Led By Tesla, September U.S. Electrical Vehicle Sales Surge

The month of September was another big one for U.S. electrical vehicle sales. And, once again, despite a growing barrage from its increasingly irrational detractors, Tesla just keeps crushing it as a U.S. and global clean energy leader.

Tesla Leads Record September EV Sales

In total, 21,325 plug-in vehicles were sold in the U.S. during September. This sales rate represented a 24 percent growth over September of 2016 and amounted to the second highest number of electrical vehicles sold in the U.S. during any month on record. Total annual sales are now 142,514 and appear ready to approach or exceed the 200,000 mark by year-end.

(Strong electrical vehicle sales growth in the U.S. continued during September — with Tesla remaining ahead of the pack. Image source: Inside EVs.)

Tesla again showed itself as a strong market leader with combined Model S and X sales of 7,980. These models, respectively, held the top two sales spots for the month — followed closely by the long-range Chevy Bolt EV at 2,632 sales after nearly a year on the market. The Toyota Prius Prime and Chevy Volt plug-in hybrids rounded out the top five spots at 1,899 and 1,453 sales, respectively.

The main story of these best-sellers appears to be range — with all of these vehicles boasting long range electric or plug-in-hybrid capability. But Tesla’s high quality luxury offerings still hold an edge due to better technology, better charging infrastructure support, and superior overall capabilities. What’s even more ironic is that Tesla’s vehicles — that often sell for upwards of 100,000 dollars each — are still moving at greater volumes than the 35,000 dollar Chevy Bolt.

Chevy Bolt and Model 3 — Place-Holder vs Industry-Mover

The Bolt has a 238 mile range, which is a bit shorter than the higher-end Teslas which now can travel for between around 250 and 315 miles on a single charge. The Bolt’s quality is also considerably lower than the higher-priced Teslas — with slower acceleration, economy body styling, inferior handling and less features. As noted above, the Bolt also does not enjoy the support of Tesla’s large and expanding charging infrastructure. All that said, the Bolt remains an excellent EV for the price. It’s just that one wonders if GM’s heart is really in it to go all-in to sell the vehicle. Or is GM just placing a necessary high-quality competitor in a strategic attempt to stymie enthusiasm for the upcoming, trend-setting, Tesla Model 3?

(Obama-era CAFE standards are a major driver for auto industry transformation away from polluting fossil fuels and toward zero-emissions electric vehicles. Industry leaders like GM have long fought a policy that incentives electrical vehicle production and ultimately produces the combined benefits of moving the country toward energy independence, renewable energy, healthier air, and a less hostile climate. This year, the Trump Administration has sided with fossil-fuel based automakers and moved to roll back Obama’s helpful CAFE standards. Image source: Alternative Energy Stocks.)

A big hint comes in the form of continued opposition by major automakers like GM to increasing CAFE standards. From Electrek earlier this week:

In a time where a surprising number of major automakers are announcing that they believe electric cars are the future of the auto industry, we are still seeing them complaining about, and in some cases lobbying against, the fuel emission standards.

Now trade groups representing virtually the entire auto industry are again putting pressure on U.S. regulators to weaken rules that would force them to produce more electric cars.

So the rational question arises — would an automaker who really believes that the future is electric, who is really dedicated to the success of vehicles like the Bolt and the Volt also be fighting to remove fuel economy standards? If this appears like hypocrisy to some, then it probably is. A duck, after all, does quack from time to time.

Moving Economic Eggs into the All-Electric Basket = No Harmful Fossil Fuel Conflict of Interest

Tesla, on the other hand, only produces electrical vehicles. So, unlike GM, it doesn’t have a gigantic fossil fuel burning vehicle production infrastructure hanging around its neck and dragging it back down into the vast ocean of structural industry contributors to worsening climate change impacts.

And while critics decry production delays for the Model 3, GM’s own ambitions for the Bolt were comparatively modest — aiming for around 50,000 sales per year vs Tesla’s ultimate goal of 400,000 to 500,000 for the Model 3. One of these cars, therefore, looks like a shot at an industry defender while the other appears to be aimed directly at transformation. And who wins out in this David and Goliath struggle will have far-reaching energy, climate, and vehicle industry repercussions.

(Total U.S. EV sales for the year of 2017. Image source: Inside EVs.)

Sales of the key vehicle in question, the Model 3, remained slow at 115 units in September. This following 30 and 75 sales respectively during July and August. Tesla admitted facing production bottlenecks in its planned massive ramp up for the Model 3 aimed at meeting the demand of an amazing 500,000 pre-orders. Tesla critics have had a field day as the all-electric automaker struggles in its attempts to get its famed ‘alien dreadnought’ production of all-electric vehicles up and running.

The slower ramp in Model 3 production, so far, is admittedly a bit of a bump in the road for Tesla. But critics’ claims of Tesla’s ‘imminent demise’ have become a common and hackneyed cry over recent years. So we can take the present brouhaha with a couple of grains of salt and view any major downward moves in Tesla stock as a panic-induced opportunity for more steady, savvy, and environmentally conscious investors.

Investing in Clean Energy Future Makes Moral and Economic Sense

To this point, Tesla uses its stock market capitalization to help fund its energy transformation efforts. So Tesla investors are helping to fund a global move away from fossil fuels. And for putting their money on the line in this way, we should express to them our thanks and gratitude.

In the larger context, electrical vehicles, and more broadly, a related ramping battery storage production chain forms one of three key pillars to the global energy transition away from fossil fuels. The other two pillars are composed of wind and solar. All of these technologies produce zero carbon emissions in use. And due to their ability to hit economies of scale in production that result in reduced costs, higher efficiency, and higher energy densities over time, they have a demonstrated capability to increasingly out-compete dirty fossil fuels and rapidly reduce carbon emissions.

So when new clean industry leaders like Tesla are forcing laggards like GM to produce electrical vehicles and market them, even as market-defenders, then those of us who support clean energy and are worried about the threat of climate change should all be cheering.


If true, then why continue to fight CAFE standards? —


I presently hold Tesla stock as part of a larger renewable energy and sustainable industry investment portfolio. For me, this is part of a morally driven choice to divest from fossil fuel based energy companies and invest in clean energy companies. Though these choices incur considerable financial risk, I believe that wholesale investment by society in fossil fuels results in severe ultimate harm — which I will not be a party to. I urge others to seriously consider joining the campaign to divest/invest.


Monthly Plug-in Sales Scorecard

Automakers Claiming to be ‘All-in on Electric Cars’ are Still Lobbying Against Stricter Fuel Standards

Aggressive New CAFE Standards


Tesla’s Electric Sales Explode Despite Slow Model 3 Production Ramp

Around the world, electric vehicle makers are starting to make serious inroads into the global auto market. And aspirational industry leader Tesla continues to break new ground and open new markets despite an increasing array of challenges.

Record Tesla Sales

During the third quarter of 2017, Tesla sold 26,150 all-electric vehicles. A new quarterly sales record for the company which included 14,065 super-fast luxury Model S sedans, 11,865 of the also super-fast and highly luxurious Model X SUV, and 220 of the mid-class luxury-sport Model 3. In total, during 2017, Tesla has sold more than 73,000 vehicles. Placing the all-electric vehicle and renewable energy systems manufacturer in a position to challenge the 100,000 cars sold mark by end of December.

(Tesla production and sales by Quarter shows that Q3 2017 beat Tesla’s previous record by more than 1,300 vehicles. Tesla appears on track to hit near 100,000 vehicle sales in 2017. Note that Model X production took 6 Quarters, or approximately 18 months to fully ramp to present sales rates above 10,000 per Quarter. Telsa ultimately expects to produce more than 60,000 Model 3s per Quarter by 2018. Investment analysts are more conservative — with Morgan Stanley targeting 30,000 Model 3s per Quarter. Image source: Commons.)

Surprises in Tesla’s Q3 report include greater than expected overall Model S and X sales. Pessimistic speculation about Tesla struggling to sell its higher-quality line as customers await the anticipated but less expensive and tweaked-out (but still bad-ass) Model 3 abounded throughout August and September. Those contributing to this brouhaha, however, did not appear to anticipate the excitement generated by Tesla’s Model 3 launch which appears to have spilled over to the more expensive line-up even as Tesla both offered incentives on some of its showroom vehicles and cut shorter range, lower cost versions of its Model S line-up.

Tesla Model 3 Production Ramp — A Miss, But Still in the Window

Tesla did, however, fail to meet Model 3 production ramp goals of 1,500 by the end of September. And this was one point where the Tesla pessimists ended up proving at least partly right. Citing production bottlenecks, the luxury EV manufacturer noted that it had produced only 260 Model 3s by end month — a 1,240 vehicle short-fall for the Quarter.

Overall vehicle production had still grown from July through September — hitting 30 in July, about 80 in August, and about 150 in September. This is still an exponential rate of expansion. But the more rapid anticipated ramp was not achieved. Tesla noted that most of their fast production chain was functioning as planned. But that a few bits of the complex and highly automated Model 3 manufacturing subsystems were taking “longer than expected to activate.”

(Tesla’s ground-breaking Model 3 missed company production targets by a fairly wide margin this month — triggering a big controversy among investors. Long term prospects for the Model 3 remain strong as Tesla works through what is, effectively, an employee beta testing period. Image source: Tesla.)

At first blush, this appears to be a fairly wide miss in Tesla’s planned production ramp. But if rapid production scaling is still achieved this fall, it will look like nothing more than a bit of a bump in the road. After the Q3 report, Elon Musk noted:

“I would simply urge people to not get too caught up in what exactly falls within the exact calendar boundaries of a quarter, one quarter or the next, because when you have an exponentially growing production ramp, slight changes of a few weeks here or there can appear to have dramatic changes.”

In other words, we are still in the window for rapid production scaling, even if the earlier, more rapid, ramp was missed by a few weeks.

The company previously struggled with its very complex production of the ultimately popular Model X. To address production challenges, Tesla aimed to simplify production for the Model 3. But integration of new automated equipment into large manufacturing chains as the vehicle is built and product-tested by employee-customers is proving to again pose a few challenges. Challenges that, at this time, do not appear to be anywhere near as serious as those encountered during the Model X production ramp, but are still enough to produce delays.

Tesla Model 3 Production Still About to Explode as EV Maker Enjoys Serious Structural Advantages

Keeping these facts in mind, we can take some of the overly negative reports following Tesla’s failure to hit early Model 3 production targets with a lump of salt. The company still produces amazing cars, is still going to flood the world with high-quality and much more affordable all-electric Model 3s. The company owns a massive manufacturing apparatus in the form if its Freemont plant and Nevada Gigafactory. An apparatus that is rapidly growing. Outside this expanding manufacturing chain, the company is the only major automaker to seriously invest in and rapidly expand crucial EV charging infrastructure. All of these are systemic underlying strengths that the electric automaker will continue to leverage and expand on.

(Tesla battery sales help to reduce EV battery pack costs by producing economies of scale in production. The reverse is also true. With demand for Tesla’s powerwall and powerpacks on the rise, the company possesses a number of systemic advantages that most automobile manufacturers lack. Image source: Tesla.)

Tesla is in the process of transitioning from an automaker that produces a moderate number of vehicles each year to a major automaker that produces more than half a million vehicles each year. And it’s bound to encounter a bump or two in the road from time-to-time. Ultimately, the Model 3 production ramp will hit its stride as Tesla works out the kinks. Around 500,000 reservation-holders will still get their cars.

Analysts at Morgan Stanley recently:

warned investors against “micro-analyzing the monthly ramp of the Model 3.” Most vehicle launches have hiccups, and quality and attractiveness count for far more importance than quantity “at least for now,” they said in a note.

Tesla was quick to stress that it foresaw no serious issues with the Model 3 production. That the company understood what needed to be fixed in the manufacturing chain and was working to address those issues. If this is the case, we should see Model 3 production start to ramp more swiftly over the coming weeks. But even without rapidly ramping Model 3 production — which is on the way sooner or later — Tesla is still smashing previously held all-electric sales records.

And for those of us concerned about climate change, that’s good news.


Tesla Shares Shake off Bad News of Model 3 Deliveries


Tesla Q3 Report



Tesla’s All-Electrical Spark is About to Grow Much, Much Brighter

Can a single venture born out of one man’s vision for a more sustainable future help to spark the complete transformation of global automobile markets, aid the U.S. and other nations moves toward energy independence, help tamp down the problem of human-caused climate change, spur a rapid influx of renewables in the electrical generation sector, and, all the while, compete toe-to-toe with nationally funded battery, automobile, and renewable energy companies emerging in China?

We’re about to find out.

Tesla, Daimler, China Invest in Gigafactories; Musk and Daimler Spar on Twitter

This week, large German automaker Daimler announced that it would invest 1 billion dollars in an EV battery production plant in Alabama. The move followed very heavy similar investment and policy announcements by China and a multi-billion dollar investment by all-electric automaker Tesla in the first of a number of planned battery gigafactories.

Elon Musk, noting the size of Daimler’s available capital for investment, made the following pithy remark on Twitter:

Daimler, appearing more than a little sensitive to the remark, replied that it would be investing 10 billion in EV development in total, with 1 billion going to batteries. Musk replied — “Good” — with Daimler stating that it had been developing electrical vehicles for more than 100 years.

Of course, Daimler, unlike Tesla, still primarily produces fossil fuel based vehicles. The company’s planned launch of EVs capable of competing with Tesla’s present offerings are slated for around 2020. By that time, Tesla is likely to be producing well north of half a million all-electric vehicles per year. Daimler would have to significantly increase investment to adequately meet such a major challenge by Tesla.

The history of Daimler is one in which it has mostly dabbled in electrical car production while instead dedicating the lion’s share of its efforts to producing unsustainable carbon emitting cars and trucks. In 2016, Daimlier sold 3 million vehicles — the vast majority of which were ICE-based. With Tesla gobbling up larger and larger market share as an electric-only vehicle supplier, that may soon change. A result that would be “Good” for everyone on the planet. Especially in the present situation where harms from human-caused climate change are rapidly ramping higher.

But despite Daimler’s 100 year history of experimenting with electrical vehicle designs, it has a lot of catching up to do when it comes to confronting a serious market competitor in the form of the all-electric Tesla.

Tesla Ahead in the Electric Race

To understand how serious, we need only look at Tesla’s growing suite of top-in-class vehicle offerings combined with an emerging fierce logistics chain of increasingly low-cost EV batteries.

Part of this story begins at Tesla’s Nevada Gigafactory 1. To look at even the 1/3 complete Gigafactory is to behold the awesome potential of mass production writ large. Back in 2014 when Gigafactory 1 began construction under a partnership with Panasonic, the ultimate aim was to build a facility capable of producing 35 gigawatt-hours of batteries per year by 2018. That number has been raised to 50 gigawatt-hours — with an ultimate goal for this single factory in the range of 100 to 150 gigawatt-hours. By comparison, the entire global total of battery production in 2014 was around 35 gigawatt-hours. And total national production by battery giant China is presently at around 125 gigawatt hours — set to hit around 230 gigawatt-hours by 2023.

(Tesla Gigafactory 1 shows 9 of 21 planned modules complete by late August of 2017. Image source: Commons.)

Producing so many batteries in one facility will enable Tesla to leverage some serious economies of scale. This, in turn, will result in lower prices for the batteries it produces — allowing the automaker to sell electrical vehicles for less or make higher profits on models that are produced. Already, with about 15 percent of the planned gigafactory now producing batteries, Tesla is starting to see the benefits of this scaling. And recent reports indicate that it has pushed battery prices to below 140 dollars per kilowatt hour during 2017. Ultimately, many industry analysts expect the Gigafactory 1 to enable Tesla to produce batteries at near the 100 dollar per kilowatt hour mark before 2020 — substantially reducing base production costs for EVs in total.

Masses of Model 3s

This mass production of batteries is the cornerstone for Tesla’s expected mass release of its Model 3 vehicle.

To be very clear, Tesla’s spearhead Model 3 is the ultimate aim of all of the company’s efforts thus far. Each sale of the more expensive luxury Model X and Model S versions have gone to fund the more mass market Model 3. And recent cancellations of lower cost, shorter range Model S versions appear to have been aimed at creating space for the Model 3 in the 35,000 to 59,000 dollar market segment.

(This week’s Tesla Model 3 news.)

Present production of the Model 3 appears to be ramping up according to Tesla’s plans. More and more of the vehicles have been sighted on California highways. A forward-shifted delivery date spurred a rumor that the Model 3 was being produced faster than expected. Texas has already started to receive some of its Tesla employee-ordered Model 3s. Rising rates of battery production at the Nevada Gigafactory 1 site have been observed. And the appearance of VIN numbers above 700 earlier this week roughly jibe with a planned ramp to 1,500 Model 3s produced by end September.

A clearer picture of this critical production ramp may emerge over the next couple of weeks as Tesla analysts pick up on monthly Model 3 production information and the Tesla Q3 report begins to take shape.

Tesla All Electric Sales Tracking Toward 230,000 to 500,000 in 2018

By end of this year, Tesla expects to be producing 20,000 of these vehicles per month. By end 2018, Tesla is aiming for 40,000 Model 3s per month. Pre-orders in the range of 500,000 vehicles show that demand support for this level of production exists. And even conservative forecasts by investment firms like Morgan Stanley show Tesla vehicle production and sales more than doubling from an expected 90,000 to 100,000 in 2017 to over 230,000 in 2018.

Already Tesla sales appear to be edging higher — with Q3 expected sales in the range of 24,000 to 25,000 including the ramping Model 3 production. Meanwhile, Tesla’s own goals far outstrip expectations by forecasters like Morgan Stanley with the company aiming for 500,000 total sales in 2018.

(Tesla’s Model 3 planned production timeline. Image source: Tesla.)

Regardless of whether Tesla sells 230,000 cars or 500,000 cars in 2018, it will be the first automaker in a long time to see such rapid sales growth. According to Adam Jonas at Morgan Stanley, it has been generations since we’ve seen growth like this. It’s not just 2018 that forecasters like Stanley are looking at. By 2023, the investment firm expects 3 million Tesla cars to be ranging the world’s highways with that number growing to 32 million by 2040.

Tesla’s own goals appear to be significantly more ambitious. The expected 150 gwh ultimate production capacity of Tesla’s Gigafactory 1 alone could support an annual production of 2-3 million Model 3 type vehicles. And earlier this year Tesla announced plans to construct 3 more similar facilities with an ultimate goal of 10-20. Locations for the 3 new expected Gigafactories are set to be announced later in 2017.

Given the totality of this amazing undertaking, it’s unlikely that any present individual vehicle manufacturer is pursuing mass EV production at a quality and scale comparable to that of Tesla. Daimler may now be spending billions, but they are in a race to catch up. Meanwhile, it appears that Tesla may even rival China in its ultimate ability to scale battery production.

Energy World Rocked as China Cuts Coal Imports, Aims for Fossil Fuel Car Ban

The global energy posture is changing almost as rapidly as a climate increasingly choked with greenhouse gas emissions. And few parts of the world show this emerging trend more clearly than China. In short, China is adding restrictions to both domestic coal production and coal imports even as it is rapidly building new solar generation capacity and moving to ban domestic fossil fuel based vehicle sales.

Cutting Coal as Solar Grows

Recently, China made two major policy moves that have rocked the global energy markets. The first was its recent closing of terminals to coal imports — which may result in a net reduction of imported coal by 10 percent during 2017. Since July, China has closed approximately 150 smaller facilities to coal imports. These ports, which China has designated as tier two, are less able to test coal for compliance with China’s new emissions standards. As a result, coal imports have re-routed to larger (tier 1) facilities. A move that has created a backlog of coal off-loading ships.

In early September, China then closed the major port of Guangzhou to coal imports ahead of a cyclone. Guangzhou is one of China’s largest ports — capable of handling 60 million tons of coal per year. The closure sent shivers through coal exporters like Australia as the line of ships waiting to off-load coal lengthened. This port has since re-opened but larger constraints to China’s coal import market remain.

(China is defying all expectations with regards to the rate at which it is adding new solar electrical generation capacity. Such a strong renewable energy addition is coming in conjunction with far more restrictive domestic and import policies aimed at reducing coal burning and improving air quality. Image source: Renew Economy.)

Recently, China imposed caps on domestic coal production and aimed to reduce total coal generating capacity. These caps and cuts led some coal exporters to believe that China’s large fleet of coal plants would require more imports to fill a perceived demand gap. But China’s new, more restrictive import policies are belying those earlier notions.

In the larger context, China is engaged in a major shift toward renewable energy production. Through July, China had added approximately 35 gigawatts of new solar electrical generation capacity — with 24 gigawatts of that capacity being added in June and July alone. By early August, China’s total solar electrical generating capacity had exceeded 112 gigawatts. Strong adds that have to be putting more than just a little bit of pressure on traditional and dirty generating sources like coal. Add in China’s more restrictive policies and the picture for coal in the country during 2017 doesn’t look very rosy.

Fossil Fuel Vehicle Ban

After imposing tougher restrictions on coal imports, China’s second major policy move involves a recent statement that it will declare a ban date for all fossil fuel based vehicles. During the weekend of September 10th, Xin Guobin, China’s industry and information technology vice minister, announced that China would set a deadline for car makers to stop selling vehicles that run exclusively on diesel and gasoline.

Though no deadline has presently been announced, the move has resulted in a big freak-out by majority fossil fuel vehicle producers like General Motors.

(National polices are aiding a rapid transition away from fossil fuel based vehicles. These actions are enabling the goals of the Paris Climate Agreement and providing hope for reducing the terrible impacts of human-forced climate change. See interactive graphic of above image here: Bloomberg.)

China’s announcement comes alongside similar moves by Britain, France, Norway, the Netherlands, and India. France and Britain both plan to ban fossil fuel based vehicle sales by 2040. Meanwhile, the Netherlands and India have announced their own plans to phase out carbon-emitting cars. And, according to Bloomberg, countries accounting for 80 percent of the global vehicle market are now undertaking polices pushing toward the phase out of petroleum vehicles and the adoption of electrical vehicles.

China’s 28 million per year automobile sales, however, is a huge addition. And if the country imposes a deadline, it will force major automakers to further accelerate electrical vehicle production plans or become basically irrelevant as the fossil fuel vehicle market disappears.

(Rapid transition away from fossil fuel vehicles means declining prospects for oil just as a rapid transition to wind, solar, and battery based storage means declining prospects for coal and gas. Do we really want to be putting economic eggs into shrinking fossil fuel baskets? Image source: IEA, Bloomberg.)

Ironically, China’s move appears to be mirroring similar policies already put in place by U.S. states like California and U.S. technology leaders like Tesla. Sophie Lu, a Beijing-based China researcher for Bloomberg New Energy finance recently noted that: “Chinese regulators see the success of Tesla and other Californian companies, and want to promote the same success amongst Chinese car manufacturers.”

The fact that the world is following in the footsteps of both California and Tesla should set off a loud ringing in the otherwise deaf to new energy ears of the present administration in Washington. More to the point, valid analysis shows that China is setting itself up to dominate the newer, cleaner, less harmful to climates, and more appealing energy and technology markets of the future. And a failure to successfully engage in what is an emerging global competition at the federal level sets the U.S. up for a serious future failure and ultimate energy market irrelevance.


China is Banning Traditional Auto Engines: It’s Aim — Electric Car Domination

China Port Halts Coal Imports

China Announces Intention to Ban Fossil Fuel Vehicles

Fears Raised as China Cuts Coal Imports

Electric Cars Reach Tipping Point


U.S. Electrical Vehicle Sales Growth Continues Ahead of Model 3 Tsunami

During August of 2017, U.S. electrical vehicle sales continued to increase at a respectable pace year-on-year.

According to Inside EVs, total sales for electric-powered cars in the U.S. totaled 16,624 during August. This represents another record — growing by 2,032 or 12.2 percent above 2016’s previous record August total of 14,592.

The Tesla Model S and Chevy Bolt EV held the first and second rank among individual model sales by sending 2150 and 2107 vehicles out to new owners respectively. The 238 mile range Bolt priced at $36,000 before incentives continued to show strong sales growth as Chevy accelerated expanding offerings to new states across the U.S. Model S sales, while holding top position, were down year-on-year — likely in part due to anticipation of the Model 3 ramp-up.

(Elon Musk recently reassured investors that the Model 3 will achieve its 10,000 per week production target in 2018. Image source: EV Network.)

Inside EVs estimates that 75 of the game-changing Model 3 — with best in class features, a 220 to 310 mile range, and a 126 MPGe fuel efficiency rating — were produced and sent to customers during August. If this number is correct, it would signify a somewhat slower ramp than the expected 100 sales for the month. However, this report is preliminary and may be subject to revision. And there have been more than one or two hints circulating around the web that Tesla is actually ahead of its production goals — hitting 200 vehicles by end August (see tweet below).

Presently ranked 30th on the EV sales chart for all of 2017, the Model 3 (with its approximate half-million reservations) is likely to climb into the top 20 by end September. At that point, Tesla expects about 1,500 Model 3s to be produced monthly. By October, monthly sales of the Model 3 may eclipse all other U.S. EVs as production exceeds 5,000.

At this point, the Model 3 will likely start having a noticeable influence on overall U.S. EV sales — with that impact further dilating during November and December. And if Tesla meets its December sales goal of 20,000 units for the Model 3, then the U.S. overall may see December 2017 total EV sales from all models nearly double December 2016 numbers (of nearly 25,000 units).  Meanwhile, through 2018, the Model 3 could help to drive total U.S. EV sales to around half a million or more.

In other words, the U.S. EV market is about to be hit by a tidal wave of very high quality and relatively low cost Model 3s — with profound and long-lasting results. This is good news for renewable energy and climate change response advocates. For such a large wave of electrical vehicles coming to market provides considerable opportunity for reduced carbon emissions from both vehicle based fossil fuel burning and from the ancillary electrical power market where batteries used for EVs can also replace base load coal and gas fired power stations with energy storage linked to wind and solar.


Monthly Plug-in Sales Scorecard

Plug In Electric Car Sales for August

Tesla Model 3 Production

Tesla Model 3 Information

Nearing a Trillion Watts: By End 2017, Global Wind + Solar Capacity Will be 2.4 Times That of Nuclear

In 2017, the world will add about 80 gigawatts of new solar capacity. It will also add another 60 gigawatts of new wind capacity. This combined 140 gigawatts will push wind and solar to 940 gigawatts of global capacity — or nearly one trillion watts. A pace that’s ahead of even recent optimistic projections by about 25 gigawatts:

(Historic and projected global wind and solar capacity. Image source: Forecast International.)

Such a total renewable energy generation capability compares to a global 391.5 gigawatts of nuclear energy now in use around the world. In other words, solar energy by end 2017 will come close to surpassing total global nuclear energy capacity. And wind and solar combined will account for 2.4 times the amount of installed nuclear around the world.

The reason wind and solar are now rapidly eclipsing global nuclear capacity is due to simple economic competitiveness alone. By 2022, wind + solar is now expected to exceed 1,600 gigawatts. Or more than 4 times present nuclear capacity. Such a strong build rate comes on the back of rapidly falling costs for renewable energy systems. With wind and solar’s levelized costs of production now below that of all other new power sources in many places and with prices bound to continue falling through 2030, base economic incentives for adding renewable energy are now quite high. Add in the fact that these systems produce no harmful particulate or greenhouse gas pollution in use, and the appeal of such clean energy systems is difficult to contest.

(In the U.S. unsubsidized levelized costs of energy vastly favor wind and utility scale solar. And indication that other utility sources such as coal and gas are over subsidized by society. Image source: Clean Technica.)

Increasingly, coal and even gas fired power generation relies on subsidies and an uneven playing field to compete with renewable energy systems. With research from John Abraham indicating that from 2013 to 2015, global fossil fuel subsidies rose from a staggering 4.9 trillion dollars to an astounding 5.3 trillion dollars. And backwards-looking political bodies like the Trump Administration are increasing this highly distorting and harmful subsidy allotment still further.

There’s really no excuse for such an unequal and continuously tilting playing field considering the fact that fossil fuels are the main driver of a climate change that is contributing to catastrophic storms like Harvey and a rising ocean that is now threatening hundreds of cities around the globe. Considering the fact that about 7 million people die each year from air pollution primarily related to fossil fuel burning each year alone. With inexpensive and much cleaner alternatives now available, and with these alternatives proving increasingly competitive with the rickety and harmful old energy sources that the world’s tax payers unjustly prop up, there’s really no excuse in creating further delays for the far less dangerous and harmful clean energy systems we all deserve.


Forecast International

Clean Technica

Global Solar Capacity Set to Surpass Nuclear

Wind Energy Cost Reductions of 50 Percent Possible by 2030

Global Wind Energy Insight

Global Cumulative Installed Wind Capacity

7 Million Premature Deaths Annually Linked to Air Pollution

Trump Moves to Increase Subsidy for Coal on Federal Lands


South Miami’s Solar Mandate Sets Example for Other Coastal Cities Facing Existential Threat From Sea Level Rise

Back in July, South Miami decided to require that all new homes built within city limits place solar panels on their roofs. The decision was made in an attempt to help slake the warming related impacts of sea level rise on the city by working to reduce carbon emissions.

South Miami Mayor Philip Stoddard recently noted:

“We’re down in South Florida where climate change and sea level rise are existential threats, so we’re looking for every opportunity to promote renewable energy. It’s carbon reduction, plain and simple. We have a pledge for carbon neutrality. We support the Paris Climate Agreement.”

South Miami joins six California cities now also providing rooftop solar mandates. These include San Francisco, Culver City, Santa Monica, San Mateo, Lancaster, and Sebastapol.

(How quickly greenhouse gas emissions are reduced has a considerable impact on the level of harm caused by future sea level rise. South Miami gets it. But what about the rest of the U.S. East and Gulf Coasts?)

With threats from rising oceans to coastal cities worsening, Miami’s decision is one that resonates with the interests of thousands of communities around the world. Nuisance flooding and increased instances of tidal flooding are on the rise pretty much everywhere. Meanwhile, some cities and island nations are in the process of being wiped off the map entirely as the pace of sea level rise quickens globally.

Coastal cities now have a vested interest in reducing carbon emissions as swiftly as possible. And Miami, like a number of cities in California, recognize that smart policy moves by municipalities can help to speed an energy transition away from the fossil fuels that now account for the vast majority of global carbon emissions.


South Miami Just Made a Huge Solar Rooftop Decision

South Miami is Going Solar

The Present Threat to Coastal Cities From Antarctic and Greenland Melt

Alaska Towns at Risk From Rising Seas Sound Alarm as Trump Pulls Federal Help

The Economist Sounds Death Knell for the Internal Combustion Engine as Pathway Toward Carbon Emission Reductions Opens Wide

Earlier this month, The Economist prophetically declared that the “death of the internal combustion engine” is at hand. That the end for this inefficient fossil fuel burning monstrosity was “in sight.” And that, ultimately, “days were numbered” for a design that has so efficiently and so harmfully injected billions of tons of pollution into the Earth’s atmosphere.

(Gigafactories like this one being built in Nevada and numerous others being built in Southeast Asia are helping to enable a combined electrical vehicle and grid based renewable power revolution. Note that the Tesla gigafactory is still far from complete even though it is currently producing 5 GWh of lithium batteries per year. Production by end 2018 is expected to hit 35 GWh per year and ultimate production could hit as high as 150 GWh per year.)

The Economist notes that performance gains for electrical vehicles are quickly outpacing those of internal combustion engine based vehicles. That “today’s electric cars, powered by lithium-ion batteries, can do much better.” It finds that electrical vehicles are simpler to manufacture, easier to maintain, and easier to improve than traditional vehicles. It points to the fact that transportation based emissions alone result in 53,000 premature deaths each year in the U.S. vs the 34,000 who die due to car related collisions. And it cites research showing that transferring existing vehicles to electrical vehicles would reduce vehicle based carbon emissions by 54 percent using present grid sourced electricity generation. But it also rightly notes that as the grid becomes more and more dominated by renewable based energy systems, vehicle-based emissions will fall further — eventually reaching zero on a grid fully supplied by sources like wind and solar. Finally, The Economist notes that when mated with automation and ride share, EVs have the potential to reduce the number of vehicles on the road upwards of 90 percent (in the most optimistic assessments).

EVs are disruptive in that they’re becoming increasingly easy for start-up companies to produce — even if they are more difficult for traditional auto manufacturers who have heavily invested in fossil fuel based vehicle production infrastructure and parts chains. The result is that numerous independent EV shops are cropping up and that countries and industries who were not traditionally auto manufacturers are capable of making serious new entries. Tesla was an industry leader in this regard. But many such businesses are emerging all over the world from the U.S. to China to Europe to India and beyond.

(Increasing predictions for rate of EV build through 2040. Image source: The Economist.)

Moreover, the predicted rate of EV adoption just keeps rising. The Economist points out that UBS expects that 14 percent of all new vehicles in 2025 will be electric. And while UBS is among the more optimistic prognosticators, even traditional oil companies like Exxon are being forced to acknowledge that EVs will take larger and larger portions of the auto market. In just one year, from 2016 to 2017, Bloomberg adjusted its expected rate of new EV sales in 2040 upward from 400 million to 520 million, OPEC from 50 million to 250 million, and Exxon from 80 million to 100 million (see graphic above).

Such large and expanding build rates will certainly enable more and more rapid rates of global carbon emissions reductions. Not just through direct carbon emissions removal by replacing ICE based vehicles with EVs. But also by enabling the mating of batteries with renewable energy systems around the world. Tesla, which is today producing 5 gigawatt hours of battery storage in 2017 from its Gigafactory in Nevada is now starting to do just that. In South Australia, Tesla is involved in mating wind energy with battery storage even as it pursues a similar project in New Zealand and following its completion of a solar and battery based storage system for Kauai Hawaii.

(The amount of batteries available for both EVs and grid based storage is set to rapidly expand. Note that Tesla recently announced that its Nevada Gigafactory could eventually produce 150 GWh per year of battery storage. Image source: The Economist.)

By 2018, rate of battery production at the Tesla plant will accelerate to 35 GWh per year with the plant ultimately able to achieve near 150 GWh per year (according to Musk). Similar very large battery production plants are being built in Europe and China, with a number likely also slated for India in the near future. And the batteries produced in these plants can be used either in EVs or as a massive and growing energy storage pool that’s already capable of directly replacing coal and gas plants now operating on electrical grids.

Such was the economic reality for the Liddel Coal Plant in New South Wales Australia when AGL Energy decided it was more economic to replace the plant with wind, solar and batteries than to continue to burn coal and gas as a baseload energy supply. And this decision was made under present economic realities. Now imagine what those economic realities will look like when the world is producing more than an order of magnitude more battery storage each year at much lower cost and as wind and solar costs continue to fall. In other words, the electrical vehicle revolution is enabling the renewable power revolution and vice versa. And both are bringing forward the time when global carbon emissions start to consistently drop off. To support the advancement of one is to support the advancement of both — to the larger overall benefit of more rapid global carbon emissions reductions and a quickening ability to address the very serious issue that is human-forced climate change.


The Death of the Internal Combustion Engine

After Electric Cars, What Will it Take For Batteries to Change the Face of Energy?

Tesla Could Triple Planned Battery Output of Gigafactory 1 to 150 GWh

China is About to Bury Elon Musk in Batteries

Tesla to Build World’s Largest Lithium Ion Battery Plant in South Australia

The Economist Announces Death of the ICE

Liddel Coal Plant in New South Wales Will be Replaced By Wind, Solar and Batteries

Tesla Powerpack Will Join Wind Turbine at New Zealand Salt Factory

Renewables Boom as China Halts or Eliminates Another 170 Gigawatts of Coal Power Plants

On Monday, China announced that it was halting or delaying another 150 gigawatts worth of new coal power plant construction through 2020. In addition, the world’s largest coal user also announced that it would eliminate 20 gigawatts of present coal burning capacity. These moves come on the back of China’s previous cancellation and closure of 103 coal-fired plants coordinate with three consecutive years of falling coal consumption from 2014 through 2016.

(China’s annual CO2 emissions primarily come from coal use. Rapidly reducing that coal use is essential to addressing global climate change. Image source: NRDC.)

According to the China News press release, the move was aimed at both avoiding overcapacity and ensuring a cleaner energy mix. China’s National Development Reform Commission went on to state that: “New capacity will be strictly controlled. All illegal coal-burning power projects will be halted.”

China alone burns about half of all the coal converted into carbon dioxide each year globally. So if the world is to effectively address climate change, then China’s massive coal consumption needs to start tapering downward. And the faster it does, the better things will be for us all. Outwardly, the country appears dedicated both to the notion of becoming a global climate leader while also working to address its serious air and water pollution issues. And to the latter point, China plans to revamp its existing coal plants in order to lower harmful particulate emissions. Digging a bit deeper we find that a worrisome high level of coal burning is slated to remain in place at least over the next decade. Even if the trend is moving in a generally helpful direction and even as renewable energy platforms popping up across China may enable the country to further cut its harmful greenhouse gas emissions.

(China’s coal targets through 2020 show continued steady reductions. Image source: NRDC.)

China’s move to halt or eliminate 170 gigawatts of coal burning follows a larger plan to keep total coal capacity below 1,100 gigawatts by 2020. How much below is still somewhat up in the air. But it’s worth noting that present coal burning capacity in China is 900 gigawatts and the best news for all involved would be if this capacity did not increase and that China’s rate of overall coal use continued to fall. This action is in keeping with a stated goal to reduce coal’s portion of the Chinese electrical power supply to 58 percent by the same year (down from 70 percent in 2010).

It’s a trend that follows major renewable energy build outs. A build that, taking into account China’s past economic over-achievements could accelerate to replace coal capacity at a faster than expected pace. Solar alone is well ahead of plan and is now expected to reach 230 gigawatts worth of capacity by 2020. Meanwhile, China is on track to have about 250 gigawatts of wind capacity installed by the same year. But there, too, an acceleration in off-shore wind capacity that could spike this number may also be in the offing. And as of August, China was selling about 45,000 zero-emitting electrical vehicles each month with a goal to have around 3 million EVs per year by 2020.

All serious trends that will, hopefully, further accelerate China’s rate of greenhouse gas emissions reductions. Given Trump’s various attempts to sabotage Obama’s positive legacy of climate response and renewable energy production here in the U.S., somebody in the world needs to take the role of global climate leader. Trump’s vacuous vision and overtly divisive nature has given China the opportunity to step it up.


China Halts Building Coal Power Plants


Global and China Wind Turbine Industry Report 2016-2020

China’s Strict Electric Car Quotas

India Utility Plans to Build EVs, Startup Bollinger Motors Launches Gritty Electric Truck, Wind Energy Boosters Push Europe to Meet Paris Goals Faster

Internal combustion engine automobile manufacturers and fossil fuel investors, eat your hearts out…

Indian electrical power generation utility JSW has decided to throw its weight behind building electrical vehicles for the larger Southeast Asian market. On the other side of the world, a small U.S. EV startup plans to sell 10,000 to 20,000 off-road all-electric SUVs each year. Meanwhile, still further east in Europe, an industry consulting group is recommending a rapid off-shore wind energy build-out to help address human-caused climate change.

An Indian Electrical Power Company Decides to take a Shot at EV Manufacturing

According to reports from The Economic Times of India, the utility JSW plans to pursue an electrical vehicle (EV) build-out as part of a larger drive by India’s government to have all new vehicles sold in the country be electrified by 2030. The company is outlaying 3,000 to 4,000 crore, or more than half a billion dollars, as an investment to jumpstart its EV manufacturing by 2020.

Though JSW’s previous economic interests have primarily focused on electrical power generation, steel, and mining, the group appears to be adopting a Tesla-like business model going forward by integrating energy storage, charging infrastructure, and electrical vehicles. Prashant Jain, JSW’s chief executive officer noted to ET that:

“India is at an inflexion point and the three businesses that we have identified offer growth. While battery storage and charging infrastructure would be a forward integration for us, electric vehicle is an adjacent business, but we believe it’s a huge opportunity as it will offer level playing field to new entrants.”

Upstart Bollinger Motors’ Serious Off-Road SUV

Across the Pacific in the U.S. a small company out of Hobart, New York, population 47,000, has produced a serious EV sport utility vehicle prototype. The Jeep-Hummer mashup looking thing has an impressive 362 horsepower and can be configured with 120 or 200 miles of all-electric range. A 6100 lb towing capacity and massive wheel base communicate an underlying attitude of grit that’s something entirely new in the electrical auto world and, well, for lack of a better set of descriptors, rough and rugged.

(With the advent of less expensive and more widely available battery packs and electrical drive trains, EV and energy storage companies are starting to pop up all over the place. The above video shows Bollinger Motor’s planned EV off-road truck — which it hopes to produce at a rate of 10,000 to 20,000 per year. JSW, a traditional India-based utility, just threw its own hat into the EV ring this week. With so few EVs available and so much demand for clean energy alternatives, the market at this time appears to be wide open. Video source: Bollinger Motors.)

At $60,000 per truck, it’s well within the traditional off-road market. And Bollinger ultimately plans to sell between 10,000 and 20,000 copies of this mean machine each year — if it can make the regulatory hurdles for U.S. auto manufacturing and find a partner that will help it produce all those thousands of units. A big if — but one that achieved could really help to jump-start the off-road EV market in the U.S.

Looking at traditional auto manufacturers, you kind of have to shrug and say — why didn’t they think of this? But one industry’s apathy is another entrepreneur’s opportunity. Or at least so thinks Bollinger.

Big Wind Energy Build Recommended for North Sea

Electrical vehicles are a key element of a synergistic suite of renewable energy technologies including wind, solar and energy storage that are increasingly capable of replacing fossil fuel burning infrastructure and removing harmful carbon emissions. Rapid growth in these industries enables swift reductions in the amount of heat-trapping gasses from human sources presently hitting the atmosphere.

Facts that were obviously on the minds of wind energy boosters in Europe during recent days as Michiel Muller of energy and climate consulting group Ecofys published a new report recommending a rapid increase in offshore wind development in order for Europe to meet Paris Climate Agreement goals. Muller noted that to prevent increasingly harmful warming, “Europe will need a fully decarbonized electricity supply by 2045. Renewables are essential to making this happen.”

(A graphic description of a large wind energy build-out recommended to help Europe meet its Paris Climate Agreement goals. Image source: Europe’s Growth Rate in Offshore Energy Must Triple to Get Paris Goals in Reach.)

Muller recommends adding significant new off-shore wind energy supplies from North Sea countries like France, Belgium, the Netherlands, Luxembourg, Germany, Denmark, Sweden, Norway, Ireland, and the United Kingdom.

During recent years, turbine size increases and industrial mass production efficiency gains have resulted in falling costs for both onshore and offshore wind generation. Offshore wind, which in the past has been somewhat more expensive than onshore wind or other traditional power sources, is becoming more cost-competitive. And it’s a power source that suffers less intermittency than its onshore brethren. However, lower solar and onshore wind prices present additional renewable energy and carbon emission reduction options for European states.


Europe Must Triple Off-Shore Wind to Bring Paris Goals Within Reach

Europe’s Growth Rate in Offshore Energy Must Triple to Get Paris Goals in Reach

JSW Energy Plans Electric Vehicles Manufacturing by 2020

JSW Energy

The Bollinger B1 is an All-Electric Truck with 360 Horsepower and up to 200 Miles of Range

Bollinger Motors

Hat tip to Suzanne

India and China Building Solar Like Gangbusters, Electric Revolution Continues as GM Sells EV for $5,300 in China, Tesla Plans 700,000 Model 3s Per Year

If we’re going to halt destructive carbon emissions now hitting the atmosphere, then the world is going to have to swiftly stop burning oil, gas and coal. And the most effective and economic pathway for achieving this removal of harmful present and future atmospheric carbon emissions is a rapid renewable energy build-out to replace fossil fuel energy coupled by increases in energy efficiency.

(To halt and reverse climate change related damages, fossil fuel based greenhouse gas emissions into the atmosphere need to stop.)

This week, major advances in the present renewable energy build and introduction rate were reported. Chiefly, India and China are rapidly adding new solar panels to their grid, the monthly rate of global EV sales surpassed 100,000 in June, GM is offering a very inexpensive electrical vehicle in China, and Tesla has ramped up plans for Model 3 EV production from 500,000 vehicles per year to 700,000 vehicles per year.

India and China Solar Gangbusters

In the first half of 2017, India is reported to have built 4.8 gigawatts (GW) of new solar energy capacity. This construction has already exceeded all 2016 additions. The country is presently projected to build more than 10 GW of new solar energy capacity by year-end. Large solar additions are essential to India meeting its goal of having 100 GW of solar electrical generation available by 2022. It is also crucial for reducing carbon emissions from fossil fuel fired power plants (coal and gas).

(Total solar capacity in India could hit 30 GW by end 2018. India will need to add solar more rapidly if it is to achieve its goal of 100 GW by 2022. Image source: Clean Technica.)

Further east, China added 24.4 Gigawatts of new solar energy in just the first half of this year. This pushed China’s total solar energy generating capacity to a staggering 101 GW. It also puts China firmly in a position to surpass last year’s strong rate of solar growth of 34 GW. China’s previous goal was to achieve 105 GW of solar production by 2020. One it will hit three and a half years ahead of schedule. China now appears to be on track to overwhelm that goal by achieving between 190 and 230 GW of solar generation by decade’s end.

(China has already overwhelmed its 2020 target for added solar capacity. Recalculating based on present build rates finds that end 2020 solar generation levels are likely to hit between 190 and 230 GW for this global economic powerhouse. Image source: China National Energy Administration.)

Such strong solar growth numbers in traditional coal-burning regions provides some hope that carbon emissions growth rates in these countries will continue to level off or possibly start to fall in the near future. Adding in ambitious wind energy and electrical vehicle build-outs in these regions provides synergy to the larger trend. If an early carbon emissions plateau were to be achieved due to rapid renewable energy build-outs in China and India, it would be very helpful in reducing overall levels of global warming during the 21st Century.

GM’s $5,300 EV for the Chinese Market

Adding to the trend of growing movement toward an energy switch in Asia this week was GM’s introduction of a small, medium-range electrical vehicle for the Chinese auto market. GM is partnering with China’s Baojun to produce the E100. A small EV that’s about the size of the U.S. Smart Car. The E100 has about a 96 mile all-electric range, a 62 mph top speed, and goes for $14,000 dollars before China’s generous EV incentives. After incentives, a person in China can purchase the vehicle for $5,300. GM states that 5,000 buyers registered to purchase the first 200 E100s hitting the market last month, while a second batch of 500 vehicles will be made available soon.

100,000 Electrical Vehicle Sales Per Month by Mid 2017

Globally, electrical vehicle sales have ramped up to 100,000 per month during June of 2017. This growth is being driven primarily by increased sales volumes in China, India, Japan, Australia, Europe and the U.S. as more and more attractive EV models are becoming available and as governments seek to limit the sale of petroleum-burning vehicles in some regions.

(Projected growth rates for EV sales appear likely to surpass present projections through 2020. Image source: Cleantechnica.)

Meanwhile range, recharge rates, acceleration, and other capabilities for these vehicles continue to rapidly improve. This compares to fossil fuel vehicles which have been basically stuck in plateauing performance ranges for decades. 2017 will represent the first year when sales of all EV models globally surpass 1 million per year. With a possible doubling to tripling of EV production through 2020.

Telsa Aiming for 700,000 Per Year Model 3 Sales

2018 will likely see continued growth as new vehicles like the Model 3, the Chevy Bolt, and Toyota Prius Prime provide more competitive and attractive offerings. This past month, the Chevy Bolt logged more than 1,900 vehicles sold in the U.S. in one month. If GM continues to ramp production, marketing, and availability of this high-quality, long range electrical vehicle, the model could easily sell between 3,000 and 5,000 per month to the U.S. market. Another vehicle — the plug in electric hybrid Toyota Prius Prime — is also capable of achieving high sales rates in the range of 5,000 per month or more on the U.S. market due to a combined high quality and low price so long as production for this model also rapidly ramps up.

But the big outlier here is the Tesla Model 3. By end 2017, Tesla is aiming to ramp Model 3 production to 5,000 vehicles per week. It plans to hit more than 40,000 vehicles per month by end of 2018. And, according to Elon Musk’s recent announcement, will ultimately aim to achieve 700,000 Model 3 sales per year. If such a rapid ramp appears, the Model 3 along with other increasingly attractive EVs could hit close to 2 million per year annual combined sales in 2018 and surpass 3 million at some time between 2019 and 2020. This is well ahead of past projections of around 2.2 million EV sales per year by 2020. Representing yet another early opportunity to reduce massive global carbon emissions coming from oil, gas, and coal.


India Installs 4.8 GW of Solar During First Half of 2017

China’s New 190 GW Solar Guiding Opinion Wows

China Could Reach 230 GW Solar by end 2020

GM Should Bring Baojun E100 EV to USA

EV News for the Month

Joint Venture for Baojun E100

Model 3 Annual Demand Could Surpass 700,000

George Monbiot Just Attacked a Key Solution to Climate Change — Why?

In 2015, the Electric Power Research Institute partnered with NRDC in producing a report assessing the ability of electrical vehicles to reduce global carbon emissions. Their findings were as profound as they were simple:

Electric vehicles and a clean grid are essential to arresting climate change

(Adding electrical vehicles to the energy and transportation mix considerably reduced global carbon emissions. In addition, the batteries on which the vehicles are based provide essential, low-cost means to store renewable based electricity coming from wind and solar power. Image source: NRDC.)

The findings also represented basic common sense.

The start of major atmospheric increases in CO2 and other greenhouse gasses began with the burning of fossil fuels. Rapid global warming subsequently followed. Human burning of wood, cow-based agriculture, and destruction of forests prior to that time may or may not have marginally increased atmospheric greenhouse gasses and tweaked global temperatures. But the simple truth is that from the end ice age interval about ten thousand years ago until fossil fuel burning began in the 18th Century, the primary gas contributing to global warming — Carbon Dioxide — had remained in a tight range between 265 to 275 parts per million (methane concentrations increased by less than 100 parts per billion, and nitrous oxide levels only increased by about 10 parts per billion).

The big hit obviously came when humans began digging up coal, oil and gas, putting them into machines, and burning these materials en-masse. And today we are adding 10 parts per million of heat trapping carbon dioxide to the atmosphere every 3-5 years. An increase that possibly took all the plowing, burning, domesticating, and breaking of the Earth by humans ten thousand years to achieve by harmful land use activity alone. Meanwhile, methane and nitrous oxide levels since the commencement of fossil fuel burning around 1750 have rapidly risen by 1,200 and 60 parts per billion respectively.

(Levels of heat trapping carbon dioxide remained relatively stable for thousands of years until the commencement of fossil fuel burning by humans. Image source: The Keeling Curve.)

And these dangerous carbon emissions in today’s energy, agriculture and manufacturing systems all ultimately come down to one chief source — fossil fuel burning. If there’s a carbon emission from the making of steel, for example, it mostly comes from burning fossil fuels. If there’s a long lasting and harmful carbon emission coming from industrial agriculture, it’s in large part coming from the burning of fossil fuels. And if there’s a carbon emission coming from our use of machines, it’s due entirely to the internal combustion engines within them that burn fossil fuels.

In all of the human system, the vast majority of carbon emissions come from oil, gas, and coal. And all of the most dangerous, old carbon emissions come from this source. In other words, if you want to stop climate change, you have to deal with the real elephant in the room. There is no bargaining. No dissembling. ERPI and NRDC are right. You’ve got to switch your energy sources and your engines if you’re to have any hope of dealing with human-caused climate change. Electric vehicles and a renewable grid are, therefore, essential. They’re our escape hatch. They’re our main path out of future climate change hell.

(It’s clear where the additional heat trapping gases are coming from — old fossil carbon sources. Video source: NASA.)

The big, heavy lift all just boils down to halting fossil fuel burning as soon as possible. This is our best hope, our best means, of removing future carbon from the atmosphere — never burning the fossil fuels at all. Leaving it all in the ground.

New Solutions vs the Old Gridlocked Dialectic 

Notably, there are many conceptual, if difficult to enact, ways that we as human beings could achieve this end. Over the past half century at least, wise environmentalists have been calling for a renewed focus on living simply. On public transport. On re-building close-knit communities fractured by rampant consumerism and marketeering. On using less to do more.

This goal was admirable, helpful. But, for various reasons, it has, so far, largely failed to address the larger climate crisis. This is not to downplay the helpful successes of a number of cities and communities around the world who have provided walkable communities, added bike lanes, advanced public transport, and helpfully re-strengthened local ties. Yet despite these helpful advances, about 80 million fossil fuel powered vehicles are produced each year. So we obviously have to address that larger issue as well.

One reason that this helpful environmental movement has not grown its influence more is due to the noted and powerful strength of the fossil fuel industry in manipulating governments and the public interest. If calls by greens for restraint were loud and compelling, they were often drowned out by fossil fuel advertising dollars and legislation that increasingly leaned toward protecting harmful economic interests. Another reason was that these goals, though noble, did not speak to the present economic reality in which many people lived their daily lives. Technology based on fossil fuels enabled many to do more, make more, raise their families up from poverty — but at a terrible long term external cost that was often invisible to the users.

The resource curse thus became ingrained in many regions outside the political reach of environmentalists as these consumers were captured in a new, generational, economic reality dominated by fossil fuel use. And there was much reason to lament and resist this ultimately harmful reality — even if the message of blaming a consumer that was essentially shackled to fossil fuel use and sometimes ineffectively pushing toward a less and less clear vision of efficiency and simplicity without also providing broader access to alternatives was a proposition destined for failure.

(The price of a solar panel from 1977 to 2013 had dropped from 77 dollars per watt to 74 cents per watt. In 2017, solar panels now regularly sell for between 25 and 35 cents per watt. This provides a significant escape hatch to present fossil fuel burning. Low cost wind and emerging electrical vehicles add to this escape route. Image source: Clean Technica.)

This dialectic itself described a systemic downward spiral from which there appeared to be no escape. But recently, the very technological and economic advantages represented by fossil fuels have begun to seriously erode. The cost of non-fossil-fuel based energy systems — wind and solar primarily — plunged to less than that of traditional coal, oil, and gas. Meanwhile, the desirable machines that burned the devil’s juice of oil, began to trade in their black internal combustion engine hearts for far cleaner electrical engines and batteries. Drive systems that could easily be mated to clean energy and remove fossil fuels from the energy picture entirely.

This new opportunity for clean energy to leverage the same strengths that led fossil fuels to prominence not only threatened fossil fuels. It threatened that old dialectic. And some purists were unable to reconcile the reality of far more benevolent new technologies able to replace fossil fuels with the older ideals and conflicts.

Public Transport and Bikes are Great. But why Attack Electrical Vehicles if They are also Helpful?

And it is for this reason that we can understand, a bit, where George Monbiot is coming from when he appears to falsely equate electrical vehicles with fossil fuel based vehicles. A car-less society has long been a big ideological push for George and other environmentalists. The car itself, his reviled icon of harmful consumerism. And, yes, removing cars would achieve a significant reduction in UK carbon emissions if such a thing were even remotely politically possible. Those driving on grid-locked Great Britain highways can certainly have sympathy for a generally helpful reduction in car use. In adding more widely available electrified, renewable-based public transportation. In making bike transport more widely available.

But ultimately, it appears to this observer that George is counter-productively attacking the wrong object. That George is unintentionally committing more harm than good. In other words, as a practical matter, Great Britain is highly unlikely to be able to achieve the goal of a car-less society any time soon. But if it does, eventually, reduce the number of its ‘iron chariots’ as Monbiot suggests, the electrical vehicle will probably have played its part in helping speed that transition.

(Increased adoption rates of electrical vehicles will reduce oil consumption and at the same time erode the power of industries that have for so long blocked green initiatives like public transportation, ride sharing, and walkable and bikeable cities. Why throw water on a much-needed energy revolution that would be very helpful by providing air in the room for green causes? Image source: Bloomberg New Energy Finance.)

Going back to the old dialectic, we find that the primary political opponents to societies with greatly reduced automobile use per person are both traditional automobile manufacturers and fossil fuel companies that rely on ICE based vehicle transportation to support oil demand. Add electrical vehicles to the mix and you reduce fossil fuel demand, thus eroding one pillar of that political power base.

This, by itself, might not be enough to break the larger environmental log jam. But consider the fact that the primary leaders of the electrical vehicle movement are companies like Telsa and countries like China. Tesla itself is more an energy company than a vehicle company. The company produces energy platforms and renewable energy applications. Batteries, solar, and electrical vehicles are its stock and trade. High quality vehicles that primarily do not rely on the same levels of mass production that traditional, single stream automakers have relied on. China, meanwhile, is mass-producing electrical vehicles in an effort to clean its air. Neither are as shackled to the notion of everyone owning a vehicle as traditional automakers now are. And to this point, Tesla itself has identified ride sharing as a strategic goal to enable people to access road transport without owning a vehicle — thus considerably reducing the number of cars per person and helping to enable Monbiot’s ultimate goals.

The net result in bringing EVs in to compete with ICEs will be not only reduced carbon emissions, but a change in the economic based power dynamic within the UK and in other countries. And the economic interests of disruptive new companies like Tesla will be divergent enough from those of traditional automakers to allow the breaking of the old grid-lock at the political level. In such a new dialectic, the voices of those like Monbiot could be even more poignant and helpful as we pursue a path to greater sustainability — so long as they do not shrilly attack the various forces that are enabling their empowerment to achieve those very ends.



The Keeling Curve


Clean Technica

Bloomberg New Energy Finance

A Beautiful Machine to Change the World — Model 3 to Transform Global Automobile Markets, Open Pathway For Rapid Energy Transition

“The Tesla Model 3 is here, and it is the most important vehicle of the century. Yes, the hyperbole is necessary.” — Motor Trend

“The arrival of Tesla’s Model 3 signals a new chapter in automotive history, one that erases 100-plus years of the gas engine and replaces it with technology, design, and performance hot enough to make electric vehicles more than aspirational – to make [electric vehicles (EVs)] inspirational.” — Wired.

“[T]here isn’t anybody who’s going to sit in the driver’s seat of this car and not want it. The Model 3 stokes immediate desire, and the lust lingers. That truly changes everything.” — Business Insider.

(The Tesla Model 3 entered low rate initial production in July of 2017. There has likely never been a more anticipated, desired, or better reviewed automobile. Image source: Tesla. )


More than half a million. 

That’s the number of pre-orders Tesla’s Model 3 has racked up since its 2016 product announcement and through its July 2017 launch. And it’s possible that there’s never been a car that’s so anticipated, so desired by the public. People are literally clamoring for this best-in-class, long-range, all-electric vehicle. Elon Musk is getting harassed on twitter by followers anxious to know when their Model 3 will be ready for purchase. And it’s questionable if Elon’s plan to go through ‘mass production hell’ to reach 500K per year annual production rates by end 2018 will ever come close to satiating demand for what is far more than just an amazing automobile (Tesla reports it is still accumulating reservations at a rate of 1,800 per day net, or more than 12,000 per week).

If we were to tap into what drives Model 3 customers, what fuels this particularly virulent brand of Tesla-mania, we’d probably find a dynamic combination of desire, aspiration, and fear. Desire for what is hands-down an absolutely awesome vehicle. Aspiration to contribute to a public good through a meaningful purchase. And a growing fear that we need to move very swiftly away from fossil fuels to confront the rising crisis that is human-caused climate change.

Beautiful Machines

The vehicle itself is just simply extraordinary. For 35,000 dollars you can get a car with a 220 mile all-electric range. For 44,000, the car’s renewable legs lengthen still further to 310 miles. This graceful beast can rocket from 0-60 in less than six seconds. And her interior is wrapped in the kind of bubble cockpit, due to glass roofing, that most fighter pilots would envy. She’s a vehicle that gives a nod to the simplicity of earlier times with her gadget-less dash board. Her liquid exterior a reflection-in-form of the plasma-producing energy of a futuristic, but quietly purring, all-electric drive train.

(Tesla’s beautiful machine launches. Top down view shows iconic glass roof. Image source: Tesla.)

Elon Musk has delivered to us the exact opposite of a clunky automobile made up of all the worst excesses of a stinking smokestack civilization. The Model 3 comes across as a bold and proud creature of air and light. A hopeful machine designed in the pursuit of a better future day, a better way forward.

Changing the World for the Better

And this is what brings us to the heart of the matter. The crux of the reason why hunger for the Model 3 is quite possibly without cure, without limit. People in advanced civilizations these days are tired of being the butt of blame. And they are more than a little worried about what may be coming down the Keystone XL pipeline of climate change. They don’t want to contribute to the great death and harm that is worsening climate disruption with their purchases. They no longer want to be consumers captive to the unforgiving, smog-belching yoke of fossil fuels. They want the vehicular equivalent of the paladin’s white horse. They want to buy into a liberation from an age of pain and heartbreak and endless bad choices with no visible way out. And with each Model 3 purchase — that’s exactly what they are doing.

(Tesla aims for 5,000 vehicle per week Model 3 production ramp by late fall. Image source: Tesla.)

For if Tesla is able to meet this visceral demand for a truly renewable vehicle, if the company is able to ramp up to 20,000 + vehicle per month production rates, it will, by itself, more than double the size of the U.S. Electrical vehicle market in just 1-2 years. The batteries the elegant Model 3 relies on will form a basis for extending the reach of already affordable wind and solar energy (as we are seeing this week in a new wind + battery deal off Massachusetts). And the seismic ground wave produced by the Model 3 will drive a major spike in demand for other, similar electrical vehicles from an expanding array of automakers.

The Model 3 is thus the tip of the spear for speeding an energy transition in the U.S. and in many other countries. And she couldn’t have come at a better time.

Oklahoma to Build World’s Second Largest Wind Farm as France + UK Pledge to Ban Fossil Fuel Vehicles

If we’re going to effectively deal with climate change while maintaining economic prosperity, then it’s absolutely essential to rapidly transition fossil fuel based energy to non-carbon emitting energy. And some of the best options for doing so presently involve leveraging economies of scale with three widely available technologies — wind, solar, and low cost storage and EV batteries.

Oklahoma Wind Capacity to Rise Above 30 Percent of Electrical Generation

Over the past week, serious advances continue to be made on these fronts. In the Oklahoma panhandle, Invenergy has partnered with GE Renewable Energy to build a 2 GW onshore wind farm. Once finished, the farm (named Wind Catcher) will be the largest U.S. wind farm and the second largest such farm in the world. The farm itself will be composed of 800 massive 2.5 megawatt wind turbines. This is GE’s largest wind turbine model and its size will help to lower the cost of producing electricity, some of the benefits of which will then be passed on to energy customers.

(According to the American Wind Energy Association, Oklahoma presently ranks as third in the U.S. for wind electrical generation capacity at 6,645 megawatts. Adding another 2,000 megawatts would considerably increase Oklahoma’s wind energy share by 30 percent. As a result, present Oklahoma wind generation of 25 percent of the state’s electrical supply would likely rise to 32.5 percent as a result of this single large project.)

Pete McCabe, President and CEO of GE’s Onshore Wind business noted in Clean Technica:

“GE is delighted to be a part of the groundbreaking Wind Catcher project with Invenergy and American Electric Power. We look forward to putting our teams to work in these communities as we continue to move toward our goal of ensuring that no one has to choose between sustainable, reliable and affordable energy.”

The project which will cost 4.5 billion dollars hits a pretty amazing price of around 2.25 cents per kilowatt hour installed. And with new wind energy projects costing as little as 2.5 cents per kilowatt hour on average in 2017, it appears that raw economic factors alone are likely to continue driving large and lucrative wind projects like the one now being pursued in Oklahoma. A single project that will increase Oklahoma’s wind energy generation capacity by 30 percent to 8,645 GW and push wind’s total share of state electrical generation to around 32.5 percent (see image and caption above).

France and UK Pledge to Ban Fossil Fuel Vehicles

Even as wind gains a larger share of energy production capacity in a red state, the UK and France have now joined a growing number of cities and nations in providing a responsible pledge to ban petrol and diesel based vehicles by 2040. These national moves match a recent initiative by Norway — which aims to sell only electrical vehicles in country by 2025. Meanwhile, India has also recently set a goal to sell only electrical vehicles in its own markets by 2030. Cities such as Madrid, Munich and Stuttgart are also considering diesel bans.

Concerns about worsening air quality, recent cheating by automakers on emissions standards, worries about climate change and a major threat to traditional automaker market share by all-electric manufacturers like Tesla appear to have reached a kind of critical mass.

From the New York Times:

Britain’s decision is, however, the latest indication of how swiftly governments and the public in Europe have turned against diesel and internal combustion engines in general. Automakers, though reluctant to abandon technologies that have served them well for more than a century, are increasingly resigned to the demise of engines that run on fossil fuels. They are investing heavily in battery-powered cars as they realize their traditional business is threatened by Tesla or emerging Chinese companies, which have a lead in electric car technology. The shift away from internal combustion engines is in large part a result of growing awareness of the health hazards of diesel.

According to reports from the BBC, France’s own July 6 decision to ban petrol and diesel vehicle sales by 2040 was spurred by the Trump Administration’s withdrawal from the Paris Climate Accord. France has long aimed to reduce its carbon emissions and the 2040 vehicle ban is part of a larger plan for the country to become carbon neutral by 2050.


USA’s Largest and World’s Second Largest Wind Farm to be Built in Oklahoma

Britain to Ban New Diesel Cars by 2040

France to Ban Sale of Petrol and Diesel Vehicles

American Wind Energy Association

China Cracks 100 Gigawatts of Solar Capacity as Musk Pitches More U.S. Gigafactories

When it comes to solar energy, China is on one hell of a roll.

In the first half of 2017, the massive country added a record 24.4 gigawatts of solar electrical generating capacity. This boosted its total solar capacity to 101.82 gigawatts. By comparison, China has about 900 gigawatts of coal generating capacity, but recent coal curtailments provide an opportunity for renewable energy to take up a larger portion of China’s energy market share. Such an event would provide a crucial opening for the world to begin a necessary early draw-down of global carbon emissions in the face of rising risks from climate change.

(The government of China proudly touts its clean energy advances. Trump Administration — not so much.)

This very rapid solar growth rate, if it continues, puts China on track to beat its 2016 record annual solar installation rate of 34 GW. And, already, it is 9 percent ahead of last year’s more than doubling of new annual solar capacity toward a likely 2017 build-out at around 40 GW. China is also adding new high voltage power cables and averaging about 25 GW of new wind energy capacity each year. A stunning combined wind and solar build rate that has led CNN to claim that China is crushing the U.S. when it comes to renewable energy production and adoption rates. With the Trump Administration still wallowing in climate change denial, withdrawing from the Paris Climate Summit, and courting dangerous deals with petro-states like Russia, it’s enough to make you wonder if American technology and climate leadership are a thing of the past.

Back in the states, more progressive American (it’s not tough to beat Trump in this regard) Elon Musk was trying to help prevent just such a slide into backward-looking regression. Addressing 30 state governors at the summer governor’s association meeting, Musk explained that only a 100 by 100 mile square region was needed to capture enough solar energy to power the U.S. and that the battery storage needed for such a system to provide energy 24/7 would only cover a region 1×1 mile in size.

(Elon Musk claims an area of solar panels the size of the blue square could power the U.S. The black square represents the size of the area needed for energy storage to provide 24/7 power. Image source: Tesla.)

This is less than the total rooftop and highway area of all buildings and roads in the U.S. Musk also soft-pitched the notion of new gigafactories to the 30 state governors in attendance. Hopefully, a few will take up what amounts to an amazing economic opportunity. With Nevada seeing major new growth surrounding Musk’s Gigafactory 1 site, you’d think that interest would be high.

Oddly enough, 20 governors were AWOL at the meeting. Primarily republicans, apparently they had “more important” work to attend to than helping America become energy independent while fighting to prevent the fat tail of global climate catastrophe from crashing down on their constituents like a 1960s Godzilla on a mad romp in Tokyo.

Steve Hanley of Clean Technica notes:

“Whether any of the governors will take Elon’s words to heart remains to be seen. Only 30 of them bothered to attend. Many Republicans stayed home so they could focus on challenging issues like how to discriminate against Muslims, slash Medicare rolls, promote more fracking on public lands, and prevent transgender people from using public bathrooms. When you are in government, it is important to keep your priorities straight.”


China Adds a Record 24.4 GW of Solar in First Half of 2017



Clean Technica


Vermont Utilities Answer to Climate Change — Profit From Discounting Electrical Vehicles

“Green Mountain Power, the largest utility in Vermont, is promoting another aggressive clean energy offer to its customers — a $10,000 rebate on the purchase of a new 2017 Nissan LEAF.” Clean Technica.

“Burlington Electric is committed to building a sustainable energy future that reduces carbon emissions and supports a growing economy and a thriving community. Our EV incentive program is an important component of our efforts to drive our strategic net zero vision in the transportation sector.” Burlington Electric General Manager.


As citizens concerned about climate change, we often focus on the negative impacts of industry — which in the case of fossil fuels are presently many, varied, and growing. But we should be clear that a beneficial path forward exists for numerous clean energy industries in their ability to promote positive change through sustainability-focused technological innovation and expanding renewable energy access.

(In Vermont, tailpipe emissions account for about 50 percent of all harmful emissions in the state. Meanwhile, Vermont’s electricity grid is one of the cleanest in the nation. As a result, both utilities and government are providing incentives for increased electrical vehicle adoption as a means of shifting to cleaner renewable based electricity production and non-tailpipe-emitting electrical vehicles. Worth noting that EVs have no tailpipe emissions period — not just in Vermont. Image source: Drive Electric Vermont.)

This summer, Green Mountain Power announced its promotion of Nissan’s $10,000 dollar rebate program for Burlington-sold Nissan Leaf electrical vehicles (EVs) through September. Meanwhile, Burlington Electric, a municipal utility, is promoting similar incentives for new electrical vehicle purchases. To date, these are some of the most significant rebates for an electrical vehicle promoted by utilities and automakers — even eclipsing the Federal Government’s $7,500 tax incentive for EV purchases. Such aggressive rebates provide some clues as to where the utility industry may be headed in the near term as the number of electrical vehicles available on market continues to grow, as utilities take the opportunity to expand their demand base, and as various states ramp up their drives for cleaner air and net-zero emissions.

Clean Energy Transition Following in the Footsteps of the Information Age

Though not an exact allegory, we can find a number of corollaries between the presently emerging clean energy revolution, and the information revolution that has been ongoing for multiple decades now. Historically, those promoting the advancing information age did so, not just out of a desire to make money, but from a liberating drive to connect far-flung people and information sources. A process that many hoped would fuel the expansion of access to knowledge, speed innovation, spread democracy, socially leverage the power of thinking machines by creating equal access, and promote problem-solving on a mass scale.

(Green Mountain Power and other utilities are offering incentives for electrical vehicle purchases. Such incentives represent a decent opportunity for these companies to grow while also promoting responses to climate change. Image source: Nissan.)

This wave of technological innovation spreading information and growing social networking systems often relied on incentives for mass adoption which involved free or greatly reduced cost to access. This model drove waves of customers to new websites and services — taking a long view in which monetization and profit-making often occurred after a large number of subscribers was achieved. Google, Facebook, Twitter, Yahoo and many other platforms and services used this model to great effect.

And while the information age probably produced at least as many new problems as it solved, it appears far more likely that a transition to a renewable energy based society will generate far flung and much broader overall benefits. Energy independence, increasingly clean air and water, improved pulmonary health, and net zero carbon emissions are all in the offing. For in the age of rapid energy transition, mass manufacturing processes are enabling rapidly falling prices for clean energy, electrical vehicles and related energy storage systems. An event that has created a paradigm-shift-type opportunity for utility-based renewable energy innovators like Vermont’s Green Mountain Power.

Utility-Driven Electrical Vehicle Incentives

This summer, Green Mountain Power, which supplies 71 percent of Vermont’s electricity primarily from renewable and non-carbon based energy sources, announced that it would promote a $10,000 Nissan rebate off the purchase price of a Nissan Leaf EVs to its Burlington customers. Burlington Electric is providing a similar promotion with added incentives. The base price of a Leaf is about $30,000. Add in the rebate, an additional $1,200 incentive from Burlington Electric, and a $7,500 tax credit from the U.S. government and a number of Vermonters will be able to purchase the 107 mile range EV (soon to be 200 + mile range) for around $11,000 dollars.

(At 7 percent of electricity from solar, 15 percent from wind, and a significant amount of hydro-electric generation access, Vermont has one of the highest penetration rates for renewable energy. Adding EVs to the grid is an excellent way to further reduce Vermont’s overall carbon emissions. Image source: US Wind Energy Association.)

Why does this make good business sense for utilities like Green Mountain Power and Burlington Electric? Because for each customer that purchases a Leaf, utilities like Green Mountain and Burlington are locking in a considerable amount of increased electrical power demand while also spurring a larger shift that is beneficial to its business. The present Nissan Leaf has a 30 kWh battery pack that might average about 5-15 kWh per day of recharge electricity — increasing home and EV charging station consumption for Green Mountain power customers by 15-50 percent. And more often than not, owners of all-electric vehicles that do not require inconvenient gas station refills, annoying oil changes and who considerably reduce overall travel carbon emissions when connected to Green Mountain Power and Burlington Electric’s renewable grid will tend to remain EV owners — resulting in a considerable increase in electricity demand.

The push by Burlington Electric and Green Mountain has also been promoted by local clean power coordinators:

“Mobile sources, primarily motor vehicles, are the largest cause of air pollutants in Vermont, making up 46 percent of the state’s greenhouse gas emissions,” said Abby Bleything, Vermont Clean Cities Coordinator. “Burlington Electric’s partnership with Freedom Nissan, allowing customers to purchase a Leaf at $10,000 below MSRP, will help increase the number of zero-emission vehicles on the road, thereby taking a critical step towards reducing our state’s air pollution and dependence on petroleum.”

Green Mountain Power and Burlington Electric aren’t the only utilities to offer and promote incentives for electrical vehicle adoption. Southern California Edison, which serves 14 million customers, offers a $450 dollar clean fuel rebate. Meanwhile, Pacific Gas and Electric, serving 5.2 million, also provides a $500 rebate for EV purchases. But this is small change compared to the $10,000 rebates offered for Nissan Leaf EVs in Kansas last year and in Hawaii this year. Burlington Electric began offering a $1,200 EV rebate in May of 2017. It has since upped the ante by promoting a limited $10,000 Burlington Leaf incentive. With utilities, communities, and governments all looking to benefit from EV purchases, it appears that this emerging trend for power company based incentives and promotions has just gotten started.



Burlington Electric to Promote $10,000 Rebate on Leaf

Drive Electric Vermont

Green Mountain Power

PG&E Clean Fuel Rebate

Southern California Edison Clean Fuel Rewards

US Wind Energy Association

Hat tip to GingerBaker

Hat tip to Chris Burns of Burlington Electric

Racing to Catch Ludicrously Fast Model 3 Production Ramp, U.S. Automakers Grew EV Sales by 102 Percent in June 

Early on, Tesla recognized that responses to climate change were necessary — not just from individuals and governments, but also from industry. And Tesla realized that, when mated with wind and solar energy, electrical vehicles could become a powerful force for driving an energy transition capable of rapidly cutting global carbon emissions.

(Reduction in coal burning and lower than predicted demand for fossil fuels has helped to generate a carbon emissions plateau during 2014 to 2016. Rapid additions of renewable energy sources like wind, solar, and electrical vehicles provides a potential to begin to bend down the global emissions curve near term and reduce the damage that is now being locked in by fossil fuel based carbon emissions. Image source: IEA.)

Tesla’s Market-Driven Response to Climate Change

Electrical vehicles possess a number of key sustainability advantages that aren’t widely talked-about in the public discourse. Electrical motors are considerably more efficient than ICE engines — so broadening EV use lowers energy consumption in transportation while at the same time allowing EVs to draw power from traditional and newly emerging renewable sources. The massive batteries housed in EVs and sold after-market also have the capacity to become a major solar and wind energy storage asset that could ultimately enable the removal of peaking, high emissions, coal and gas plants.

In light of these opportunities, back in the mid 2000s, Tesla made a bold, necessary move. Its leadership decided that it would attempt to become a major automaker dedicated solely to electrical vehicle sales. This business plan would hitch Tesla’s economic future entirely to the success or failure of clean energy ventures. Unlike most present automakers, Tesla would not suffer from divided loyalties to harmful incentives linked directly to fossil fuel based economies. It decided to make its clean energy break by producing top of the market, high-quality electric-only vehicles and, then, by leveraging loyalty to a superior brand, move vertically down into broader market segments.

(If Tesla’s planned Model 3 production ramp to 5,000 vehicles per week by end of 2017 holds true, then the all-electric automaker’s quarterly deliveries are about to go exponential. Image source: EV Obsession.)

Such a disruptive end run on the world’s energy and vehicle markets was bound to encounter stiff resistance and loud detractors. However, if successful, Tesla would force traditional energy and transport players to make a tough choice — follow in Tesla’s footsteps and try to compete, or face dwindling customer bases as a massive wave of innovation completely upended markets. The automaker decided that the best way to goad a broader transition toward electrical vehicles in western markets was to lead it. And that’s exactly what Tesla has been doing.

Major EV Sales Growth on Tap for 2017 Due to Automaker Shift + Model 3 Sales

In the U.S., during 2017, the trend of an emerging industry reaction to Tesla is becoming quite clear. The major automakers are all in a scramble as the imminent arrival of the Model 3 nears. The vehicle, which begins production this month, aims to provide very high quality, Tesla’s trademark swift acceleration, top-notch tech, groundbreaking automation, and 215+ miles of all-electric range for a 35,000 dollar base price. An offering that is disruptive due to quality and accessibility alone. But add to it the 400,000 + preorders that Tesla has accumulated and you’ve got what basically amounts to a volcanic eruption in the global auto market.

In large part, as a response to Tesla’s market-transformation plan, a number of major automakers are deciding to provide their own competing offerings. This year, GM beat the Model 3 to the start line with the 200+ mile range, high-quality Chevy Bolt. Toyota, launched its competitively-priced Prius Prime plug-in hybrid. Nissan redoubled efforts to position its best-selling Leaf all electric vehicle even as it announced plans for a 200+ mile range version in 2018. Meanwhile, Volvo plans to electrify all its vehicles by 2019.

(Increasingly attractive EVs and plug in hybrids like the Chevy Bolt, the Prius Prime, and the Nissan Leaf helped to boost U.S. electrical vehicle sales in June as automakers gear up to compete with Tesla’s Model 3. Image source: InsideEVs.)

This activity has generated considerable growth in sales as customers discover electrical vehicles of ever-increasing variety, value and capability. During June of 2017, all-electric vehicle sales from major automakers in the U.S. market (excluding Tesla) increased by more than 100 percent over June of 2016 on the back of the entry of attractive, highly-capable models like the Bolt. Meanwhile, plug-in hybrid sales grew by 11.5 percent. Total U.S. EV and plug in hybrid sales for the month from major automakers + Tesla hit a new record in June of 17,182 on the back of major automaker sales growth (a total growth of about 16 percent for the entire U.S. market).

Tesla, on the other hand, showed slightly lower June 2017 sales vs June 2016 in U.S. markets as it experienced a hiccup in 100 kw battery pack production. But with the Model 3 nearing launch, an explosion of EV sales from Tesla is in the offing over the coming months. According to statements by Tesla CEO Elon Musk, the ground-breaking vehicle is expected to trickle into the market by adding about 30 sales in July. By August, deliveries are expected to triple to 100. By September, another 1,500 or so Model 3s are expected to arrive. Production will then, according to Musk, swiftly ramp up to 20,000 per month by December.

If these ambitions bear out, and if about half of Model 3 sales are in the U.S., then the U.S. could see north of 40,000 EVs and plug in hybrids sold in the U.S. during December. This would represent a 60 percent + jump over the all-time record EV sales month of December 2016. But even if Tesla’s extraordinarily ambitious production ramp-up goals for the Model 3 aren’t reached by December, the excitement surrounding the vehicle is likely to continue to spur growth and competition in the larger EV market through the period. And that’s a bit of much-appreciated good news for those of us who are increasingly concerned about climate change.


Big Auto’s Fully Electric Car Sales Up 102% in USA

Plug-in Electric Sales Report Card

Next Generation Leaf to Have 215 to 340 Mile Range

Volvo Electrifying All Models By 2019

CO2 Emissions Flat for Third Straight Year

EV Obsession

With India Building Solar Power Stations For 65 Cents per Watt, Suniva’s ITC Complaints Kinda Make You Want to Laugh (and Cry)

So in the world of solar there’s various different price structures. There’s cell prices, there’s module prices, and then there’s total system prices. The cells are the little bits that go into a solar panel. The module is the solar panel itself. And the system is the complete array of modules that’s been racked, packed, and assembled.

Solar Cells are Now Produced For as Little as 20 Cents Per Watt

In business, the best way to get the lowest prices is to do things en masse. The largest, most efficient solar assembly plants in China and Southeast Asia now produce solar cells for as little as 20 cents per watt. As of June 28th, solar modules from this region were going for as little as 33 cents per watt.

Low to very low solar cell and module prices are helping to enable a mass global construction of clean energy producing solar power stations that are either competitive with other fuels — or that just basically blow them away when it comes to price. And such high volumes of renewable energy construction around the world are providing some hope that humankind will be able to stave off the worst impacts of fossil-fuel spurred climate change. A greenhouse gas based of warming airs and waters that is already threatening keys species, putting Australia’s Great Barrier Reef in an existential crisis, and endangering the future of thousands of coastal cities as melting glaciers start to flood the world’s oceans.

Solar Power Stations For as Little as 65 Cents Per Watt

In the U.S., solar power stations now average about $1.10 cents per watt once all the cost of labor and construction is added in. For most instances, this price is competitive with highly polluting power stations like gas and coal. It’s about half the cost of nuclear energy. And solar prices are now also dipping below the price of new wind energy (which is also falling).

(GTM finds very low and falling prices for solar globally.)

In other regions of the world, solar energy is even less expensive. In the UK, Egypt, Mexico, China, and India, the cost of building a solar power plant is now $1.00 or less. A price which is now lower than the cost of a new advanced coal or gas power station. India, which boasts the least expensive construction costs for solar, can now build a renewable energy station for about 60 to 70 percent of the price of a comparable coal or gas plant at 65 cents per watt.

In this global economy, solar is now becoming cheaper than any other traditional source. It is also far cleaner than the other sources with the possible exception of wind. Solar has, by reducing costs so precipitously and by increasing access, become a game-changer both for the global energy market and for humankind’s prospects for reducing the considerable damage caused by fossil fuel based greenhouse gas emissions.

Subsidies vs Tariffs 

Enter Suniva, which is one of the world’s less efficient solar manufacturers. Based in the U.S., but majority owned by China, Suniva was unable to compete in a global market that produced solar cells for such low cost and high availability. This year, the firm filed for bankruptcy. The firm was unable to compete despite tariffs that the U.S. had already imposed on some solar panel importers. A set of tariffs that have already helped to make the U.S. solar market more expensive than other comparable markets. Tariffs that have arguably slowed U.S. solar adoption rates while doing little to actually protect less competitive manufacturers that would probably have eventually failed anyway.

The tariffs were, however, set in response to a legitimate gripe. Subsidies by China had probably created an unfair advantage for Chinese solar panel manufacturers. And these subsidies likely continue to generate advantages for such manufacturers in both China and in Southeast Asia. Subsidies that, in part, probably sped along Suniva’s bankruptcy and the approximate loss of 1.200 U.S. solar manufacturing jobs.

Suniva’s Selfish Suit Threatens to Wreck U.S. Solar Industry

Suniva’s response, however, is pretty overblown. One that threatens much of the solar market as it presently stands in the U.S. The corporation is asking for a $.40 floor on imported solar cell prices — which is basically double that of the lowest cost solar cell presently on the market. The company is also asking for a $.78 cent floor on import module prices — which is 45 cents higher than current lowest module spot prices. Such added costs would ripple through the U.S. solar production chain and would probably result in plant prices that range from $1.34 to $1.89 per watt. The reason is that the U.S. panel market is considerably dependent on imports and presently has few manufacturing plants that can produce cells and modules for prices low enough to prevent a big jump in industry-wide costs if Suniva gets its way.

(Evidence mounts that Suniva’s ITC case could sabotage the entire U.S. solar market. Image source: GTM.)

Such a jump in prices would result in considerable harm to the various solar companies that buy solar modules and build power plants, commercial and non residential systems by destroying a good deal of the present and rising solar demand in the U.S. This particular industry is now quite large and recent research by GTM indicates that as much as 66 percent of new construction could be halted if Suniva is allowed to so considerably distort the U.S. market. Ultimately, this risks the loss of thousands of jobs (not just the few hundred that have been lost in the manufacturing sector)– as much as 88,000 if the recent report by SEIA is correct.

So what’s the upshot? If Suniva’s suit goes through, it’s a big blow to both U.S. competitiveness and to our national responses to climate change. Chinese subsidies may, indeed, be distorting markets. But the solution that Suniva presents is basically to recommend drinking a hemlock that would kill off a big segment of the U.S. market while doing little to actually support U.S. solar manufacturing. Some jobs may trickle back as manufacturers try to meet the demand of a much reduced U.S. market. But the rest of the world will move on as incentives for U.S. manufacturers to improve dry up and as the home market itself contracts.

For the flip side of Chinese subsidies is that they not only subsidize Chinese solar manufacturing capacity, they also serve to advance a global energy transition through the mechanisms of direct investment and scaling. And there are so many larger benefits that the U.S. can take from the reduced pollution, increased secondary markets, increased competition, energy independence, and reduction of climate change based harms that are resulting from this major investment. The correct response is to meet investment and innovation with the same if we wish to reasonably compete. But the present federal administration appears to have completely lost sight of a better American future as it fights to regain the distorted ideal of an imagined past greatness.

Which is why Suniva’s ITC suit, in its present form, is at best short-sighted and at worst both selfish and broadly destructive.


Solar Costs are Hitting Jaw-Dropping Lows

PV Spot Prices

China-Owned US Solar Manufacturer Seeks Tariffs on Imports

Solar Industry Expects Loss of 88,000 Jobs in U.S. if Government Rules in Company’s Favor in Trade Case

Wind and Solar Accounted For 57 Percent of New U.S. Generating Capacity Additions in First Quarter

Policy sure makes one heck of a difference. Thanks to legislation and investments by China, the U.S., Europe and numerous other countries around the world, solar energy has reached price parity or better with natural gas and coal over a growing subset of the globe. In the United States, fully 36 states in 2017 are seeing solar at parity with fossil fuel based generation. And costs for this new, clean energy source are expected to keep falling over at least the next five years as production lines continue to expand and technology and efficiency improves.

Wind, already competitive with natural gas and coal in many areas by the mid 2000s, is also seeing continued price declines as turbine sizes increase and industrial efficiency gains ground. As a result, the two mainstream energy sources most capable of combating human-caused climate change are taking larger and larger shares of the global power generation markets.

(Solar and wind continue to gain a larger share of new capacity additions than competing fossil fuel based generation. Image source: SEIA.)

This trend continued through Q1 of 2017 as about 4 gigawatts of new generation capacity or 57 percent of all new generation came from wind and solar in the U.S. Solar added about 2.044 GW, which was a slight drop from Q1 of 2016. Wind, however, surged to 2 GW — representing the strongest first quarter since 2009. In total, U.S. renewable generating capacity including wind, solar, hydro, biomass, geothermal and others is now at 19.51 percent of the national total. Expected to hit above 20 percent by year-end, renewables have now far outpaced nuclear (at 9.1 percent) and are swiftly closing on coal (at 24.25 percent).

Globally, 24 percent of electrical power generation was produced by renewables by the end of 2016. This share will again jump as 85 gigawatts of new solar capacity and 68 gigawatts of new wind are expected to be added during 2017. As a result, total renewable generation is now set to outpace global coal generation in relatively short order.

Such rapid adds in renewable capacity are being fed in part by expanding solar production around the world and, particularly, in China. During late 2016, solar manufacturing capacity in China had expanded to 77.4 GW per year — with more on the way. And even as production capacity continues to grow in China and across Southeast Asia, places like the U.S. (with Tesla’s Buffalo Gigafactory 2 alone expected to eventually pump out 10 GW of new solar cells each year), Canada, Turkey, Korea, and Mexico are also rapidly expanding the production pipeline. Meanwhile, the global wind production pipeline continues to make significant gains.

(By 2020, global wind and solar generating capacity is expected to roughly double. Rapid growth in renewable energy is a necessary mitigation for harms resulting from human-forced climate change. Image source. FIPowerWeb.)

The rapid additions to renewable energy capacity provide hope that the world will soon start to see falling carbon emissions overall. Such an event is key to reducing harm already coming down the pipe due to human-forced climate change as global temperatures begin to challenge the 1.5 C threshold during the next two decades and as CO2e (including CO2 and all other greenhouse gasses) levels threaten to cross the critical 550 ppm demarcation line.

The strong progress of renewables does not come without a number of concerning difficulties and challenges. These challenges are primarily political — with Trump’s backing away from Paris threatening to upset the emissions reductions apple cart and Suniva’s recent ITC challenge injecting uncertainty into the U.S. solar energy market. Meanwhile, fossil fuel based industry backers continue various attempts to sand-bag or, worse, reverse renewable energy growth.

Despite these various difficulties, renewables like wind and solar will likely continue to gain ground as markets expand, technology and efficiency continue to improve, and as states, nations and industries jockey to claim their own share of the growing renewable energy market windfall. The big question that should concern pretty much everyone, however, is will this expansion in renewables proceed fast enough to afford the world a much-needed chance to slake an extraordinary amount of climate change related damage that’s now moving rapidly down the pipe in our direction.




2016 Was the Year Solar Panels Became Cheaper Than Fossil Fuels


Trump Will Withdraw From Paris Climate Agreement

Global PV Manufacturing Expansion Rebounds in Q1 2017

Solar Power in China

Global Wind Capacity Nears 500 GW in 2016

GTM Forecasting More than 85 GW of PV to Be Installed in 2017

Could a Trade Dispute with China End the U.S. Solar Boom?

Spectacular Drop in Renewable Energy Costs Lead to Global Boost

Solar to See 9 Percent Growth in 2017

Wind and Solar Equal More than Half of New Generation Capacity in Q1 of 2017

Hat tip to Greg

Featured Comment:

Featured comment DJ

Sweden Aims to be Carbon Neutral by 2045; Largest Pension Fund Ditches Climate Bad Actors

In a stunning victory for clean energy and climate progress, Sweden this week overwhelmingly passed a law that fully commits the country to carbon neutrality by 2045. Meanwhile, Sweden’s largest pension fund has divested from corporations it identifies as violators of the Paris Climate Accord. As a wise person recently said (see featured comment below) — this is “what real climate leadership looks like.”

Beating a Fast Path to Net Zero Emissions

Sweden’s most recent climate law, which flew through the Parliament by a 254 to 41 margin, aims to have the country producing net zero carbon emissions in less than three decades. This new measure moves the date for Sweden’s carbon neutrality forward by 5 years from 2050 to 2045.

Already a climate leader, Sweden presently gets about 85 percent of its electricity from hydropower, wind and nuclear energy. Across all sectors of its economy, Sweden has achieved the goal of 50 percent renewable energy fully 8 years ahead of schedule. The new measure doubles down on this already-powerful trend by further trimming carbon-based electrical generation while shifting larger focus to carbon emissions cuts from the transportation sector.

(Swedish electrical generation is dominated by hydro, nuclear, and wind power. Sweden aims to remove fossil fuels from electrical power generation while shifting transportation to EVs and biofuels by 2045. Image source: Electricity Production in Sweden.)

In order to achieve carbon neutrality, Sweden is pushing hard for rapid electrical vehicle adoption, switching remaining liquid fuels to biofuels, and to completely phase out its ever-dwindling margin of fossil fuel power generation. The result of these policies would be a country that primarily runs on renewable and nuclear power generation and that uses EVs and other alternative fuel vehicles for motorized transportation. Ultimately, Sweden aims to cut its presently low carbon emissions by a further 85 percent all while planting trees and developing carbon sinks to offset the rest by 2045.

Divesting From Climate Bad Actors

In a related move, Sweden’s largest pension fund, which manages the pensions of 3.5 million Swedish citizens, decided to divest money from various climate bad actors. The fund, AP 7, announced last week that it would pull investments from six corporations that it identified as being engaged in various violations of the Paris Climate Summit. These companies included: ExxonMobil, Westar, Southern Corp, and Entergy for fighting against climate legislation in the United States, Gazprom for oil exploration in the vulnerable Arctic, and TransCanada for building pipelines across North America despite widespread local opposition and obvious long-term climate impacts.

(AP 7’s divestment from climate bad actors is a major win for climate action advocacy groups like 350.org which nobly aim to leverage mass social, political and protest action to help spur a transition to 100 percent renewable energy in an effort to prevent serious global harm from climate change. Image source: 350.org.)

These moves were praised by climate action advocacy group 350.org’s Jamie Henn, Strategic Communications Director for the global grassroots climate movement, who stated:

“Sweden divesting its largest pension from Exxon proves you can’t claim to support climate action while funding and perpetuating climate change. Exxon knew about climate change half a century ago, and continues to sow doubt and bankroll climate deniers. With its core business model dependent on exploiting people and planet for profit, Exxon is in direct violation of the Paris agreement.”

Responsible Climate Action by Sweden

Sweden’s latest moves cast light on various agencies who have done so much to slow the pace of a much-needed response to climate change and a related energy transition while putting serious legislative muscle behind carbon emissions reductions. It’s a major win for the divestment and climate action movements — further calling into doubt the viability of a number of businesses who’ve predicated their future profitability on wholesale global harm. Sweden, by both moving forward its date for carbon neutrality and by moving large pension funds away from direct capital support of the fossil fuel industry continues to set an example for all by vividly underlining how decisively the rest of the world needs to act to catch up.


Sweden Commits to Becoming Carbon Neutral by 2045 With New Law

Sweden’s Largest Pension Divests From Paris Accord Violators Including ExxonMobil and TransCanada

Electricity Production in Sweden

350.org (Please Support)

Featured Comment:

%d bloggers like this: