclone Climatology.)

Incidence of out-of-season tropical storms or hurricanes in the Atlantic is rather rare. Over 158 years from 1851 to 2009, perhaps one such system formed, on average, each year. Moreover, these storms primarily formed during May — which by itself produced more out-of-season storms than December through April combined. And a vast majority of these systems were tropical storms — not hurricanes or major hurricanes.

In 2016 and 2017, Alex formed as a hurricane during January — which is practically unheard of. Bonnie formed during late May, which was less unusual but still out-of-season. Otto formed as a category 3 major hurricane during late November — another anomalous event. Meanwhile, if Arlene forms this April it will represent 1 out of only about 20 such systems that formed during the month in the period of 1851 through 2009.

But even if we don’t get a tropical cyclone in the middle of the North Atlantic during April of 2017, it’s becoming increasingly obvious that conditions have changed. That forecasters now need to be more alert for out-of-season tropical cyclones and to the various new weather phenomena that are now being precipitated by a warming climate.

Links:

The National Hurricane Center

Hurricanes and Climate Change

Earth Nullschool

LANCE MODIS

Extreme Weather Events Linked to Climate Change Impact on Jet Stream

North Atlantic Tropical Cyclone Climatology

Hat tip to Vaughn

Hat tip to Hilary

No El Nino — But March of 2017 Was the Second Hottest Ever Recorded

According to today’s report from NASA’s global temperature monitor, March of 2017 was the second hottest such month recorded in the 137 year climate record.

Temperatures for the month were 1.12 C hotter than NASA’s 20th Century baseline and 1.34 C hotter than 1880s averages. These warm temperatures likely represent a climate state not seen on Earth since at least the Eemian climate epoch of 115,000 years ago. They are also now in a range that is producing serious geophysical changes such as glacial melt, sea level rise, sea ice melt, more extreme weather, and declining ocean health.

(Temperature anomaly distributions during March of 2017 is indicative of continued, global warming related polar amplification. Image source: NASA.)

Much of the excess heat during March, as has been the case with many recent months, has focused at the poles. The northern polar region in particular saw considerable above average temperatures with extreme +4-12 C anomalies focusing over Siberia and the Russian side of the Arctic Ocean. 2-4 C above average conditions, meanwhile, blanketed much of Antarctica.

A key benchmark — sea surface temperatures in the central Equatorial Pacific — remained near average. Typically, warmer than normal temperatures in this region associated with El Nino tend to help push the world to new high temperature marks as the warm side of natural variability combines with the considerable effects of 405 ppm CO2 levels (along with other greenhouse gasses).

(The highest global CO2 levels in 4-15 million years is the primary driver of the present global warming event. During April through May, seasonal atmospheric CO2 levels peak. But since the mid 19th Century global CO2 levels have risen from 280 parts per million to the present average of 405 parts per million — primarily due to fossil fuel burning. Image source: The Copernicus Observatory.)

But despite near average ocean temperatures in this zone and a lack of El Nino conditions, March of 2017 was just 0.16 C cooler than the record warm March of 2016 and fully 0.2 C warmer than the, now third warmest, March of 2010.

NOAA models still predict that El Nino is about 50 percent likely to form during late summer — which could help to push 2017 temps into an even warmer range. But high uncertainty remains in this forecast. All that said, even without El Nino, the first three months of 2017 have averaged 1.26 C hotter than 1880s averages — which is 0.06 C warmer than the 1.2 C departure for the whole of the record-hot year of 2016. In other words, the first three months of 2017 were a hair hotter than the record hot 2016 annual averages. And with no El Nino providing an assist to these temperatures, it’s pretty clear that the world has entered a new, hot territory and left the tamer past decades far behind.

Links:

NASA GISS

The Copernicus Observatory

NOAA’s El Nino Diagnostic Discussion

Hat tip to Cate

Hat tip to Entropicman

Under the Arctic Dome — Brutish High Pressure System is Wrecking the Already Thinned Sea Ice

There’s a real atmospheric brute towering over the Arctic’s Beaufort Sea at this time. A high pressure system that would put shame to most other anti-cyclonic phenomena that bear the name. It is sending out a broad, clockwise pattern of winds. It is pulling up warm air from the Pacific to invade the Bering, Chukchi, East Siberian and Laptev Seas. And its torquing motion is shattering the already considerably thinned ice beneath it.

(A powerful high pressure system over the Beaufort Sea is predicted to further strengthen by late April 15. Image source: Earth Nullschool.)

Clocking in at 1046 mb of pressure, it makes typically strong 1030 mb high pressure systems seem weak by comparison. Over the next day it is expected to strengthen still — hitting 1048 mb by late April 15th (coming very close to an extraordinary 1050 mb system).

Shattered Sea Ice

This powerful and strengthening system has already been in place for about two weeks — slowly gaining momentum as its circulation has moved in mirror to the waters of the Beaufort Gyre that swirl beneath it. Masked only by a veil of sea ice considerably thinned by human-forced climate change, the waters of the Beaufort are now breaking through. Streaks of dark blue on white in an early break-up enabled both by a terrible Arctic warming and by this powerful spring weather system.

(Side-by-side images of Beaufort sea ice from April 4 [left frame] to April 13 [right frame]. Note the considerable and rapid advance of fracturing in a relatively short period. For reference, bottom edge of frame in both images is 500 miles. Image source: LANCE MODIS.)

Warm Storms

On the Siberian side of the Arctic, this massive high pressure dome is drawing in warm winds from the Pacific Ocean. Gust by gust and front by front, they come in the form of squalls that deliver above freezing temperatures and rains that blanket this thawing section of the Arctic. On Thursday, April 13, these warm winds had driven northward over 2,500 miles of Pacific waters to be drawn into storms that unleashed their fury — driving rains and gales through the already dispersed ice in the Bering Sea and shattering ice floes through the Chukchi. Today, April 14, these winds and rains drove northward to assault the ice of the East Siberian and Laptev seas.

(On April 13, above freezing temperatures, rains, and gale force winds ripped through the sea ice near Wrangle Island in the Chukchi Sea. Image source: Earth Nullschool.)

A Great Atmospheric Stack Drawing Heat into the Arctic

In the past, meteorologists like Stu Ostro envisioned that climate change would tend to produce towering high pressure systems — featuring increasingly strong storms roaring about their fierce outer boundaries. And the massive high lurking over the Arctic at this time is a good example of Ostro’s predictions coming to light in a region that is very sensitive to human-forced warming.

This great atmospheric stack appears to have had a considerable impact on the ice already — helping to push extent measures back into record low ranges by accelerating the melt trend. But these impacts are likely to spike over the coming week as this powerful high expected to remain in place through the next five days — continuing to draw warm air into the region.

(Global Forecast System models predict extreme warming over the Arctic Ocean throughout the next week resulting from the influence of a powerful high pressure system and very strong associated ridge in the Jet Stream. Image source: NCEP Global Forecast System Reanalysis.)

GFS model runs indicate that average temperatures over the Arctic Ocean region will hit a peak as high as 4 degrees Celsius above average by late next week. Meanwhile, the warmest zones are expected to be as much as 18-20 degrees Celsius above average. Such abnormal warmth at this time of year, if it emerges, will put a considerable damper on a freeze that should now be continuing in the High Arctic even as edge melt ramps up with the progression of spring.

This is particularly concerning due to the fact that temperature anomalies in the Arctic tend to fall off during spring and summer. In other words, such a powerful warming trend for the Arctic Ocean would be bad enough during winter — but it is an even more unusual event for spring. An ominous start to a melt season that could produce far-reaching regional and global consequences.

Links:

Earth Nullschool

LANCE MODIS

NCEP Global Forecast System Reanalysis

Stu Ostro

Climate Reanalyzer

Hat tip to Colorado Bob

Hat tip to Andy in San Diego

The Permafrost is Thawing 20 Percent Faster Than Previously Thought

Even in a world at 1 to 1.2 C warmer than 19th Century averages the permafrost is in trouble.

Already, vast thawed lands are starting to release carbon dioxide and methane. Thermokarst lakes bubble with the stuff. And pingos are now starting to erupt as the ice relinquishes the soils of Siberia. Russians, ironically concerned about the safety of an oil and gas infrastructure that helped to precipitate the warming in the first place, are starting to install seismographs to detect these new warming-induced eruptions from the thawed lands. Meanwhile, each new summer brings with it ridiculously warm temperatures, never before seen Arctic thunderstorms, and epic wildfires that rage over these growing piles of peat-like carbon laid down during the course of millions of years of glaciation — but now unlocked in just years and decades by an unnatural thaw.

Permafrost Thawing at 20 Percent Faster Rate Than We Previously Thought

Back in the late 1800s, permafrost covered about 17 million square kilometers of the Northern Hemisphere. In less than 150 years, that extent has been reduced by 2 million square kilometers due to the warming that has, to date, been produced by fossil fuel burning and related carbon emissions. Even worse, according to the new research, present temperatures alone are enough to, this Century, push permafrost coverage back to 12.5 million square kilometers.

That’s about 1/4 of the world’s permafrost gone due to just 1 to 1.2 degrees Celsius of global warming.

(A new study shows that 2 C worth of warming nearly cuts preindustrial permafrost extent in half to around 9 million square kilometers. Warming to 6 C above 1880s averages, which will occur so long as fossil fuel burning continues, will wipe out nearly all of the Northern Hemisphere’s permafrost. These thaw rates are about 20 percent more than previously estimated. Image source: An observation-based constraint on permafrost loss as a function of global warming.)

Warm the world by just another degree Celsius to 2 C above 1880s averages and, according to the new research, we’ll end up thawing another 3.5 million square kilometers of frozen ground to an ultimately reduced area of around 9 million square kilometers — cutting the Northern Hemisphere’s original permafrost coverage nearly in half.

Still More Urgency For Rapid Cuts to Fossil Fuel Burning

This newly identified permafrost thaw rate in response to human-forced warming is much faster than previously expected — representing a 20 percent acceleration compared to past permafrost thaw model estimates. And since the frozen ground of the world contains 1.2 to 1.4 trillion tons of carbon locked away over the course of millions of years, so rapid a thaw has big implications in a world warmed by fossil fuel burning.

(Wildfires burn through Siberia during August of 2014. Thawing permafrost lays bare billions of tons of carbon that can then be subject to release by microbes and the warming elements. Bacteria can break down the carbon — releasing methane and CO2. Thawed permafrost also forms a peat-like layer that can burn as more extensive fires rage across the heating Arctic. Image source: LANCE-MODIS.)

Back in 2015, scientists estimated that about 100 billion tons of permafrost carbon would hit the atmosphere over the course of the 21st Century due to human-forced warming. This warming feedback is equivalent to about 10 years of present fossil fuel emissions. Add an estimated 20 percent extrapolated from a faster than expected thaw to that rate and you end up with roughly 120 billion tons of carbon — or 12 years of present emissions bubbling and bursting up out of that previously frozen ground (approximately 40 ppm of CO2e heat forcing as feedback to the present warming).

It’s just another scientific finding of warming-related geophysical impacts occurring on timescales that were faster than previously expected. Still more added proof, as if we required any, that the need for cutting human fossil fuel emissions couldn’t be greater or more urgent. And when seismographs are now being constructed to detect permafrost methane bursts due to pingo detonations, it’s becoming more and more clear that we do not want to precipitate any more volatile Arctic thaw than we’ve already locked in.

Links:

An observation-based constraint on permafrost loss as a function of global warming

Climate Change and the Permafrost Carbon Feedback

LANCE-MODIS

First Seismic Sensor Installed to Detect New Risk of Exploding Pingos

Hat tip to Ryan in New England

Hat tip to Wili

Hat tip to Unnaturalfx

Powerful Storms in a Warming World — Cook is Strongest Cyclone to Strike New Zealand in Nearly 50 Years

About 12 hours ago, at 18:30 local time (06:30 GMT) on Thursday, Cyclone Cook roared out of an ocean that has now been considerably warmed by human-forced climate change to made landfall in the Bay of Plenty region of New Zealand. Packing wind gusts of up 90 miles per hour and lashing the region with 1/2 to 1 inch per hour rainfall rates, the storm is the most powerful cyclone to strike New Zealand since 1968.

Most Powerful New Zealand Cyclone in Nearly 50 Years

(New Zealand under a swirl of clouds as Cook makes landfall. Image source: LANCE MODIS.)

The storm raked a region that had already seen saturating, long-lasting, rainfall from the remnants of Cyclone Debbie just one week before. As a result, trees unable to gain purchase in the weakened soils uprooted en-masse. Power was knocked out in Whakatane and in numerous other locations along Cook’s path — cutting off at least 11,000 residences. Locals described gusts like freight trains as hundreds huddled in evacuation shelters. Flights out of Rotorua, Tauranga, Napier and Hamilton in the North Island, and Nelson and Blenheim in the South Island were all canceled.

The 30 foot swells and a resulting storm surge in the Bay of Plenty region were expected to result in serious coastal flooding and damage to shore-front structures. But the chief worry from the system, after Debbie’s devastating rains, was more precipitation-related flooding.

(GFS 7 day rainfall forecast for New Zealand shows considerably above average precipitation from Cook. See also GFS rainfall model runs.)

GFS model runs indicated the potential for 4-8 inches of rainfall or more near New Zealand population centers along the path of Cyclone Cook. And for many regions, these totals equal about 1-2 months worth of rainfall at this time of year. Last week, 7.5 inches of rainfall over just two days resulted in a levee breach at Edgecumbe on North Island — flooding the entire town and forcing nearly all the residents to evacuate. And there is some concern that Cook’s follow-on to Debbie will produce similar trouble.

Warming Ocean Waters and High Amplitude Waves in the Jet Stream Feed Storm Pattern

Cook is interacting with a trough to the west of New Zealand in a manner that is broadening the storm — spreading its wind field and rainfall over a larger region than a purely tropical system would typically impact. The trough had dipped down from the Southern Ocean through an extended Jet Stream wave before it became cut-off and linked up with Cook.

(Cook is presently centered between New Zealand’s North and South Islands [roughly under the green circle]. The swirl of clouds and wind to the west of Cook is a second low pressure system that was cut off from a trough sweeping south and west of New Zealand on Tuesday and Wednesday. Cook is interacting with this trough in a manner than is broadening its wind field and enhancing rainfall potentials. Image source: Earth Nullschool.)

The far northward extent of this trough is indicative of higher amplitude Jet Stream waves that have been associated with warming temperatures at the polar regions due to climate change. And the zone south of New Zealand over Antarctica has featured a strong dipole — with well above normal temperatures facing off against a wall of cold air. This dipole has facilitated troughs and facing ridges that extended well into the middle latitudes.

(Cyclone Cook fed on far warmer than normal waters which enabled it maintain intensity as it moved into higher latitudes. Interaction with a trough remnant left over from a high amplitude wave in the Jet Stream also contributed to this extreme weather event. Image source: Earth Nullschool.)

Meanwhile, Cyclone Cook itself fed on 1-2 C warmer than normal sea surface temperatures surrounding New Zealand. These warmer than normal waters allowed Cook to retain strength and to interact with the polar originating trough in a manner that arguably intensified and broadened the scope of this severe weather event.

Links:

Cyclone Cook: Evacuations as Storm Lashes New Zealand

Concerns Increase as Cook’s Path Shifts Toward Population Centers

Cyclone Cook vs Cyclone Debbie

LANCE MODIS

GFS rainfall model runs

Earth Nullschool

Hat tip to LeslieGraham (please stay safe!)

Hat tip to wili

%d bloggers like this: