Unprecedented Fire Season Has Burned 11 Million Acres So Far For Alaska and Canada

The land of ice is being transformed into the land of fire.

Greenhouse gas emissions are forcing the air to rapidly warm (half a degree Celsius each decade in some places). Frozen lands are thawing, liberating billions of tons of soil carbon as an ignition source for wildfires. And methane bubbling up from lakes, bogs, and wet zones in the soil itself provides yet more tinder for a rapidly developing Arctic fire trap.

Bog fire in Canada

(What the hell is wrong with this picture? Here we have a bog fire burning away in Saskatchewan, Canada on July 1st, 2015. The bright white color of the smoke is indicative of water vapor mixing in. Due to permafrost thaw, both bogs and related themokarst lakes have been emitting higher and higher volumes of methane over recent years. Methane that could well serve as a volatile fuel for fire ignition over wetlands like the one shown above. Image source: Saskatchewan Ministry of Environment.)

It’s a situation that gained explosive intensity this year as global temperatures hit new all-time record highs and as an obnoxiously persistent ridge in the Jet Stream delivered extreme heat to Alaska and Western Canada. As of today the 652 fires in Alaska alone had burned an unprecedented 3.5 million acres. That’s 3.4 million acres burned since June 18th and more than a million acres ahead of the previous record burn year of 2004. Across the border in Canada, an outrageous 4,672 wildfires had put another 6.6 million acres to the flame — double the five year average rate and nearly three times the 25 year average rate.

Wildfires in Canada now are so intense and widespread that the Canadian armed forces have deployed 1,400 personnel to support in a firefighting effort that has drawn resources from as far away as New Zealand. Earlier this week, the fires forced evacuation of more than 13,000 people in Saskatchewan Province alone. Smoke from the fires combined over the past week to form choking clouds that painted the skies milky-white from Alaska to Canada to the Northern and Central US. Smoke and poor air warnings were issued as far away as Denver Colorado, 1,000 miles to the south of Canada’s blazes. Further to the north and west, a massive smoke plume blotted out the sun over a broad region west of Seattle and Vancouver:

smoke plume Pacific Northwest

(Smoke cloud blots out the sun for massive region of the Pacific Northwest on July 5th. Image source: Rapid Response.)

Over the next few days, rains are expected to aid in what is now a massive fire suppression effort ongoing throughout Canada. However, rains have also brought with them an inordinate number of lightning strikes this year. And, contrary to some ill-informed statements in the mainstream press during the past couple of weeks hinting that people were the primary ignition source, lightning-initiated fires have been responsible for 99 percent of the acres burned in Alaska alone (information on acres burned by cause for Canada fires was not available in the CIFFC SITREP). In addition, fires have also shown an uncanny resiliency to rainfall — continuing to burn at a very rapid rate (250,000 acres in just the past day) despite widespread storms continuing to flood in from the Gulf of Alaska.

All these massive fires are burning through tree, scrub and bog. But, more importantly, they are penetrating the insulating layer of soil and contacting the thawing permafrost underneath. This soil-breaking fire mechanism is further exposing and accelerating the release of soil-locked carbon. It is also setting up situations where fires can burn in a thawed permafrost understory for additional days, weeks and months.

Methane spike to 2525

(Summer is not typically the time of year for substantial methane spikes. But we see them Tuesday in conjunction with increased rainfall, wildfires and thunderstorms throughout the Arctic. Image source: OSPO/METOP.)

We can see a hint of this ominous additional carbon release in the weekly methane readings which this Tuesday hit a peak value of 2525 parts per billion (596 mb) and an atmospheric mean of 1827 parts per billion (496 mb) in NOAA’s METOP measure. Meanwhile, CO2 spikes in the range of 410 to 420 ppm are also widespread throughout the Arctic. Indications that the intense fires are dumping a serious amount of carbon into the local and regional atmosphere .

With billions and billions of tons of carbon stored in the Arctic alone over the past 3-15 million years, we really don’t want to be rapidly warming the Arctic environment as we are. As we can see with this year’s record wildfires we’re actively tossing matches into what amounts to a carbon powder keg. So it’s just maniacally insane that Canada’s government is still planning an all-out production of Tar Sands that will make the already dangerous heat and fire conditions for Canada’s people worse and worse.


Saskatchewan Ministry of Environment


Rapid Response


Alaska Interagency Coordination Center

Thousands Flee Homes in Saskatchewan

Massive Smoke Plume From Canada’s Wildfires

Hat Tip to Colorado Bob

Hat Tip to Andy in San Diego

Hat Tip to DT Lange


Arctic Heatwave Forecast to Crush Northern Hemisphere Snow Cover This Week

The Russian side of the Arctic is heating up.

A high amplitude ridge in the Jet Stream is forecast to develop atop the Yamal region of Russia, expand northward over the Kara and Laptev seas, inject a plume of anomalously warm air over the polar region, and then proceed on along the Arctic Ocean shores of Siberia. Beneath this ridge, temperatures over the Arctic Ocean will spike to +1 to +4 C above average while temperatures over land will hit extreme +20 C and higher anomalies.

Arctic Heatwave June 6

(Arctic heatwave invades Siberia in the GFS forecast for later this week as depicted by Climate Reanalyzer.)

Arctic Ocean zones are forecast to see temperatures climb above freezing for much of the 80 degree North Latitude zone. Over Siberia, land-based temperatures are predicted to range from the 40s and 50s along the Arctic Ocean boundary and climb to the 60s to 80s in regions just inland.

As temperatures tend to flatten out over Arctic Ocean waters and as permafrost zones in Siberia are used to far cooler readings during Northern Hemisphere Summer, the predicted heatwave is likely to have some rather strong impacts should it emerge. Most notably, snow cover over remaining land and sea ice is expected to see a rather extreme reduction over the next seven days. In other words, GFS forecast models show Northern Hemisphere snow cover basically getting crushed:

Current snow CoverPredicted Snow Cover

(Massive reduction in Northern Hemisphere [NH] snow cover predicted coincident with Siberian Heatwave later this week. Left frame shows current NH snow cover. Right frame shows predicted NH snow cover for Tuesday, June 9. Image source: Climate Reanalyzer.)

Sparse remaining snow cover in Northeast Siberia along the East Siberian Arctic Shelf coastal zone is expected to be pretty much wiped out. One foot average snow cover along the shores of the Laptev and Kara seas is also expected to melt. And a broad section of remaining snow upon the sea ice is predicted to retreat away from the North Polar region — receding back toward the final haven near Greenland.

Snow is important for spring and summer-time Arctic temperature moderation due to the fact that it provides insulation to sea ice and permafrost as well as serving as a reflective, high-albedo surface that bounces back some of the incoming heat from the 24-hour seasonal Arctic sun. Snow melt, on the other hand, serves to form albedo-reducing melt ponds over the Arctic Ocean sea ice during summer. A critical factor in late season melt forecasting in which more June melt ponds tend to mean lower sea ice totals by end season. In addition, snow melt fills permafrost zone rivers with above-freezing waters that then flow into the Arctic Ocean — providing yet another heat forcing to the sea ice.

Conditions in Context

This weekly trend and forecast is consistent with an ongoing tendency during 2015 for strong ridge formation and warm air slot development over both Alaska and the Yamal region of Russia. The high amplitude ridges also likely have teleconnections with larger weather patterns such as El Nino in the Pacific, the warm water pool (hot blob) in the Northeast Pacific, and record low sea ice extents continuing for most of Northern Hemisphere Spring. Observations that are also consistent with the predictions made by Dr. Jennifer Francis that are a direct upshot of polar amplification set off by human-caused warming of the global climate system.


(GFS model forecast as depicted by Earth Nullschool showing ridge Northwest Territory, trough Greenland and North Atlantic, ridge Kara and Laptev region of Siberia. A dynamic that may be the result of teleconnections set off by factors related to human-caused climate change. Image source: Earth Nullschool.)

It’s worth noting that many of these factors are self reinforcing. For example, more sea ice melt results in higher amplitude wave formation in the Jet Stream. Higher amplitude wave formation in the Jet Stream transports more warmth to the Arctic environment, resulting in more sea ice and snow melt which in turn weakens the Jet Stream further. A longer-term amplifying feedback of Arctic carbon release may also be in play (hinted at by an overburden of both CO2 and methane in the local Arctic atmosphere), which would also contribute to the conditions we now observe.

A final feedback, this one somewhat negative, occurs as a result of Greenland Ice Sheet (GIS) melt. Large cold, freshwater outflows from GIS into the North Atlantic result in localized cooling in that region. This feedback (also related to AMO weakening) enhances trough formation throughout the North Atlantic region adjacent to Greenland and the Canadian Archipelago. A final potential teleconnection to the ridges we see forming over both Yamal and the Alaska/Northwest Territory zone.


Climate Reanalyzer

Earth Nullschool

Heat Wave Forecast for Russia

Rapid Arctic Sea Ice Loss Linked to Extreme Weather

Tracking for Early Season Melt Pond Formation at The Arctic Ice Blog

High Velocity Human Warming Coaxes Arctic Methane Monster’s Rapid Rise From Fens

Fens. A word that brings with it the mystic imagery of witch lights, Beowulfian countrysides, trolls, swamp gas, dragons. A sight of crumbling towers overlooking black waters. Now, it’s a word we can add to our already long list of amplifying Arctic feedbacks to human-caused warming. For the rapid formation of Arctic fens over the past decade has now been linked in a recent scientific study, at least in part, to a return to atmospheric methane increases since 2007.

Ribbed Fen

(A Ribbed Fen in Arctic Canada. Image source: The Government of Canada.)

The Role of Methane in Past Climate Change

Over the past 800,000 years, ice core records show atmospheric methane levels fluctuating between about 800 parts per billion during warm interglacial periods and about 400 parts per billion during the cold ice age periods. These fluctuations, in addition to atmospheric CO2 flux between 180 and 280 parts per million value were due to Earth Systems feedbacks driven by periods of increased solar heat forcing in the northern hemisphere polar region and back-swings due to periods of reduced solar heat forcing.

Apparently, added solar forcing at the poles during periodic changes in Earth’s orbit (called Milankovitch Cycles) resulted in a flood of greenhouse gasses from previously frozen lands and seas. This new flood amplified the small heat forcing applied by orbital changes to eventually break Earth out of cold ice age periods and push it back into warm interglacials.

Compared to current human warming, the pace of change at the time was slow, driving 4-6 degrees Celsius of global atmospheric heating over periods of around 8 to 20 thousand years. A small added amount of solar heat gradually leached out a significant volume of heat trapping gasses which, over the course of many centuries, undid the great grip of ice on our world.

Ice core record of Greenhouse Gas Flux

(Ice core record of greenhouse gas flux over the last 650,000 years. Methane flux is shown in the blue line that is second from the bottom. It is worth noting that current atmospheric methane values according to measures from the Mauna Loa Observatory are now in excess of 1840 parts per billion value. Temperature change is indicated in the lowest portion of the graph in the form of proxy measurements of atmospheric deuterium which provide a good correlation with surface temperature values. The gray shaded areas indicate the last 5 interglacial periods. Temperature year 0 is 1950. GHG year zero is 2006 in this graph. Image source: IPCC.)

By comparison, under business as usual human fossil fuel emissions combined with amplifying feedbacks from the Earth climate system (such as those seen in the fens now forming over thawing Arctic tundra), total warming could spike to an extraordinarily damaging level between 5 and 9 degrees Celsius just by the end of this century.

Methane — Comparatively Small Volume = Powerful Feedback

A combination of observation of past climates and tracking the ongoing alterations to our own world driven by human greenhouse gas emissions has given us an ever-clearer picture of how past climates might have changed. As Earth warmed, tundra thawed and ice sheets retreated releasing both CO2 and methane as ancient organic carbon stores, trapped in ice for thousands to millions of years, were partly liberated from the ice. In addition, warming seas likely liberated a portion of the sea bed methane store even as warming brought on a generally more active carbon cycle from the wider biosphere.

Overall, the added heat feedback from the increases in atmospheric methane to due these processes was about 50% that of the overall CO2 feedback, even though the volume of methane was about 200 times less. This disproportionately large share of heat forcing by volume is due to the fact that methane is about 80 times more efficient at trapping heat than CO2 over the course of 20 years.

A Problem of High Velocity Thaw

In the foreground of this comparatively rosy picture of gradual climate change driven by small changes in solar heat forcing setting off relatively more powerful amplifying greenhouse gas feedbacks, we run into a number of rather difficult problems.

The first is that the rate at which humans are adding greenhouse gasses to the atmosphere as an initial heat forcing is unprecedented in the geological record. Even the great tar basalts of the end Permian Extinction were no equal to the rate at which humans are now adding heat trapping gasses to the atmosphere. In just a short time, from 1880 to now, we’ve increased atmospheric CO2 by 120 parts per million to around 400 ppm and atmospheric methane by more than 1100 parts per billion to around 1840 parts per billion. The result is an atmospheric heat forcing not seen in at least the past 3 million years and possibly as far back as 10 million years (due to the radical increase in methane and other non CO2 heat trapping gasses).

This extraordinary pace of heat trapping gas increase has led to a very rapid pace of global atmospheric temperature increase of about .15 degrees Celsius per decade or about 30 times that of the end of the last ice age. As atmospheric heat increases are amplified at the poles and, in particular in the northern polar region, the areas with the greatest stores of previously frozen carbon are the ones seeing the fastest pace of warming. Siberia, for example, is warming at the rate of .4 C per decade. Overall, the Arctic has warmed by about 3 degrees Celsius since 1880 or nearly 4 times the pace of overall global warming.

arctic temperature increase since 1880 NASA

(Pace of Arctic warming since 1880 in degrees Fahrenheit based on reports from 137 Arctic observation stations over the period. Image source: Tamino. Data source: NOAA’s Global Historical Climatology Network.)

The result is that, over the past two decades, the Arctic has been warming at the pace of about .6 C (1 F)every ten years. And what we are seeing in conjunction with very rapid warming is an extraordinary high-velocity thaw. A thaw that is rapidly liberating stored organic carbon locked in tundra at a rate that may well have no rational geological corollary.

The Arctic Methane Monster and a Multiplication of Fens

So it is in this rather stark set of contexts that a study released in early May examining 71 wetlands around the globe found rapidly melting permafrost was resulting in the formation of an immense number of fens along the permafrost thaw boundary zone. Tundra melt in lowlands became both sources and traps for water. Such traps gained added water as atmospheric temperature increases held greater levels of humidity resulting in increased heavy rainfall events such as thunderstorms. These newly thawed and flooded fens, the study found, were emitting unexpectedly high volumes of methane gas.

From the methane standpoint, fens are a problem due to the fact that they are constantly wet. Whereas bogs may be wet, then dry, fens remain wet year-round. And since bacteria that break down the recently thawed organic carbon stores into methane thrive in a constantly wet environment the fens were found to be veritable methane factories. A powerful amplifying feedback loop that threatens to liberate a substantial portion of the approximately 1,500 gigatons of carbon stored in now melting tundra as the powerful heat trapper that is methane.

Mauna Loa Methane 1985 to 2014

(Mauna Loa methane levels 1985 to 2014. A return to rising atmospheric levels post 2007 is, in part, attributed to rapid tundra thaw and the formation of methane producing fens. Other significant new methane sources likely include sea bed methane from Arctic stores and rising human methane emissions due to expanding coal use and hydraulic fracturing. Image source: NOAA ESRL.)

By comparison, drier environments would result in the release of stored carbon as CO2, which would still provide a strong heat feedback, but no-where near as powerful as the rapid environmental forcing from a substantial methane release.

Lead study author Merritt Turetsky noted:

“Methane emissions are one example of a positive feedback between ecosystems and the climate system. The permafrost carbon feedback is one of the important and likely consequences of climate change, and it is certain to trigger additional warming. Even if we ceased all human emissions, permafrost would continue to thaw and release carbon into the atmosphere. Instead of reducing emissions, we currently are on track with the most dire scenario considered by the IPCC. There is no way to capture emissions from thawing permafrost as this carbon is released from soils across large regions of land in very remote spaces.”



A Synthesis of Methane Emissions From 71 Wetlands

Arctic Methane Emissions Certain to Trigger Warming

The Government of Canada


NOAA’s Global Historical Climatology Network

More Cold Cherries


Sea Ice Loss, Human Warming Places Earth Under Ongoing Fire of Severe Weather Events Through Early 2014, Likelihood of Extremes For Some Regions Increases by 500%

Heat overburden at the roof of our world. It’s a dangerous signal that the first, worst effects of human-caused climate change are starting to ramp up. And it’s a signal we are receiving now. A strong message coinciding with a world-wide barrage of some of the worst January and February weather extremes ever experienced in human reckoning.

An Ongoing Arctic Heat Amplification

Ever since December, the Arctic has been experiencing what could well be called a heat wave during winter-time. Average temperatures have ranged between 2 and 7 degrees Celsius above normal winter time readings (1979-2000) over the entire Arctic basin. Local readings frequently exceed 20 degrees Celsius above average over large zones that shift and swell, circulating in a great cloud of abnormal warmth around the roof of the world.

Today is no different.

Global Temp amomaly March 4

(Global Temperature Anomaly on March 4, 2014 showing a warmer than normal world sitting beneath an ominously hot Arctic. Image source: University of Maine.)

Average temperatures for the entire Arctic are 4.16 degrees Celsius above the, already warmer than normal, 1979 to 2000 base line, putting these readings in a range about 6 degrees Celsius above Arctic temperatures during the 1880s. When compared to global average warming of about .8 C above 1880s norms, this is an extreme heat departure that places the Arctic region well out of balance with both its traditional climate and with global climate at large.

Local large hot zones with temperatures ranging between 10 and 20 degrees Celsius above average appear east of Svalbard, in the Arctic Ocean north of the East Siberian Arctic Shelf, and over a broad swath of the Canadian Arctic Archipelago. These zones of warmth are as odd as they are somewhat horrific, creating regions where temperatures are higher than they would otherwise be in April or, in some cases, late May.

Sea Ice Melt Over a Warming Arctic Ocean

This ongoing condition of extreme Arctic heat is a symptom of overall Arctic amplification set off by a number of strong feedbacks now underway. These include sea ice measures that are currently at or near record low values (February saw new record lows in both extent and area measures) as well as a large and growing local emission of greenhouse gasses from polar stores long locked away by the boreal cold. Arctic geography also contributes to the problem as a thinning layer of sea ice rests atop an ocean that is swiftly soaking up the heat resulting from human warming.

During winter time, the combination of thin sea ice, warm ocean, and higher concentrations of greenhouse gasses generates excess warmth over and near the Arctic Ocean basin. The warmer waters, having trapped solar heat all summer long, now vent the warmth into the polar atmosphere through the sparse, cracked, and greatly diminished sea ice. And while this increasing heat imbalance has been shown to be lengthening the melt season by 5 days per decade, it is also stretching its influence well into winter time as ocean heat now continually bleeds through a thinning and ever more perforated layer of sea ice.

Other effects include an overburden of greenhouse gasses trapping long wave radiation to a greater extent in the polar zone while the already warmer than usual condition creates weaknesses in the Jet Stream that generate large atmospheric waves. The south-north protrusions of these waves invade far into the Arctic Ocean basin over Svalbard and Alaska, transporting yet more heat into the Arctic from lower latitudes.

The net effect is the extraordinary Arctic warming we are now seeing.

Earth Under Continuous Fire of Extreme Weather

This rapidly increasing warmth at the Arctic pole generates a variety of weather instabilities that ripple on through the Northern Hemisphere. Meanwhile, the ongoing impacts of equatorial warming or such warming in concert with the far-flung effects of polar amplification and an increase in the hydrological cycle of about 6% are causing a number of extraordinary events over the Southern Hemisphere.

In short, the barrage of extreme weather is now entirely global in nature. A brutal if amazing phenomena directly associated with a human-heated climate system.

Extreme weather map

(Map of extreme weather events throughout the world from January 1 through February 14. Note that it is now difficult to find a region that is currently not experiencing exceptional weather. Image source: Japanese Meteorological Agency.)

Over the western US, Canada, and Alaska, a Jet Stream ridge that has persisted for a year has generated both abnormally warm conditions for this region, with Alaska experiencing its third hottest January on record, and an extreme drought for California that is among the worst in its history. This drought is now poised to push US food prices up by between 10-15 percent as California officials are forced to cut off water flows to farmers.

Only the most powerful of storm systems are able to penetrate the ridge. And the result, for the US West Coast, is a condition that either includes drought or heavy precipitation and flooding events. A condition that became plainly apparent as winter storm Titan dumped as much as 5 inches of rainfall over drought-stricken southern California, setting off landslides and flash floods that sent enormous waves of water and topsoil rushing down roads and gullies alike. And though the storms came, the drought still remains.

Added to the list of extremes for the Western US are a number of early starts and/or late ends to fire seasons with California, Arizona and New Mexico all experiencing wildfires during the period of December through February.

Moving east, we encounter the down-sloping trough that is the flip side of the ridge bringing warmth and drought to deluge conditions to the west. So, for the Eastern and Central United States, we see the transport of chill air down from the Arctic Ocean, over Canada and deep into a zone from The Dakotas to Texas to Maine. As a result, we have seen winter storm after winter storm surge down into these regions, dumping snow, ice, and heavy rain while occasionally coming into conflict with Gulf warmth and moisture to spark tornadoes and thunderstorms over snow-covered regions.

One cannot separate the warm air invasion over Alaska and the heat radiating out of the perforated sea ice from the numerous polar vortex collapse events that have led to this extreme winter weather over Central and Eastern parts of the US. And so, it is also impossible to ignore the warping and deleterious impacts of human-caused climate change on the world’s weather.

The World Meteorological Organization (WMO), in its latest extreme weather assessment notes:

In the winter a deep reservoir of cold air becomes established through the atmosphere over the Arctic because of the lack of sunlight. This is usually held over high latitudes by the Jet Stream, a fast moving band of air 10 km up in the atmosphere which drives weather. This year, a “kink” in the jet stream allowed the reservoir of cold air to move southwards across the USA. A blocking pattern meant it was locked into place, keeping severe weather systems over much of the Eastern United States extending down to northeast Mexico.

This ‘kink’ and related blocking pattern the WMO mentions is also the leading edge of the advance of cold Arctic air over the North Atlantic which combined with ocean heat and moisture to aim intense storms at Western Europe. In essence, a powerful planetary wave or Rossby Wave type feature:

Planetary Wave

(The Northern Hemisphere Jet Stream takes on Planetary Wave pattern with an extreme high amplitude ridge over the Western US, Canada, Alaska and the Beaufort Sea and a deep, cold trough digging into the Eastern US and spreading out over the North Atlantic on February 26th. Image source: University of Washington.)

For as we look yet further East we come to a North Atlantic Ocean that has been little more than the barrel of a gun firing a two and a half month long barrage of storms at England and Western Europe. For the Jet Stream, at this point, is intensified by Arctic air fleeing from a warming north coming into contact with the also warming waters of the North Atlantic. In this region, the planetary wave feature developed with severe and lasting consequences for England, France, Portugal and Venice.

The upshot was the wettest period in over 250 years for England as well as the windiest period since at least the 1960s. During February, two of these storms generated 80-100 mph winds and waves off Ireland and the UK that were the highest ever recorded for this region. Meanwhile, the powerful storm surges associated with these storms reshaped the English coastline, uncovered bombs dropped during World War II and unearthed the stumps of an ancient forest that spread from England to France before it was buried in the floods of glacial melt at the end of the last ice age. The battering continues through early March with England suffering losses in excess of 1 billion dollars.

The storms ripping across the Atlantic also resulted in the loss of over 21,000 sea birds and have heavily impacted France, Spain and Portugal with record rains, gales and tidal flooding. During early February, a series of gales also drove high tides along the coast of Italy and spurred flooding in Venice.

As storms slammed into coastal western Europe, strange fires were also burning along Arctic shores as a very dry and windy winter sparked blazes along the coastlines of Norway. These fires, some of the worst in Norway’s history, occurred during January and February, months that have never seen wildfires before. So the strange story of flood and fire that tends to come with climate change may seem yet more radical and extreme when we include what has happened over this section of Europe during 2014.

By the time we enter Eastern Europe, Turkey, Jordan, Israel and Russia we again encounter an up-slope in the Jet Stream along with related periods of heat and drought. Record highs were set throughout a zone from Germany to Slovenia to Russia. Germany experienced January temperatures that were 2.8 degrees Celsius above the 20th Century average while Russia experienced heat anomalies approaching 10 degrees Celsius hotter than normal that persisted for up to a week in length. In Turkey, farmers frantically drilled into drying lake-beds for water as both warmer and drier than normal conditions combined with ground water depletion to generate severe agricultural stress.

But the strain for Israel, which experienced lowest ever winter rainfalls and one of the worst droughts in its history, was far worse. According to the Israeli Water Agency’s March 4 Statement, water supplies across the country were now at record low levels:

“Such low supply during this period has never before been documented and is unprecedented in Water Authority records,” the agency said. “The negative records broken in February are much more dramatic and significant than those of January.”

Drought-stressed Jordan has also been forced to ration water supplies, with rainfall levels now only 34 percent of that received during a typical January and February.

Abnormal warmth and drought also extended into China as most parts of the ancient empire received between 50-80 percent below average rainfall. Temperatures averaged over the entire country were the warmest seen since at least 1961. The warmth and dryness resulted in record low river and lake levels across the country with China’s largest lake turning into a sea of cracked mud and grasses.

In Singapore and nearby Malaysia, a two month-long heatwave is now among the worst ever recorded for this region. The situation has been worsened as nearby forest fires have combined with industrial pollution to produce a kind of all-encompassing smog. A nasty brew that cut visibility in the region to less than one kilometer.

Smoke Smog Singapore Maylaysia

(Smoke and smog from fires and industrial activity visible over Singapore and Malaysia. Image source: Lance-Modis.)

One would think that, with major heat anomalies occurring over the Arctic, the far removed Southern Hemisphere would be somehow insulated from impacts. But whether from far-reaching Arctic influence or simply from other factors related to human-caused climate change, austral regions were among the hardest hit by the, now global, spate of extreme weather events.

Australia’s record 2013 heatwave didn’t miss a beat as a hottest ever summer continued on through January and February. A period in the middle of January showed exceptionally severe high temperatures with World Meteorological Agency reports noting:

One of the most significant multi-day heatwaves on record affected southeast Australia over the period from 13 to 18 January 2014. The major area affected by the heatwave consisted of Victoria, Tasmania (particularly the western half), southern New South Wales away from the coast, and the southern half of South Australia. Over most parts of this region, it ranked alongside the heatwaves of January-February 2009, January 1939 and (from the limited information available) January 1908 as the most significant multi-day heatwaves on record.

A number of site records were set during the summer, including:

• Melbourne had seven 40ºC days; annual average is one day

• Adelaide had 11 days of 42ºC or above; annual average is one day

• Canberra had 19 days of 35ºC or above; annual average is 5.4 days

While Australia was sweltering under its hottest summer on record, south-central Brazil was suffering its worst-ever drought. By mid February, Brazil had been forced to ration water in over 140 of its cities. The result is that neighborhoods in some of Brazil’s largest cities only receive water once every three days. During this, extraordinarily intense, period of heat and dryness, untold damage was done to Brazil’s crops. But, by early March, a doubling of prices for coffee coming out of Brazil gave some scope to the damage. January was also Brazil’s hottest on record and the combination of extreme heat and dryness pushed the nation’s water reservoirs for southeastern and west-central regions to below 41 percent of capacity driving utility water storage levels to a critically low 19 percent.

In near mirror to the US weather flip-flop, northern Brazil experienced exceptionally heavy rainfall, apparently gaining back the lion’s share of moisture lost in the south and stalling a two year drought affecting north-eastern regions.

In combination, these crazy weather extremes are thought to have done nearly $5 billion in damages to Brazil’s crops so far this year, on top of $9 billion in losses last year. Losses run the gambit from coffee to beef, soy, citrus, and sugarcane. It is worth noting that Brazil is the largest producer of all these foodstuffs with the one exception being soy.

The same drought impacting Brazil also damaged crops in Paraguay and Argentina with soybeans among the hardest hit.

Given the ongoing extreme weather impacts, it is worth noting that world soybean prices are now up by more than 9 percent over the 2012-2013 period with almost all foodstuffs seeing price increases in the global marketplace. The UN FAO food index remained over 200 through late January, a dangerously high indicator that shows numerous countries having difficulty supplying affordable food to their populations.

Extremes Cover the Globe

The above list does little justice to the depth and scope of extremes experienced, merely serving to highlight some of the most notable or severe instances. In general, it could well be said that the world climate crisis is rapidly turning into a world severe weather crisis. January and February are usually rather calm months for the globe, weather-wise. So the fact that we are seeing record storms, rainfall, snowfall, floods, fires, droughts, winds, and heatwaves in every corner of the globe during what should be a relatively mild period is cause for serious concern.

And many scientists are taking notice. For example, Omar Baddour, Chief of the WMO’s data division observes an amazing ramping up of extreme weather events worldwide, citing preliminary model assessments in an interview with The Guardian, he notes:

“We need more time to assess whether this is unusual [on a global level] but if you look at the events in individual regions, like the heatwave in Australia or the cold in the US, it looks very unusual indeed. Next month we will publish a major report showing the likelihood of extreme heatwaves is increased 500% [with climate change].”

The shadow climate change casts has grown very long and there is little that has not now been touched by it. But, sadly and unfortunately, even under a regime of full mitigation and adaptation, the worst effects are yet to come. If we are wise, we will do our best to mitigate as much as we can and work together to adapt to the rest.

Hat Tip to Colorado Bob


The World Meteorological Organization

University of Maine

University of Washington

Japan Meteorological Agency


UK Endures Endless Barrage of Storms

Ice-free Season Getting Longer by Five Days Per Decade

Mangled Jet Stream Sparks Drought, Winter Wildfires in California

For Arizona and New Mexico, Climate Change and a Mangled Jet Stream Means Fire Season Now Starts in February

World Food Security in the Cross Hairs of Human-Caused Climate Change

Arctic Wildfires in Winter

California Storms Didn’t End Drought

The Biggest Disaster You’ve Never Heard of

Haze Shrouds Malaysia

Brazil Rations Water in Over 140 Cities

World Begins 2014 With Unusual Number of Extreme Weather Events

Brazil Loses Billions as Crops Reduced By Wacky Weather

Arctic Refreeze Still Slow; Ice Area, Extent, At Record Lows For the Date; Storms Pulling Warm Air Up From South

Today, Arctic sea ice is currently at its record low for the date in all measures for extent and area. Cyrosphere Today is showing sea ice area at 3.57 million square kilometers. This is 270,000 square kilometers below the record low set for this date back in 2007. Sea ice extent, according to JAXA, is also about 350,000 square kilometers below the record low for today set in 2007 as well.

Refreeze has been at the pace of about 75,000 square kilometers per day. If this pace continues, the Arctic will experience record low or near record low sea ice coverage through much of the fall.

We have seen strong heat transport into the Arctic this year with temperatures above average over most of the Arctic. The below graph shows temperatures as high as 15-17 degrees Celsius above average covering broad swaths of the Arctic Ocean. These large areas are, likely, remaining warm due to heat transfer through the, mostly unfrozen, ocean surface and via heat transport of warmer air from the south by an ongoing change in the polar wind pattern.

One of the primary vehicles of heat transport this year has been storms. Currently, a moderate Arctic cyclone is circulating in an area just north of the Canadian Archipelago. Its convective swirl is drawing moisture and warmer air up from the south and depositing it over open water and over regions currently attempting re-freeze. You can see the convective swirl of heat energy associated with this storm in the temperature graph below.

Notice the curlicue pattern of green and blue as warmer air invades from the south, displacing colder air to the north. Another interesting and concerning feature on this map is the fact that cold temperatures have displaced toward the south, near Greenland. Meanwhile, the northern geographic pole has become prone to warmer temperature fluxes and incursions from the south.

These observations appear to be a validation of the new trend of heat transport into the Arctic, increasing rate of Arctic temperature rise, more rapid melt, and a rising risk of extreme weather due to a change in circumpolar wind patterns identified in a recent report from NOAA.


Loss of Arctic Sea Ice Creates Long-Period Atmospheric Waves That Enhance Extreme Weather

A number of recent articles and reports from Geophysical Research Letters, WeatherUnderground, Climate Progress, and Climate Central have highlighted how loss of Arctic sea ice helps to create extreme weather events over the northern hemisphere. In short, the loss of ice moves the polar wind patterns and changes temperatures there in such a way as to create giant, lumbering atmospheric waves.

Now imagine a huge wave of air swooping down from the Arctic, digging deep into the mid-latitudes, and then swooping back up toward the poles again. This is what is happening with greater and greater frequency as Arctic sea ice continues to fade.

The wave patterns created are not only deeper, moving air through zones that typically have a variety of temperature and moisture conditions, they are also longer-lasting. The result is that you get an increasing number of zones of extreme, non-typical conditions parked over regions of the world for longer and longer time-periods. This summer’s drought is one example of a persistent weather condition caused by these atmospheric waves.

But other extreme events, including floods and long periods of colder weather, could be caused by these waves or, what meteorologists have tended to call ‘blocking patterns.’

One issue that researchers have raised is that these blocking patterns tend to establish themselves consistently over similar regions. What this means is that it is more likely for certain zones to experience a certain kind of blocking pattern. This is one feature that has helped to enhance drought and drying conditions in the central US throughout the past decade.

These blocking patterns have another dark side. They transport warmer air into the Arctic, pushing temperatures  closer to those of surrounding regions and further amplifying melt and carbon feedback. One typical pattern is a flow that pulls heat and moisture from as far south as the Gulf of Mexico and deposits that air near or over Greenland. This kind of flow had an influence on the extreme melt conditions that occurred there this year. If these kinds of flows are to become more common, we can expect to experience similar, or possibly more extreme, melting over Greenland in the years to come.

This strange elongating of atmospheric wave patterns creating persistent weather and increasing the likelihood for extreme, long-lasting conditions, overlaps a long-term regime of increasing temperatures. So more extreme weather is combining with hotter weather overall to create a very volatile brew.

A recent paper from the 2012 Geophysical Research Letter entitled ‘Evidence Linking Arctic Amplification to Extreme Weather in Mid-Latitudes‘ provides the scientific basis for these conditions. The following video essay is provided by one of the study’s authors, Jennifer Francis, and gives a very in-dept explanation for these events:

It is certainly worth watching if you have the time.

In any case, changes to the Arctic caused by global warming are leading to more extreme weather patterns. This impact shows that the climate response to a warming world is non-linear. It creates unexpected changes and extremes that severely alter our world. This change has happened in a world that has warmed, on average, about 1 degree Celsius since the 1880s. If such large atmospheric changes can occur with relatively ‘small’ temperature changes, one can imagine how much more strange and severe the weather may become with 1, 2, 4 or 6 degrees of additional warming.

%d bloggers like this: