Arctic Sea Ice at 4th Lowest Extent on Record

Warmer than normal conditions, abnormal wide areas of open water, large wildfires burning near Arctic Ocean shores, and Arctic sea ice extents at 4th lowest on record. That’s the present reality of a human-warmed Arctic environment.

(An assessment of present Arctic conditions)

With Arctic temperatures hovering around 1.6 degrees Celsius above average and focusing on a rather hot zone near Central Siberia, Arctic sea ice on the Siberian side is experiencing widespread melt ponding. In addition, a large area of open water is expanding through the Laptev Sea due to warm southerly winds and much warmer than normal temperatures.

Overall, temperatures in this Central Siberian zone will range as high as 25 degrees Celsius (45 F) above average today. With some areas hitting has high as 85-90 (F). Near these much warmer than normal temperatures, a series of large wildfires are burning. Fires so far north are historically rare. But they have become more common as the Earth has warmed due to fossil fuel burning.

(Arctic temperatures are well above average for this time of year. These much warmer than normal temperatures are contributing to a number of impacts, including lower than normal sea ice extent.)

Present sea ice decline rates now put Arctic Ocean ice extent at 4th lowest on record. And the present trajectory for Arctic sea ice appears to be aiming toward approximately 4 million square kilometers come melt season end. However, with human-forced warming now resulting in ever-increasing global temperatures, downside risks remain. Particularly with so much heat moving about in the Arctic.

Advertisements

Extreme Warming at the Poles this Week — Arctic and Antarctic Temperatures to Rise to 20-30 C Above Average in Some Locations

Human-caused climate change via fossil fuel burning produces a number of stranger things. And some of the weirdest happen to occur in the polar regions of our world.

One of the foremost of these odd impacts is called polar amplification. Under polar amplification, the warming effects of elevated greenhouse gasses are concentrated at the poles. This is due to reduced reflectivity (albedo) from smaller snow and sea ice concentrations, due to the increased intensity of the greenhouse effect in colder and darker regions, and due to increased energy transfer from lower latitudes into upper latitudes due to weakening of the polar Jet Stream.

Over the next week, this kind of polar amplification is predicted to generate very extreme warm temperatures for both poles of our world.

(Warm winds blowing into the Arctic will produce far above average temperatures this week. Image source: Global and Regional Climate Anomalies.)

In the Arctic, temperatures in both Northern Greenland and on the Siberian side of the Arctic Ocean are predicted to hit ranges higher than 20 degrees Celsius above average (36 degrees Fahrenheit) with some readings over Northeastern Siberia striking near the 30 C above average mark by early next week (54 degrees F). This will produce near or above freezing temperatures over both Siberia and sections of the Arctic Ocean near or north of the 80 degree North Latitude line. Overall, temperatures are predicted to average as high as 4.4 C above average for the entire Arctic. A very considerable warm temperature departure consistent with the heightened levels of global warming the world has been experiencing during recent years.

In the Antarctic, where temperature variance should be moderating as austral spring shifts toward summer, the exact opposite is occurring. Very warm temperatures hitting more than 20 C above average are expected to sweep across East Antarctica this week and ultimately cross over to West Antarctica. Above freezing or near freezing temperatures in some coastal regions including coastal West Antarctica and over the Amery Ice Shelf in East Antarctica will accompany far warmer than normal, but still below freezing, temperatures inland.

(Even as the Arctic is predicted to heat up, the Antarctic is also expected to experience much warmer than normal conditions. Image source: Global and Regional Climate Anomalies.)

Overall temperatures for East Antarctic land masses will hit an amazing 7 C above average even as temperatures for West Antarctic land masses rise to 5.1 C above average for later this week.

Primary atmospheric drivers for these warming events are large synoptic warm wind patterns drawing above average temperatures into both the Arctic and Antarctic. In the Arctic, winds crossing hundreds of miles of warm Pacific Ocean in association with the back side of a high pressure system moving over the Bering Sea will draw these very warm temperatures northward. In the Antarctic, warm winds funneling southward from Australia will reinforce the influence of a strong high pressure dome over East Antarctica even as another strong synoptic warm wind pattern feeds into West Antarctica off the Pacific and Southern Oceans later in the week.

It’s very early for temperatures over parts of Antarctica to be pushing above freezing. And it’s rather late for such similar temperatures to be continuing to invade so far north into the Arctic. So much warmth will have an ongoing deleterious impact to both sea and land ice as well as snow cover. Contributing to the overall pattern of warming and melt we’ve seen for both Antarctica and the Arctic during recent years as global temperatures have risen into a range from 1 C to 1.2 C above 1880s averages.

RELATED STATEMENTS AND INFORMATION:

Links:

Global and Regional Climate Anomalies

Polar Amplification

Climate Reanalyzer

Earth Nullschool

Abnormal Fall Arctic Warmth Intensifies; September 2016 Probably Another Record Hot Month Globally

Polar amplification” usually refers to greater climate change near the pole compared to the rest of the hemisphere or globe in response to a change in global climate forcing, such as the concentration of greenhouse gases (GHGs)… RealClimate [emphasis added]

*****

It’s fall. The Arctic is trying to cool down, but what would typically be a steady decline into frigid temperatures is being held back by the increasingly strong hand of human-forced climate change.

warm-fall-for-region-above-80-degrees-north-latitude

(Over recent weeks, temperature departures above the 1958-to-2002 average line [green line above] have grown in the region north of the 80th parallel. In general, the Arctic has experienced much warmer than normal temperatures. Failure of the Arctic to rapidly cool down during fall has been a feature of recent years that is related to human-forced climate change. Image source: DMI.)

Over the past month, temperature anomalies for the entire Arctic have ranged near 3 degrees Celsius or more above average. These temperatures appear to have represented the highest departures from average for any world region for the past month. Overall, they’ve greatly contributed to what is likely to be another record hot month globally.

Into the first week of October, this trend is expected to intensify. By Friday, according to GFS model runs, temperatures above the 66° North Latitude line are expected to range near 4.5 C (8 degrees Fahrenheit) above average for the entire region. Meanwhile, areas of Greenland, the Arctic Ocean and Northeastern Siberia are expected to see 10-18 C (18 to 32 F) above-average temperature departures for the day.

arctic-heat-forecast-gfs

(Extreme Arctic heat is likely to lead record-high global temperatures for the month of September. Such heat is also likely to help push October into top 3 record-hot month ranges. Image source: Climate Reanalyzer.)

It doesn’t need to be said that these are extraordinary warm temperature departures from normal, which represent near-record or record warm ranges for many locations, but this is what we would expect with human-forced climate change. As the sun falls in the Arctic sky and night lengthens, energy transfer in the form of heat coming in from the warming ocean and atmosphere intensifies. This effect is driven by what is now a great overburden of greenhouse gasses in the Earth’s atmosphere.

Early Indicators Point Toward a Record-Hot September

Powerful heat transfers slowing down the rate of fall cooling in the Arctic came amid what is likely to be the hottest September in the global climate record. Australian scientist Nick Stokes found that September temperature departures were about 0.05 C higher than August’s record temperature departures. Translated to NASA GISS figures, if they were to match this increase, September values would fall around 1.03 C hotter than NASA’s 20th-century baseline and about 1.25 C hotter than 1880s averages.

warmest-august-in-136-years

(August 2016 was the hottest month on Earth in all of the past 136 years. Though the Earth is cooling into fall, September 2016 looks like it will be the hottest September ever recorded. Overall, 2016 is on track to be the hottest year on record by a significant margin. Image source: Earth Observatory.)

Temperatures in these ranges would represent the hottest September on record by a pretty big margin (about 0.13 C globally). Meanwhile, the annual averages for the first nine months of the year would hit near 1.27 C above 1880s averages if the NASA measure saw a warming similar to that showing up in Stokes’s early NCEP/NCAR reanalysis figures — a measure disturbingly close to the 1.5 C departure levels that represent the first major global climate threshold, a level that many scientists have advised us we’d be wise to avoid.

Links:

RealClimate

Reanalysis Index Up 0.047 C in September

DMI

Climate Reanalyzer

Earth Observatory

Warm North Pacific Winds Predicted to Usher in Brutal Arctic Heatwave this Week

Sprawling over the Northeastern Pacific, there’s a big, doggedly-determined high pressure system. One grown to enormous size and influence in a global atmosphere boiling with the heat of fossil-fuel laden airs. A weather system that’s now able to stretch out a long arm of influence into the High Arctic due to an unrelenting northward shove of oppressive record global heat.

Beaufort Sea Ice Shattered

(The Beaufort Sea Ice has been shattered under the weight of a relentless a high pressure system that has dominated this region of the Arctic for about a month. Now, a freak early-season invasion of above-freezing temperatures is set to level another melt-forcing blow at a region that is very sensitive to the worsening impacts of human-caused climate change. Image source: LANCE-MODIS.)

Extreme Fires, Sea Ice Loss in a Context of Ever-Worsening Climate Change

Beneath the high, much warmer than normal airs have settled in over the Northeast Pacific, over Western Canada, and over Alaska. These much hotter than typical temperatures have provided fuel for a raging start to fire season in such far northern regions. In Canada, nearly a hundred and fifty fires now burn. Sparked by never-before-seen heat and dryness, the worst of these blazes has now consumed 620 square miles of land and more than 1,600 structures around the city of Fort McMurray — forcing about 90,000 people to evacuate and threatening Canada’s hothouse gas emitting tar sands production facilities. Meanwhile, in Alaska, the heat has been lighting off forest fires since as early as February. A month that once only featured a climate of deep chill and heavy snow — but one that in the new, greenhouse gas warmed, world features an ominous winter burning.

The high has also extended it atmospheric influence up into the Polar zone — joining a powerful ridge that has torn away and shattered sea ice across the Central Arctic since at least mid-April. Opening wide areas of dark, heat absorbing water and contributing to never-before-seen low levels of sea ice extent and volume for May.

May Arctic Heatwave Builds

As of Sunday, this lumbering high began a big shift to the west — expanding its influence on into the North-Central Pacific and the Bering Sea. There, it rallied a warm flood of airs in the form of northbound winds. Warm winds now readying to make a big push into the Arctic Ocean later this week.

image

(Huge northward thrust of warm air seen in this Earth Nullschool capture for predicted May 12 conditions. Note the large swath of above-freezing temperatures invading the Arctic Ocean as readings in Northern Alaska and the Northwest Territory of Canada hit the upper 60s and lower 70s. Regions that are typically still covered in snow experiencing conditions that would be somewhat warmer than normal May weather for the US West Coast city of San Fransisco more than 2,000 miles to the south. Image source: Earth Nullschool.)

These winds are expected to build northward along a warm frontal zone over Northern Alaska and the southern reaches of the Beaufort and Chukchi Seas on Monday. Linking up with two low pressure systems forming over the East Siberian Sea by Wednesday morning, this wave of heat rising out of the Pacific is expected to have expanded into that sea and taken in all of the Chukchi and half of the Beaufort. By Friday, this northward drive of above freezing airs is expected to have taken in about a third of the Arctic Ocean region in total.

Over Alaska and the Northwest Territory near the Mackenzie Delta, temperatures are expected to rise into the upper 60s to upper 70s Fahrenheit (20-25 C). These are temperatures 20-28 degrees F (9-16 C) above average for early-to-mid May and readings seldom seen for this region even during June. Such high temperatures will hasten melt of any remaining snow or ice and spike fire hazards over this Arctic zone.

Extreme warm temperature anomalies over Arctic zones predicted for May 13

(Two lows on the Siberian side of the Arctic and a high over southern Alaska and the Northeast Pacific are predicted to drive an extreme level of heat into the Arctic starting Monday and continuing on through the end of this week. This extraordinary northward thrust of warmth appears set to tip the scales swiftly toward high Arctic thaw conditions that are typically experienced during June. Such a high degree of added heat will have a profound effect on both sea ice and remaining snow cover. Image source: Global and Regional Climate Anomalies.)

Savaging of the Sea Ice to Continue

Over the Arctic Ocean, conditions will arguably be worse. Temperatures in the near coastal waters of the Beaufort Sea could rise to as high as 41 degrees F (5 C) while temperatures in the range of 32-38 F (0 to 3 C) are expected to cover a very wide zone of Arctic waters invading about 600 miles of the thinning sea ice area between the Mackenzie Delta and the North Pole and covering a breadth of around 800 miles from the Canadian Archipelago to the shores of the East Siberian Sea. These temperatures are also 20-28 F (9-16 C) above average and are more like the atmospheric readings one would expect during July over these typically frozen Arctic waters.

It’s not just the high temperatures that are a concern with this invasion of extreme heat running into the Arctic. It’s also its sheer scale — taking in about 30 percent of the Arctic Ocean zone, most of Alaska, a large region of Northeast Siberia, and a big chunk of Northwest Canada. Such a huge warm air injection will be taken in by the larger circulation over the Arctic Ocean and greatly shrink the remaining pool of cooler airs — driving temperatures to push more rapidly above freezing.

Freezing Degree Day Anomaly

(Off-the charts record Arctic heat shows up in a -1012 freezing degree day anomaly during 2016. In an average year, the Arctic experiences about 6,000 freezing degree days. We’ve lost more than 1/6th of that during 2016, which is basically like knocking one month out of the Polar Winter. Image source: CIRES.)

To this point, temperature anomalies above the 66 North Latitude Line are predicted to continue in the range of 2.5 to 3.5 C above average for the entire Arctic region into mid-May during a time of year when readings tend to moderate. In other words, this range is well above average for this time of year and continues a trend of record Arctic heat for 2016 that began during January. One that has now pushed freezing degree days (FDD) to a never-before-seen -1012 anomaly — which is like losing one entire month out of the coldest time of year in the Arctic.

The severe Arctic warmth continues to have a profound impact on Arctic sea ice — pushing measures inexorably into new record low levels. As of today, pretty much all the major extent and volume measures showed sea ice at new record daily lows and indicated a pace of melt at start of season that is absolutely unprecedented. Of particular concern are volume measures which have rapidly closed and overcome the gap between previous record low years.

DMI sea ice

(DMI’s sea ice volume measure enters a new record low range during early May. Note how swiftly comparative sea ice levels have fallen since February and March of this year. In essence, we are currently just below the record low 2012 launching pad all while facing an unprecedented level of heat building up in the Arctic. Image source: DMI.)

In this context of extreme Arctic heat and already record low Arctic sea ice levels, we continue to expect new record lows to be reached by the end of the melt season — pushing past one or more of the low marks set during 2012 and possibly testing near zero sea ice ranges (blue ocean event) of 80 percent volume loss since 1979 and below 750,000 square kilometers of sea ice area and 1.5 million square kilometers of sea ice extent by September of this year.

Links:

Earth Nullschool

Global and Regional Climate Anomalies

CIRES

DMI

The Beaufort Under Relentless Pressure

Canadian Interagency Fire Center

LANCE-MODIS

 

Northern Polar Melt Re-Asserts With A Vengeance — Arctic Sea Ice Volume Closed on New Record Lows During February

Arctic sea ice volume hit near new record lows during February. That’s kinda a big deal. What it means is that whatever sea ice resiliency was recovered during 2013 and 2014 are now mostly gone. That record all-time lows for sea ice set in September of 2012 are likely to see a serious new challenge during 2016 and 2017.

*****

A flood of severe Arctic heat — flowing up through the Barents and Greenland seas in the East and over Alaska and the Bering Sea in the West — has been hammering the Arctic Sea Ice all Winter long. During February of 2016, new record lows in sea ice extent and area were breached. Meanwhile, sea ice volume — as measured by PIOMAS — also greatly declined to hover just above previous record lows for this time of year set in 2011.

PIOMAS Daily Volume

(Arctic sea ice volume, as measured by the Polar Science Center, plunged back to near record low territory during February. Many consider sea ice volume to be the key measure determining sea ice health. So these new drops in the volume measure are a bit spine-tingling. Image source: Wipneus.)

Looking at the above graph, provided by Wipneus, and based on model and observation data collected by the Polar Science Center, it appears that for some days during February, volume measurements even briefly descended into record low territory. As of early March, volume totals were in the range of just above 20,000 cubic kilometers — beating out 2012 as second lowest volume on measure and hovering just above 2011.

Winter Warming Grand Finale

Over the past ten days, abnormal warmth in the Arctic has faded somewhat. The lower Latitudes have heated up with the onset of spring and this has tended to strengthen the circumpolar winds. Perhaps the last bit of seasonal change that can have this effect given the alterations to atmospheric circulation produced by a human-forced warming of the globe and a particular high concentration of this added heat centering on the Arctic.

Ironically, the time-frame of late February to mid-March is when the higher Latitudes in the Northern Hemisphere tend to experience their coldest temperatures. During 2016, we did see some of this atmospheric effect take hold. As a result, temperatures in the High Arctic above the 80 degree North Latitude line have fallen from record warm readings in late February to far above average warm temperatures over recent days.

Temperature above 80 north

(Ever since Early January, Arctic temperatures have been in near record or record warm ranges. This consistent heat has resulted in the warmest Winter temperatures ever experienced for the region above the 80 North Latitude Line. Image source: CIRES/NOAA.)

Today, another very strong pulse of warmth is building up through the region of the Barents and Greenland seas. This heat pulse representing yet another warm wind event for 2016. Another very strong south to north atmospheric draw flooding in front of yet another chain of strong low pressure systems in the North Atlantic. A flow of heat drawn up from the tropics and delivered to the Arctic that will briefly drive regions near the North Pole above the -2 C melting point of sea ice even as a wide wedge of 20 degree Celsius above average temperatures invades a region stretching from Northeast Greenland to the North Pole and back to the isle of Novaya Zemlya in Russia.

Overall, the sea ice in this region is much weaker than normal. Volume is greatly thinned as both the relentless heat influxes and strong sea ice export through the Fram Strait this Winter has leeched the area of thick ice. Most sea ice measures show a loss in concentration and volume for this area. But we’ll know more as the Earth tilts back toward the sun and visible satellite coverage again takes in the entire Arctic.

Given atmospheric changes taking place with Spring — where Continental and lower Latitude warming hold greater sway over atmospheric circulation — this may be the last burst of heat we see through this zone that produces such high temperature anomalies. A grand finale for the record warm Arctic Winter of 2016.

Warm North Atlantic Winds

(Warm North Atlantic Winds are predicted to blow into the Arctic yet again on Saturday, March 12. These winds will push temperatures over a broad region of sea ice to near freezing, driving such anomalously warm temperatures all the way to the North Pole. Image source: Earth Nullschool.)

To be clear, long range model forecasts do identify far above average sea surface temperatures and above average 2 meter air temperatures for this region through Spring and on into Summer. However, the Arctic overall is not as capable of producing such high temperature anomalies during Summer as it is during Winter when the human supplied greenhouse gas overburden and the related warming of the oceans holds a much stronger sway — re-radiating an insane amount of heat throughout the long polar night.

High Arctic Temperature Anomalies Predicted to Fall-off For a Short While, Melt Potential Through Summer Looks Rather Bad

To this point, it appears the Arctic may be in for a brief respite on the 3-7 day horizon. GFS model runs indicate overall cooling for the region above the 66 North Latitude line and temperatures above 80 North may see their first period of near average temperatures since late December of 2015. This respite for the High Arctic, though, comes as temperatures in the Sea of Okhotsk, the Bering, and along Hudson Bay are expected to warm.

Arctic Sea Ice Area lowest on record

(Arctic sea ice area remains at record low levels during March of 2016. Image source: Cryosphere Today.)

It’s a mixed signal that may continue some of the very slight Arctic sea ice rejuvenation we’ve seen during March — with sea ice area still in record low territory, but with sea ice extent edging back to second lowest on record and just slightly above 2015.

To be clear, we’re at a very low launching pad for the start of melt season in 2016. Record low or near record low sea ice volumes in February and continuing record low area show that sea ice resiliency is pretty terrible at this time. Furthermore, Northern Hemisphere snow cover totals also at or near new record lows hint that warming of the land masses surrounding the Arctic may be very rapid come mid to late March and throughout April. To this point, 10 day Euro model runs show a tendency for rapid warming over the Northwest Territories, Alaska, the Bering Sea, the Sea of Okhotsk, the East Siberian Sea, and far Eastern Siberia during this period even as the thaw line pretty much everywhere jumps swiftly northward.

A fading record El Nino in the Eastern Pacific will also tend to result in ample excess Equatorial heat heading northward. As a result, the overall risk of strong sea ice melt through the Summer of 2016 remains very high.

Links:

The Polar Science Center

Wipneus

The Arctic Sea Ice Blog

Arctic Sea Ice Graphs

CIRES/NOAA

Climate Reanalyzer

Arctic Explorer

Earth Nullschool

Cryosphere Today

Euro Model Runs

 

The Roof is On Fire — Looks like February of 2016 Was 1.5 to 1.7 C Above 1880s Averages

Before we go on to explore this most recent and most extreme instance in a long string of record-shattering global temperatures, we should take a moment to credit our climate change denier ‘friends’ for what’s happening in the Earth System.

For decades now, a coalition of fossil fuel special interests, big money investors, related think tanks, and the vast majority of the republican party have fought stridently to prevent effective action to mitigate the worst effects of climate change. In their mad quest, they have attacked science, demonized leaders, gridlocked Congress, hobbled government, propped up failing fossil fuels, prevented or dismantled helpful regulation, turned the Supreme Court into a weapon against renewable energy solutions, and toppled industries that would have helped to reduce the damage.

Through these actions, they have been successful in preventing the necessary and rapid shift away from fossil fuel burning, halting a burgeoning American leadership in renewable energy, and in flooding the world with the low-cost coal, oil, and gas that is now so destructive to Earth System stability. Now, it appears that some of the more dangerous impacts of climate change are already locked in. So when history looks back and asks — why were we so stupid? We can honestly point our fingers to those ignoramuses and say ‘here were the infernal high priests who sacrificed a secure future and our children’s safety on the altar of their foolish pride.’

Worst Fears For Global Heating Realized

We knew there’d be trouble. We knew that human greenhouse gas emissions had loaded the world ocean up with heat. We knew that a record El Nino would blow a big chunk of that heat back into the atmosphere as it began to fade. And we knew that more global temperature records were on the way in late 2015 and early 2016. But I have to say that the early indications for February are just staggering.

Extreme Global Warming

(The GFS model shows temperatures averaged 1.01 C above the already significantly hotter than normal 1981-2010 baseline. Subsequent observations from separate sources have confirmed this dramatic February temperature spike. We await NASA, NOAA, and JMA observations for a final confirmation. But the trend in the data is amazingly clear. What we’re looking at is the hottest global temperatures since record keeping began by a long shot. Note that the highest temperature anomalies appear exactly where we don’t want them — the Arctic. Image source: GFS and M. J. Ventrice.)

Eric Holthaus and M. J. Ventrice on Monday were the first to give warning of an extreme spike in temperatures as recorded by the Global satellite record. A slew of media reports followed. But it wasn’t until today that we really began to get a clear look at the potential atmospheric damage.

Nick Stokes, a retired climate scientist and blogger over at Moyhu, published an analysis of the recently released preliminary data from NCAR and the indicator is just absolutely off the charts high. According to this analysis, February temperatures may have been as much as 1.44 C hotter than the 1951 to 1980 NASA baseline. Converting to departures from 1880s values, if these preliminary estimates prove correct, would put the GISS figure at an extreme 1.66 C hotter than 1880s levels for February. If GISS runs 0.1 C cooler than NCAR conversions, as it has over the past few months, then the 1880 to February 2016 temperature rise would be about 1.56 C. Both are insanely high jumps that hint 2016 could be quite a bit warmer than even 2015.

It’s worth noting that much of these record high global temperatures are centered on the Arctic — a region that is very sensitive to warming and one that has the potential to produce a number of dangerous amplifying feedbacks. So we could well characterize an impending record warm February as one in which much of the excess heat exploded into the Arctic. In other words — the global temperature anomaly graphs make it look like the world’s roof is on fire. That’s not literal. Much of the Arctic remains below freezing. But 10-12 C above average temperature anomalies for an entire month over large regions of the Arctic is a big deal. It means that large parts of the Arctic haven’t experienced anything approaching a real Arctic Winter this year.

Looks Like The 1.5 C Threshold Was Shattered in the Monthly Measure and We May Be Looking at 1.2 to 1.3 C+ Above 1880s For all of 2016

Putting these numbers into context, it looks like we may have already crossed the 1.5 C threshold above 1880s values in the monthly measure during February. This is entering a range of high risk for accelerating Arctic sea ice and snow melt, albedo loss, permafrost thaw and a number of other related amplifying feedbacks to a human-forced heating of our world. A set of changes that will likely add to the speed of an already rapid fossil fuel based warming. But we should be very clear that monthly departures are not annual departures and the yearly measure for 2016 is less likely to hit or exceed a 1.5 C departure. It’s fair to say, though, that 1.5 C annual departures are imminent and will likely appear within 5-20 years.

If we use the 1997-1998 El Nino year as a baseline, we find that global temperatures for that event peaked at around 1.1 C above 1880s averages during February. The year, however, came in at about 0.85 C above 1880s averages. Using a similar back of napkin analysis, and assuming 2016 will continue to see Equatorial sea surface temperatures continue to cool, we may be looking at a 1.2 to 1.3 C above 1880s average for this year.

CFSv2

(El Nino is cooling down. But will it continue to linger through 2016? Climate Prediction Center CFSv2 model ensembles seem to think so. The most recent run shows the current El Nino restrengthening through Fall of 2016. Such an event would tend to push global annual temperatures closer to the 1.5 C above 1880s threshold. It would also set in place the outside potential for another record warm year in 2017. It’s worth noting that the NOAA consensus is still for ENSO Neutral to weak La Nina conditions by Fall. Image source: NOAA’s Climate Prediction Center.)

NOAA is currently predicting that El Nino will transition to ENSO neutral or a weak la Nina by year end. However, some model runs show that El Nino never really ends for 2016. Instead, these models predict a weak to moderate El Nino come Fall. In 1998, a strong La Nina began to form — which would have helped to suppress atmospheric temperatures by year-end. The 2016 forecast, however, does not seem to indicate quite as much atmospheric cooling assistance coming from the world ocean system. So end 2016 annual averages may push closer to 1.3 C (or a bit higher) above 1880s levels.

We’ve Had This Warming in the System for a While, It was Just Hiding Out in the Oceans

One other bit of context we should be very clear on is that the Earth System has been living with the atmospheric heat we’re now seeing for a while. The oceans began a very rapid accumulation of heat due to greenhouse gas emissions forcing during the 2000s. A rate of heat accumulation in the world’s waters that has accelerated through to this year. This excess heat has already impacted the climate system by speeding the destabilization of glaciers in the basal zone in Greenland and Antarctica. And it has also contributed to new record global sea ice losses and is a likely source of reports from the world’s continental shelf zones that small but troubling clathrate instabilities have been observed.

Nature Global Ocean Heat Accumulation

(Global ocean heat accumulation has been on a high ramp since the late 1990s with 50 percent of the total heat accumulation occurring in the 18 years from 1997 though 2015. Since more than 90 percent of the greenhouse gas heat forcing ends up in the world ocean system, this particular measure is probably the most accurate picture of a rapidly warming world. Such a swift accumulation of heat in the world’s oceans guaranteed that the atmosphere would eventually respond. The real question now is — how fast and far? Image source: Nature.)

But pushing up atmospheric heating will have numerous additional impacts. It will put pressure on the surface regions of global glaciers — adding to the basal melt pressure jump we’ve already seen. It will further amplify the hydrological cycle — increasing the rates of evaporation and precipitation around the world and amplifying extreme droughts, wildfires and floods. It will increase peak global surface temperatures — thereby increasing the incidence of heatwave mass casualty events. It will provide more latent heat energy for storms — continuing to push up the threshold of peak intensity for these events. And it will help to accelerate the pace of regional changes to climate systems such as weather instability in the North Atlantic and increasing drought tendency in the US (especially the US Southwest).

Entering the Climate Change Danger Zone

The 1-2 C above 1880s temperatures range we are now entering is one in which dangerous climate changes will tend to grow more rapid and apparent. Such atmospheric heat has not been experienced on Earth in at least 150,000 years and the world then was a much different place than what human beings were used to in the 20th Century. However, the speed at which global temperatures are rising is much more rapid than anything seen during any interglacial period for the last 3 million years and is probably even more rapid than the warming seen during hothouse extinction events like the PETM and the Permian. This velocity of warming will almost certainly have added effects outside of the paleoclimate context.

Arctic Degree Days Below Zero Anomaly

(Anyone looking at the temperature anomaly graph on the top of this post can see that a disproportionate amount of the global temperature anomaly is showing up in the Arctic. But the region of the High North above the 80 degree Latitude line is among the regions experiencing global peak anomalies. There, degree days below freezing are at the lowest levels ever recorded — now hitting a -800 anomaly in the Arctic record. In plain terms — the less degree days below freezing the High Arctic experiences, the closer it is to melting. Image source: CIRES/NOAA.)

One final point to be clear on is then worth repeating. We, by listening to climate change deniers and letting them gum up the political and economic works, have probably already locked in some of the bad effects of climate change that could have been prevented. The time for pandering to these very foolish people is over. The time for foot-dragging and half-measures is now at an end. We need a very rapid response. A response that, at this point, is still being delayed by the fossil fuel industry and the climate change deniers who have abetted their belligerence.

Links:

The Old Normal is Now Gone

NASA GISS

Hot, Hot, Hot

Michael J. Ventrice

No Winter for the Arctic in 2016

Big Jump in Surface and Satellite Temperature Measures

NOAA’s Climate Prediction Center

Industrial Era Global Ocean Heat Uptake Doubles in Recent Decades

CIRES/NOAA

Republican Governors Sue to Stop Clean Power Plan

 

Warm Storms Rage Through Barents as Arctic Sea Ice Enters 13th Day of Record Low Extent

On March 4, amidst a building polar heat amplification and a strong, thousands mile long, south to north wind and storm flow across the North Atlantic and into the Arctic, sea ice extent coverage for the northern polar region plunged to new record lows.

imageimage

(26 foot wave heights [left frame] and 50-60 mph sustained southerly winds [right frame] in conjunction with warm storm near the ice edge at Svalbard on March 15, 2015. Storms of this kind have been raging up through the Barents delivering powerful, warm southerly winds and immense swells to the ice edge region for at least the past half month. This strong melt pressure and warm air delivery has contributed to record low sea ice extent totals continuing for the past 13 days running. Image source: Earth Nullschool. Data source: GFS.)

Human-forced heat continued to build throughout the Arctic as warm and intensely windy storms churned northward through the Barents, bringing with them powerful swells ranging from 15 to, at times, 40 feet in height. As these great swells ground away at the ice edge, temperatures hit daily anomalies greater than 4 C above the 1979-2000 average on Sunday, March 8 for the entire Arctic region. The next day, sea ice extent, according to NSIDC, plummeted to 14,273,000 square kilometers. A value 303,000 square kilometers, or an area about the size of Arizona, smaller than the previous record low value for the date set in 2006.

Ever since March 4, the Arctic has remained in new record low territory — a period that has now lasted 13 days. Though anomalous warmth has faded somewhat — dropping today to a range of 2.65 degrees Celsius above the 1979-2000 average — sea ice has only bounced back slightly. On March 15, the NSIDC extent measure had inched up to 14,333,000 square kilometers, still about 235,000 square kilometers below the previous record low for the date.

chart(3)

(Arctic sea ice extent as measured by NSIDC drops below previous record low values on March 4 of 2015 [bottom dark blue line] and has remained at record low levels ever since. For reference, previous record low years for March dates include 2006 [pink line], 2007 [light blue line], and 2011 [orange line]. The top dark blue line [1979] indicates how much sea ice extent has been lost during March over the past 36 years. Image source: NSIDC.)

Over the next week, however, these new record lows are more likely to continue to fade as warm Arctic surface temperature anomalies drop to around 1-2 C above average, the Arctic Oscillation shifts toward neutral or slightly negative, and the warm storm track through the Barents is interrupted by cold winds pushing south toward Scandinavia from the pole. Although mid-week warming forecast for Alaska and Baffin Bay may retard any potential rebound somewhat.

For the past two years, Arctic sea ice has experienced a bit of a rebound during the March through early April time-frame. This has appeared to coincide with a restrengthening of the polar Jet Stream as mid latitudes have warmed which, in turn, has weakened meridional patterns transporting heat into the Arctic during winter time. Low angle sunlight entering the Arctic at this time of year has also not yet gained enough momentum to significantly push the ice to melt. So we still have about a 2-3 week window for potential bounce-back before sunlight builds and begins to apply its steady heat forcing to the greatly diminished ice.

AO index forecast

(Arctic Oscillation [AO] index forecast shows dip toward slightly negative or neutral AO status by end week after a rather extreme high in early March, with a return to mildly positive AO values by end month. Positive AO enhances edge melt of sea ice by encouraging storm formation at the ice edge and warm air invasions over the central ice. Image source: NOAA/CPC.)

That said, the ice is quite frail now, even with potential volume rebounds to mid 2000s levels. So even the slight addition of solar insolation may be enough to keep ice coverage values depressed in the neutral or moderately positive Arctic Oscillation regime that is predicted through the end of March. Extent measures maintaining near record lows along the 2006, 2007 and 2011 tracks, or just below, would establish a very low launching pad for a melt season that, lately, has tended to include precipitous declines in ice during the summer months.

The ongoing record low extent status, despite a return to weather patterns that are more favorable for rebound or maintenance, therefore, should be closely monitored.

Links:

NSIDC

NOAA/CPC

Earth Nullschool

GFS

Climate Reanalyzer

Accelerating Global Warming? NASA Shows February of 2015 was Second Hottest on Record

The Earth started out 2015 very hot. A record hot range that some researchers are now saying may be the beginning of a period of accelerated global warming.

***

For the global temperature measure, February of 2015 was another extraordinarily warm month. One more hot month in an unbroken chain stretching all the way back to the mid 1980s. The second hottest February in the whole of the NASA record ever since temperature monitoring began in 1880.

In total, NASA GISS shows February of 2015 topping out as the warmest February of the new millennium at 0.79 degrees Celsius above the 20th Century average. A reading 1.06 C above temperatures measured during 1880. Only February of 1998 was hotter (Of all of the super El Nino year of 1998, only February and June still hold records as hottest months in the NASA measure).

But perhaps most importantly, the average of 2015’s first two months is 0.77 C above the 20th Century. This is just behind 2007 (by just 0.02 C) as the hottest two-month start of any year during the past 135, and likely hotter than at any time during the Holocene and possibly in the past 120,000 years altogether.

Temperature Map February NASA

(Global temperature anomaly map. Image source: NASA.)

Global temperature anomaly analysis by NASA shows extraordinary warmth for much of the Northern Hemisphere. In particular, most of the land mass of Asia experienced far above average readings. Temperatures in this zone measured as high as 8.4 degrees Celsius above average for the entire month — yet one more extraordinary period of departure for a rapidly warming region.

The North American West Coast through to Alaska also showed much warmer than normal readings. A pattern coincident with both a vast pool of warm water in the Northeastern Pacific and a ridiculously resilient ridge of high pressure (and coincident high amplitude wave in the Jet Stream) that has formed for seasonal periods over the region since the winter of 2012-2013.

Abnormal warmth was also pervasive through the tropics, the Arctic, Africa, Australia, sections of East and West Antarctica, and over most Oceanic zones. The only region experiencing colder than normal readings was the Eastern Half of North America. An area in the downward sloping trough of the prevalent Rossby Wave and associated hot-cold dipole pattern that has been so common for North America during recent winters.

Zonal Anomalies Feb 2015

(Temperature anomaly by Latitudinal Zone for February of 2015. Image source: NASA.)

NASA’s zonal anomalies measure shows very strong polar heat amplification, which is a tell-tale of the human greenhouse gas heat forcing, at the Arctic Circle line (66 North Latitude) and continuing on northward. Zonal anomalies peaked at around the 66 degrees North Latitude line in the range of 2.8 C above average for the entire month. Anomalies declined poleward but still maintained 1.5 to 2.5 C above average ratings.

Though somewhat cooler than the Northern Polar Region, the rest of the global also showed above average temperatures in almost all zones. 30-60 North showed readings ranging from 0.5 to 2.5 C above average, the tropics maintained about a +0.6 C above average range, 30-60 South ranged between 0 and 0.6 C above average with a dip in the heat sink and high wind region of the Southern Ocean. The Southern Polar Region showed the only zonal below average reading with -0.2 C between 85 and 90 South, but the entire region of 60-90 South ranged about 0.15 C hotter than average.

Conditions in Context

The main features of the current globally hot February are a weak El Nino in the Central Pacific (declared by NOAA in early March), a strong positive PDO pattern of very warm sea surface temperatures throughout the Pacific and an extreme polar amplification in the region of 60-90 North Latitude.

According to IPCC forecasts and Pacific Ocean warming impact studies, both the El Nino, which has tended to shift more toward the Central Pacific, and the amazing polar amplification are indications of what was expected in a world seeing a rapid accumulation of greenhouse gasses through the mechanism of human fossil fuel emission. The North American Rossby Wave pattern combined with extremely warm temperatures in the West and cold, stormy and snowy conditions in the East, was also predicted as a potential upshot of warmer than normal readings at the pole reducing temperature differentials from North to South and encouraging weakness and waviness in the Jet Stream (Francis). PDO intensification, contributing to a warm water pool off the North American West Coast and coincident mid Pacific El Nino may also have a teleconnection-type (Where large weather patterns reinforce and enhance the formation of other large weather patterns that may be hundreds or thousands of miles removed from the first. Some have poetically referred to teleconnection as an atmospheric dance.) influence with the ridging pattern in the west and the related troughing pattern in the east.

In global climate models, cool pools of water near Greenland and West Antarctica are also implicated in potential trough/Rossby Wave type patterns (severe frontal storms) which may also be influencing the extreme weather seen in the Northeastern US during February. These pools are associated with glacial melt and coincident fresh water outflow. In the North Atlantic, this has implications for global thermohaline circulation. A strong thermohaline circulation is essential for ocean mixing and related ocean health.

Overall, the global temperature disposition, extreme temperature anomaly, and related strange weather patterns are anything but a normal. They are instead indicative of the kinds of extraordinary climates and extreme weather both computer models and researchers have predicted as a direct result of human-caused warming.

Entering a Rapidly Warming World

entering a rapidly warming world

(Even with a rapid draw down in human emissions to RCP 4.5 levels, computer model essays show 40 year average rates of warming will likely accelerate over the next few decades. Image source: Near-Term Acceleration in the Rate of Temperature Change.)

To this point, it appears that some climate models are in agreement that the period of the next few decades are likely to see an accelerated warming trend. Decadal rates of warming, during this time, are expected to accelerate to between 0.2 and 0.25 C per ten years, even if human greenhouse gas emissions are rapidly drawn down. The result would be about 1.4 to 1.6 C worth of warming above 1880s levels by or before 2040. Without a rapid draw-down, and a continuation on the current catastrophic path of fossil fuel burning, recent model essays from Dr. Michael Mann indicate that humans could exceed the 2 C warming threshold by the mid 2030s.

Links:

Near-Term Acceleration in the Rate of Temperature Change

GISS Surface Temperature Analysis

Paleoclimate Implications For Human-Made Climate Change

Warming Arctic May be Causing Heatwaves Elsewhere in the World

The California Weather Blog

Increasing Intensity of El Nino in the Central Equatorial Pacific

Evidence Linking Arctic Amplification to Extreme Weather in the Mid-Latitudes

Greenland Melt — Exponential?

Far Worse than Being Beaten With a Hockey Stick

Earth Entering a New Period of Rapid Temperature Change

Hat tip to Bassman

The Arctic Methane Monster Exhales: Third Tundra Crater Found

Yamal Hole

(One of three massive holes found in Siberia. The prominent theory for the holes’ formation is a catastrophic destabilization of sub-surface methane under thawing tundra. Image source: The Moscow Times.)

Add salt, sand, and thawing methane pockets buried beneath scores of feet of warming permafrost together and what do you get? Massive explosions that rip 200-300 foot deep and 13-98 foot wide holes in the Siberian earth.

The name for the place where this strange event first happened, in Russian, is Yamal, which roughly translates to mean ‘the end of the Earth.’ Now, three holes of similar structure have appeared over a 700 mile wide expanse of Siberian tundra. The most likely culprit? Catastrophic destabilization of Arctic methane stores due to human-caused warming.

A Tale of Dragon’s Breath: How the Yamal Event Likely Unfolded

About 10,000 years ago, as the great glaciers of the last ice age gave up their waters in immense surges and outbursts into the world ocean, a broad section of Siberian tundra was temporarily submerged by rising seas. But with the loss of the great glaciers, pressures upon the crust in these zones subsided and, slowly, the newly flooded tundra rose, again liberating itself, over thousands of years of uplift, from the waters.

The land remained frozen throughout this time, covered in a layer of ice — solid permafrost hundreds of feet deep. But the oceanic flood left its mark. Salt water and sand found its way into cracks in the icy soil, depositing in pockets throughout the frozen region’s earth.

And there this chemical brew remained, waiting to be deep-frozen and sequestered as the glaciers of a new age of ice advanced over the Earth.

Arctic Warming Trend 1960 to 1990

(Arctic warming trend from 1960 to 1990. Image source: NOAA.)

But this event, foretold and anticipated in the bones of Earth, did not come to pass. Instead, human beings began dumping billions of tons of heat-trapping carbon into the atmosphere. They dug up mountains of ancient carbon and burned it. And now those mountains of carbon lived in the air, thickening it, trapping heat.

For Siberia, this meant rising temperatures. At first, the increase was slow. Perhaps a tenth of a degree per decade. But by the time the 20th Century was closing and the 21st Century emerged, the pace of warming was greater than at any time even the Earth could remember — an increase of 0.5 degrees Celsius or more every ten years.

Now, the glaciers will probably not return for hundreds of thousands of years, if ever. And now, the brew that was waiting to be buried is instead thawing and mixing. A deep, heat-based cracking of the frozen soil that flash-bakes an alchemical mixture deposited over the ages. The result: dragon’s breath erupting from the very soil.

Explosive Eruptions From Smoking Earth

One Taz District local described the day the crater formed–

The earth was first observed to smoke. This continued for some time and then a bright flash followed by a loud bang exploded above the tundra. After the mists and smoke cleared, a large hole surrounded by mounds of ejected soil was visible. The hole tunneled like a cone more than 200 feet down. Its walls were frozen permafrost.

Siberian Craters Map

(Broad expanse of Siberia containing three massive holes, indications of explosive eruptions in the permafrost set off by thawing methane mixed with salt, water and sand. The holes are all in the range of 200-300 feet deep. Deep enough to contact subsoil methane pockets or, in some cases, frozen clathrate. Image source: The Daily Mail.)

A single event of this kind might be easy to overlook as an aberration. A freak case that might well be attributed to unique conditions. But over the past two weeks not one, not two, but three large holes, all retaining the same features, have appeared within the same region of Yamal, Russia.

A single event may well be easily marked off as a strange occurrence, but three look more like the start of a trend.

Weather Underground notes:

The holes may foreshadow bigger problems for our planet in the near future, scientists worry. Permafrost around the Arctic contains methane and carbon dioxide, and both could be dangerous to our environment if released, according to a report from the National Snow and Ice Data Center. As long as the permafrost remains frozen, the report adds, this isn’t a concern, but climate models have painted a grim future for rising temperatures in the Arctic.

And with temperatures in the Arctic, and especially over Siberia, rising so fast, the permafrost is not remaining frozen. It is instead thawing. And together with this thaw comes a growing release of carbon stored there over the 2-3 million year period since the ice ages began their long reign. It is a release we can expect to continue together with human-caused warming. One that is critical to abate as much as possible, if we are to have much hope for a climate favorable for human beings and the continuing diversity of life on this world. How rapidly and violently the Arctic responds to our insults depends on how hard we push it. And right now, through an amazing human carbon emission, we are now pushing the Arctic very hard.

Jason Box, a prominent Arctic researcher and head of the Dark Snow Project, noted Sunday in his blog, Meltfactor:

What’s the take home message, if you ask me? Because elevated atmospheric carbon from fossil fuel burning is the trigger mechanism poking the climate dragon. The trajectory we’re on is to awaken a runaway climate heating that will ravage global agricultural systems leading to mass famine, conflict. Sea level rise will be a small problem by comparison. We simply MUST lower atmospheric carbon emissions. This should start with limiting the burning of fossil fuels from conventional sources; chiefly coal, followed by tar sands [block the pipeline]; reduce fossil fuel use elsewhere for example in liquid transportation fuels; engage in a massive reforestation program to have side benefits of sustainable timber, reduced desertification, animal habitat, aquaculture; and redirect fossil fuel subsidies to renewable energy subsidies. This is an all hands on deck moment. We’re in the age of consequences.

If the warming trends continue and fossil fuel burning does not abate, these holes may be only minor explosive outbursts compared to what may follow. In any case, given current trends, it appears entirely possible that more and more of these strange holes will be appearing throughout the Arctic. An ugly sign of the danger inherent to our time.

Links:

Another Siberian Hole Discovered

Not So Mysterious Hole Found in Siberia

Two New Holes Appear in Siberia

Is the Climate Dragon Awakening?

Siberian Tundra Holes are a Mystery to Me

Is this the Compost Bomb’s Smoking Gun?

It’s All About Frozen Ground

Arctic Climate: A Perspective For Modeling

 

Constant Arctic Heatwave Sends World’s Largest Ice Cap Hurtling Seaward

Svalbard. Until lately, a little-known locale situated between the previously frigid extreme North Atlantic and the Arctic Ocean about 500 miles east of Greenland. Typically a frozen island Archipelago, this pristine and sparsely inhabited redoubt has, over the past few years been ground zero for the assaults of an ongoing and extreme polar heat amplification.

During winters, temperatures in Svalbard are generally, well, Arctic. But in recent years abnormal winter warmth featuring temperatures ten, twenty, even thirty degrees above 20th century averages have been experienced with increasing frequency. This year, during one of the warmest winters on record for the Arctic, local Svalbard temperatures rocketed to as much as 40 degrees F above the usual range and for extended periods remained in the range of +20 to +30 F positive anomaly.

For all of February of 2014, the average temperature for this Arctic island chain was -1 C (about 30 F), a full 15 degrees C above average and a period that featured many readings at or above freezing. It was an unprecedented event for an island that features one of the largest ice caps on Earth.

Austfonna, Svalbard’s Ice Giant, Takes a Fall

Austfonna sprawls across the northeast section of Nordaustlandet, one of Svalbard’s many islands. The ice cap covers fully 8,000 square miles and features an ice dome pinnacle looming 750 meters high making it the largest of its ilk. Though not as grand as the great ice sheets of Greenland or West Antarctica, Austfonna still contains an immense amount of water. Less stable than ice sheets, deteriorating ice caps currently contribute to almost 50% of global sea level rise.

Austfonna Sentinel 1 Pace of Outlet

(ESA’s Sentinel provides false-color imagery of the Austfonna Ice Cap sliding into the Barents Sea. Right panel imagery provides observed changes in outlet speed from 1995, 2008, and 2014. Flow rates are indicated by color contour as slow [dark blue] to fast [red]. Image source: ESA via BBC.)

But Austfonna, the largest of these, was thought to be somewhat insulated from the insults plaguing most of the world’s ice caps. Its far northern and previously frigid location at Svalbard made it less vulnerable. But that was before sea ice loss opened the gates to an ongoing and ever-increasing assault of warm winds.

Now, according to findings made by the European Space Agency’s (ESA) Sentinel 1 Spacecraft, it appears that the ongoing assault of heat has at last destabilized the great Austfonna. For according to radar altimetry readings, the pace of the ice cap’s motion toward the Barents Sea has, over the past three years, accelerated to an extraordinary speed ten times more rapid than its previous pace (Sentinel’s findings are due to be published soon in a prominent scientific journal).

Lead study author Prof Andy Sheperd of Leeds University notes:

“We’ve observed Austfonna with various satellite radar datasets over the past 20 years, and it hasn’t done very much. But we’ve now looked at it again with the new Sentienl-1a spacecraft, and it’s clear it has speeded up quite considerably in the last two or three years. It is now flowing at least 10 times faster than previously measured.”

Austfonna is just the most recent of many very large ice caps, ice sheets, or glaciers now showing increasing rates of motion toward the world ocean. In many cases, once destabilized, these great bodies of frozen water have reached a point of no return as they lunge toward an inevitable destiny of melt, outflow, and disintegration. The most recent and ongoing rash of destabilizations are likely to have significant implications for global sea level rise due to human caused warming going forward. And with human heat forcing and amplifying Earth System feedbacks still on the rise, the glacial butcher tally isn’t likely to end any time soon.

Links

Sentinel Spies Ice Cap Speed-Up

Arctic Heat in Winter: February 2 Temperature Anomaly Hits + 13 F For Entire Arctic

ESA

Warm February Provides Extreme Record on Svalbard

Hat tip to Colorado Bob

Heavy, Early-Season Blow to Arctic Ice Cap: Powerful, Warm Storm Disintegrates Barents Sea Ice

A vast swath of sea ice that painstakingly formed as somewhat cooler conditions had finally settled in near Svalbard and Frans Joseph Land in the Barents Sea was shattered yesterday as a powerful, heat-laden Arctic cyclone screamed up out of a rapidly warming extreme North Atlantic.

The storm originated west of the Norway coastline where, in recent years, a repository of exceptionally warm water has collected. This near-Arctic and Barents Sea warm pool has resulted in numerous effects including a forced recession of sea ice by hundreds of miles during winter time as well as providing impetus for various anomalous heat waves in Scandinavia in recent years.

This time, the heat pool was the genesis for a powerful storm that delivered an intense package of early season warmth to a section of sea ice drifting in the North Barents Sea region.

Warm Storm Impacts

April 16, pre-storm

In the above image, provided by NASA’s  LANCE-MODIS sensor, we can see a 250 mile section of sea ice that had extended out into the Barents Sea over the past few weeks during a cooler period as warmer conditions shifted to the Laptev, East Siberian, and Beaufort Seas. The date of this shot is April 16. To the lower left is the tip of Svalbard. Upper left is the far edge of Frans Joseph Land. Another few hundred miles to the right of far right frame is Northern Norway.

The storm, for now is off frame.

Storm April 17

Now on April 17, we can see the storm center in the far left frame near the tip of Svalbard. At this point, the storm has bombed out to an extraordinarily powerful 950 mb low, packing 60+ mph winds. In its upper quadrant, it carried with it temperatures ranging from 10 to 20 C above typical seasonal averages. Perhaps more importantly, through cyclonic forces it pumped waters that were up to 5 C above average temperature up from the depths and into the ice pack. This kind of cyclonic Ekman Pumping, in recent years, has had an increased potential to rapidly reduce sea ice due to warmer surrounding water conditions and warmer waters at depth.

Note that rapid sea ice disintegration is already involved in the wake of this severe Arctic Cyclone.

Aftermath -- Near Zero Contiguous Ice

Now, today, on April 18, we can see that in the aftermath of this powerful Arctic Cyclone there is very little contiguous sea ice left. What remains is what in sea ice parlance can be termed nilas — very thin and diffuse ice of 0-10 centimeters in thickness. Note that the entire 250 mile zone is completely involved in this very visible ice loss and that such losses continue on past Frans Joseph Land and into the Kara Sea.

Further Implications for the 2014 Melt Season

Melt season in the Arctic is now well involved. In addition, we have numerous weaknesses in the Northern Hemisphere Jet Stream that continue to funnel much warmer than average air over the Arctic Sea Ice. Alaska, Siberia and the Barents all continue to see strong warm air impulses that progress well into the zone covered by sea ice.

Today, according to GFS model measures for the zero hour, average Arctic temperatures are 2.24 C above the, already warmer than normal, 1979 to 2000 average. This is a rather high spike for spring, when Arctic temperatures typically start to settle back down after seeing high levels of global warming associated heat amplification during winter time.

The excess heat had already pushed Arctic sea ice extent measures down to near record lows as of April 17. According to NSIDC, extent measures had fallen to 13.9 million square kilometers yesterday, the second lowest level in the measure. With full effect from the recent intense storm not yet fully realized, it is possible that impacts in this region alone could reduce total values by at least 100,000 square kilometers.

arcticice_nsidc apr 17

(Arctic Sea Ice Extent Second Lowest on Record for April 17. Data Source: NSIDC. Image Source: Pogoda i Klimat.)

Yet one more major blow to sea ice from a powerful warm storm type system. And, in this case, with melt season progressing rapidly and with so much heat already shifting into the Arctic, it is highly unlikely that this zone of newly dispersed ice will see much in the way of recovery over the coming weeks.

 

Links:

LANCE-MODIS

NSIDC

Pogoda i Klimat

Global Forecast Systems Model

Persistent Arctic Cyclone and the Warm Storm of 2013

 

Sea Ice Loss, Human Warming Places Earth Under Ongoing Fire of Severe Weather Events Through Early 2014, Likelihood of Extremes For Some Regions Increases by 500%

Heat overburden at the roof of our world. It’s a dangerous signal that the first, worst effects of human-caused climate change are starting to ramp up. And it’s a signal we are receiving now. A strong message coinciding with a world-wide barrage of some of the worst January and February weather extremes ever experienced in human reckoning.

An Ongoing Arctic Heat Amplification

Ever since December, the Arctic has been experiencing what could well be called a heat wave during winter-time. Average temperatures have ranged between 2 and 7 degrees Celsius above normal winter time readings (1979-2000) over the entire Arctic basin. Local readings frequently exceed 20 degrees Celsius above average over large zones that shift and swell, circulating in a great cloud of abnormal warmth around the roof of the world.

Today is no different.

Global Temp amomaly March 4

(Global Temperature Anomaly on March 4, 2014 showing a warmer than normal world sitting beneath an ominously hot Arctic. Image source: University of Maine.)

Average temperatures for the entire Arctic are 4.16 degrees Celsius above the, already warmer than normal, 1979 to 2000 base line, putting these readings in a range about 6 degrees Celsius above Arctic temperatures during the 1880s. When compared to global average warming of about .8 C above 1880s norms, this is an extreme heat departure that places the Arctic region well out of balance with both its traditional climate and with global climate at large.

Local large hot zones with temperatures ranging between 10 and 20 degrees Celsius above average appear east of Svalbard, in the Arctic Ocean north of the East Siberian Arctic Shelf, and over a broad swath of the Canadian Arctic Archipelago. These zones of warmth are as odd as they are somewhat horrific, creating regions where temperatures are higher than they would otherwise be in April or, in some cases, late May.

Sea Ice Melt Over a Warming Arctic Ocean

This ongoing condition of extreme Arctic heat is a symptom of overall Arctic amplification set off by a number of strong feedbacks now underway. These include sea ice measures that are currently at or near record low values (February saw new record lows in both extent and area measures) as well as a large and growing local emission of greenhouse gasses from polar stores long locked away by the boreal cold. Arctic geography also contributes to the problem as a thinning layer of sea ice rests atop an ocean that is swiftly soaking up the heat resulting from human warming.

During winter time, the combination of thin sea ice, warm ocean, and higher concentrations of greenhouse gasses generates excess warmth over and near the Arctic Ocean basin. The warmer waters, having trapped solar heat all summer long, now vent the warmth into the polar atmosphere through the sparse, cracked, and greatly diminished sea ice. And while this increasing heat imbalance has been shown to be lengthening the melt season by 5 days per decade, it is also stretching its influence well into winter time as ocean heat now continually bleeds through a thinning and ever more perforated layer of sea ice.

Other effects include an overburden of greenhouse gasses trapping long wave radiation to a greater extent in the polar zone while the already warmer than usual condition creates weaknesses in the Jet Stream that generate large atmospheric waves. The south-north protrusions of these waves invade far into the Arctic Ocean basin over Svalbard and Alaska, transporting yet more heat into the Arctic from lower latitudes.

The net effect is the extraordinary Arctic warming we are now seeing.

Earth Under Continuous Fire of Extreme Weather

This rapidly increasing warmth at the Arctic pole generates a variety of weather instabilities that ripple on through the Northern Hemisphere. Meanwhile, the ongoing impacts of equatorial warming or such warming in concert with the far-flung effects of polar amplification and an increase in the hydrological cycle of about 6% are causing a number of extraordinary events over the Southern Hemisphere.

In short, the barrage of extreme weather is now entirely global in nature. A brutal if amazing phenomena directly associated with a human-heated climate system.

Extreme weather map

(Map of extreme weather events throughout the world from January 1 through February 14. Note that it is now difficult to find a region that is currently not experiencing exceptional weather. Image source: Japanese Meteorological Agency.)

Over the western US, Canada, and Alaska, a Jet Stream ridge that has persisted for a year has generated both abnormally warm conditions for this region, with Alaska experiencing its third hottest January on record, and an extreme drought for California that is among the worst in its history. This drought is now poised to push US food prices up by between 10-15 percent as California officials are forced to cut off water flows to farmers.

Only the most powerful of storm systems are able to penetrate the ridge. And the result, for the US West Coast, is a condition that either includes drought or heavy precipitation and flooding events. A condition that became plainly apparent as winter storm Titan dumped as much as 5 inches of rainfall over drought-stricken southern California, setting off landslides and flash floods that sent enormous waves of water and topsoil rushing down roads and gullies alike. And though the storms came, the drought still remains.

Added to the list of extremes for the Western US are a number of early starts and/or late ends to fire seasons with California, Arizona and New Mexico all experiencing wildfires during the period of December through February.

Moving east, we encounter the down-sloping trough that is the flip side of the ridge bringing warmth and drought to deluge conditions to the west. So, for the Eastern and Central United States, we see the transport of chill air down from the Arctic Ocean, over Canada and deep into a zone from The Dakotas to Texas to Maine. As a result, we have seen winter storm after winter storm surge down into these regions, dumping snow, ice, and heavy rain while occasionally coming into conflict with Gulf warmth and moisture to spark tornadoes and thunderstorms over snow-covered regions.

One cannot separate the warm air invasion over Alaska and the heat radiating out of the perforated sea ice from the numerous polar vortex collapse events that have led to this extreme winter weather over Central and Eastern parts of the US. And so, it is also impossible to ignore the warping and deleterious impacts of human-caused climate change on the world’s weather.

The World Meteorological Organization (WMO), in its latest extreme weather assessment notes:

In the winter a deep reservoir of cold air becomes established through the atmosphere over the Arctic because of the lack of sunlight. This is usually held over high latitudes by the Jet Stream, a fast moving band of air 10 km up in the atmosphere which drives weather. This year, a “kink” in the jet stream allowed the reservoir of cold air to move southwards across the USA. A blocking pattern meant it was locked into place, keeping severe weather systems over much of the Eastern United States extending down to northeast Mexico.

This ‘kink’ and related blocking pattern the WMO mentions is also the leading edge of the advance of cold Arctic air over the North Atlantic which combined with ocean heat and moisture to aim intense storms at Western Europe. In essence, a powerful planetary wave or Rossby Wave type feature:

Planetary Wave

(The Northern Hemisphere Jet Stream takes on Planetary Wave pattern with an extreme high amplitude ridge over the Western US, Canada, Alaska and the Beaufort Sea and a deep, cold trough digging into the Eastern US and spreading out over the North Atlantic on February 26th. Image source: University of Washington.)

For as we look yet further East we come to a North Atlantic Ocean that has been little more than the barrel of a gun firing a two and a half month long barrage of storms at England and Western Europe. For the Jet Stream, at this point, is intensified by Arctic air fleeing from a warming north coming into contact with the also warming waters of the North Atlantic. In this region, the planetary wave feature developed with severe and lasting consequences for England, France, Portugal and Venice.

The upshot was the wettest period in over 250 years for England as well as the windiest period since at least the 1960s. During February, two of these storms generated 80-100 mph winds and waves off Ireland and the UK that were the highest ever recorded for this region. Meanwhile, the powerful storm surges associated with these storms reshaped the English coastline, uncovered bombs dropped during World War II and unearthed the stumps of an ancient forest that spread from England to France before it was buried in the floods of glacial melt at the end of the last ice age. The battering continues through early March with England suffering losses in excess of 1 billion dollars.

The storms ripping across the Atlantic also resulted in the loss of over 21,000 sea birds and have heavily impacted France, Spain and Portugal with record rains, gales and tidal flooding. During early February, a series of gales also drove high tides along the coast of Italy and spurred flooding in Venice.

As storms slammed into coastal western Europe, strange fires were also burning along Arctic shores as a very dry and windy winter sparked blazes along the coastlines of Norway. These fires, some of the worst in Norway’s history, occurred during January and February, months that have never seen wildfires before. So the strange story of flood and fire that tends to come with climate change may seem yet more radical and extreme when we include what has happened over this section of Europe during 2014.

By the time we enter Eastern Europe, Turkey, Jordan, Israel and Russia we again encounter an up-slope in the Jet Stream along with related periods of heat and drought. Record highs were set throughout a zone from Germany to Slovenia to Russia. Germany experienced January temperatures that were 2.8 degrees Celsius above the 20th Century average while Russia experienced heat anomalies approaching 10 degrees Celsius hotter than normal that persisted for up to a week in length. In Turkey, farmers frantically drilled into drying lake-beds for water as both warmer and drier than normal conditions combined with ground water depletion to generate severe agricultural stress.

But the strain for Israel, which experienced lowest ever winter rainfalls and one of the worst droughts in its history, was far worse. According to the Israeli Water Agency’s March 4 Statement, water supplies across the country were now at record low levels:

“Such low supply during this period has never before been documented and is unprecedented in Water Authority records,” the agency said. “The negative records broken in February are much more dramatic and significant than those of January.”

Drought-stressed Jordan has also been forced to ration water supplies, with rainfall levels now only 34 percent of that received during a typical January and February.

Abnormal warmth and drought also extended into China as most parts of the ancient empire received between 50-80 percent below average rainfall. Temperatures averaged over the entire country were the warmest seen since at least 1961. The warmth and dryness resulted in record low river and lake levels across the country with China’s largest lake turning into a sea of cracked mud and grasses.

In Singapore and nearby Malaysia, a two month-long heatwave is now among the worst ever recorded for this region. The situation has been worsened as nearby forest fires have combined with industrial pollution to produce a kind of all-encompassing smog. A nasty brew that cut visibility in the region to less than one kilometer.

Smoke Smog Singapore Maylaysia

(Smoke and smog from fires and industrial activity visible over Singapore and Malaysia. Image source: Lance-Modis.)

One would think that, with major heat anomalies occurring over the Arctic, the far removed Southern Hemisphere would be somehow insulated from impacts. But whether from far-reaching Arctic influence or simply from other factors related to human-caused climate change, austral regions were among the hardest hit by the, now global, spate of extreme weather events.

Australia’s record 2013 heatwave didn’t miss a beat as a hottest ever summer continued on through January and February. A period in the middle of January showed exceptionally severe high temperatures with World Meteorological Agency reports noting:

One of the most significant multi-day heatwaves on record affected southeast Australia over the period from 13 to 18 January 2014. The major area affected by the heatwave consisted of Victoria, Tasmania (particularly the western half), southern New South Wales away from the coast, and the southern half of South Australia. Over most parts of this region, it ranked alongside the heatwaves of January-February 2009, January 1939 and (from the limited information available) January 1908 as the most significant multi-day heatwaves on record.

A number of site records were set during the summer, including:

• Melbourne had seven 40ºC days; annual average is one day

• Adelaide had 11 days of 42ºC or above; annual average is one day

• Canberra had 19 days of 35ºC or above; annual average is 5.4 days

While Australia was sweltering under its hottest summer on record, south-central Brazil was suffering its worst-ever drought. By mid February, Brazil had been forced to ration water in over 140 of its cities. The result is that neighborhoods in some of Brazil’s largest cities only receive water once every three days. During this, extraordinarily intense, period of heat and dryness, untold damage was done to Brazil’s crops. But, by early March, a doubling of prices for coffee coming out of Brazil gave some scope to the damage. January was also Brazil’s hottest on record and the combination of extreme heat and dryness pushed the nation’s water reservoirs for southeastern and west-central regions to below 41 percent of capacity driving utility water storage levels to a critically low 19 percent.

In near mirror to the US weather flip-flop, northern Brazil experienced exceptionally heavy rainfall, apparently gaining back the lion’s share of moisture lost in the south and stalling a two year drought affecting north-eastern regions.

In combination, these crazy weather extremes are thought to have done nearly $5 billion in damages to Brazil’s crops so far this year, on top of $9 billion in losses last year. Losses run the gambit from coffee to beef, soy, citrus, and sugarcane. It is worth noting that Brazil is the largest producer of all these foodstuffs with the one exception being soy.

The same drought impacting Brazil also damaged crops in Paraguay and Argentina with soybeans among the hardest hit.

Given the ongoing extreme weather impacts, it is worth noting that world soybean prices are now up by more than 9 percent over the 2012-2013 period with almost all foodstuffs seeing price increases in the global marketplace. The UN FAO food index remained over 200 through late January, a dangerously high indicator that shows numerous countries having difficulty supplying affordable food to their populations.

Extremes Cover the Globe

The above list does little justice to the depth and scope of extremes experienced, merely serving to highlight some of the most notable or severe instances. In general, it could well be said that the world climate crisis is rapidly turning into a world severe weather crisis. January and February are usually rather calm months for the globe, weather-wise. So the fact that we are seeing record storms, rainfall, snowfall, floods, fires, droughts, winds, and heatwaves in every corner of the globe during what should be a relatively mild period is cause for serious concern.

And many scientists are taking notice. For example, Omar Baddour, Chief of the WMO’s data division observes an amazing ramping up of extreme weather events worldwide, citing preliminary model assessments in an interview with The Guardian, he notes:

“We need more time to assess whether this is unusual [on a global level] but if you look at the events in individual regions, like the heatwave in Australia or the cold in the US, it looks very unusual indeed. Next month we will publish a major report showing the likelihood of extreme heatwaves is increased 500% [with climate change].”

The shadow climate change casts has grown very long and there is little that has not now been touched by it. But, sadly and unfortunately, even under a regime of full mitigation and adaptation, the worst effects are yet to come. If we are wise, we will do our best to mitigate as much as we can and work together to adapt to the rest.

Hat Tip to Colorado Bob

Links:

The World Meteorological Organization

University of Maine

University of Washington

Japan Meteorological Agency

Lance-Modis

UK Endures Endless Barrage of Storms

Ice-free Season Getting Longer by Five Days Per Decade

Mangled Jet Stream Sparks Drought, Winter Wildfires in California

For Arizona and New Mexico, Climate Change and a Mangled Jet Stream Means Fire Season Now Starts in February

World Food Security in the Cross Hairs of Human-Caused Climate Change

Arctic Wildfires in Winter

California Storms Didn’t End Drought

The Biggest Disaster You’ve Never Heard of

Haze Shrouds Malaysia

Brazil Rations Water in Over 140 Cities

World Begins 2014 With Unusual Number of Extreme Weather Events

Brazil Loses Billions as Crops Reduced By Wacky Weather

Arctic Heat in Winter — February 2 Temperature Anomaly Hits +13 F For Entire Arctic

Heat just keeps flooding into the Arctic. And as late winter progresses to early spring, this inexorable influx of warmth may have profound impacts to both world weather and to the eventual state of sea ice by the end of summer 2014.

After a record warmth event shattered all time high temperatures across Alaska and resulted in melt-spurred avalanches that cut off Valdez from the mainland, heat in the high Arctic continued to intensify through late Sunday. According to reports from The Climate Change Institute, the Arctic temperature anomaly hit +7.07 C (nearly +13 F) above daily averages for the entire Arctic on February 2.

By Monday, this exceptional Arctic heat spike had faded somewhat, dropping to a still extreme +6.14 C (+11 F) above the, already warmer than normal, 1979 t0 2000 average.

Daily temperature anomaly feb 3

(Daily temperature anomaly from the Climate Change Institute. Data compiled from NASA and NOAA global monitors, satellite data and model analysis.)

Note the extraordinarily hot readings of +36 F over a large area of the Beaufort and Chukchi Seas coinciding with almost as extreme instances of warmth along the west coast of Greenland and throughout a region over Svalbard stretching on toward Arctic Russia.

Current temperatures in Svalbard mirror those in Gaithersburg, Maryland, thousands of miles to the south, with both sitting at 32 degrees F according to reports from Weather Underground. Svalbard is less than 600 miles from the North Pole and temperatures there are currently pushing the freezing mark, a level not typically breached in Svalbard until May.

Arctic sea ice near all-time lows

The exceptional Arctic heat has kept both sea ice extent and area near all time lows this winter with NSIDC showing extent and areas measures at their 3rd lowest for this date. Sea ice area anomaly is now 1.014 million square kilometers below the already low 1979 to 2008 mean, a significant negative deviation for winter.

As a result, some areas that are usually frozen solid by this time of year show little or no ice. The Bering Sea, for example, remains about 3/4ths open ocean. This is an extraordinary event as the Bering ice pack is usually approaching the Aleutians by this time of year. But, as we can see in the map below, huge patches of open water for this and other areas remain.

Cryosphere Snow and Ice Feb 3

(Snow and ice extent for February 3, 2014. Note that the ice edge is far behind the 1979 to 2000 average limit line in all basins. Image source: Climate Change Institute.)

With the end of the freeze season about 30 days away, it would take a significant switch to cold to make up for the current ice lag. Meanwhile, Jet Stream models show the pace of heat influx to Arctic regions remaining high at least through the end of this week. Notably, a strong, warm-core high pressure system is predicted to develop in the region of the Bering Strait by Friday. This developing zone is projected to drive yet one more flood of warmth almost all the way to the North Pole:

Warm core high pressure

(Jet Stream model predictions for Friday, February 7th show warm core high pressure system over extreme eastern Russia and Bering Strait. Image source: The University of Washington.)

In this pattern, the polar vortexes remain disassociated from the Arctic, with one being centered over Siberia and the other finding an almost permanent residence near Hudson Bay. It is also worth noting that this Jet Stream forecast also indicates a high likelihood of severe weather for the eastern US by February 7th as well.

Arctic heat likely to continue to shove cold air, instability extreme weather south

Though the polar vortex collapse related Arctic air invasion of the US last week has now mostly faded, as noted above, Jet Stream models indicate continued major Arctic air outflows from the much hotter than usual Arctic into Canada and the US. This continued instability sets the stage for a major battle between hot and cold air as regions southward warm up in anticipation of the advance of spring. The result is likely to bring numerous episodes of severe weather outbursts throughout the month of February. So we cannot rule out strong to extreme rain/snow events, thunderstorms, flooding and potential tornadoes as February progresses. As has been typical with the current Jet Stream pattern, the Central and Eastern US are most likely to be effected by these strong storm events. And, as we have seen with the increasingly severe climate-change driven extreme weather events of the past decade, the potential continues for record or near-record events.

Shifting west, a set of weaknesses in the high amplitude blocking pattern is likely to allow a stream of moisture to filter in over the parched western states. Unfortunately, this rain will probably arrive too little, too late to prevent major troubles for states like California come spring. In short, it would take a major inundation to alleviate drought conditions for the moisture-starved west. And a weakened, but still sputtering, blocking pattern isn’t likely to deliver the kind of moisture needed to end California’s 13 year drought. That said, any relief is likely a welcome change to those living through the worst conditions in at least 4 decades.

No Great Lakes freeze for 2014

In parting, I’ll leave you with a clear sign that, while the heat in the Arctic is plainly historic, the cold it drove into the US this winter was merely a noteworthy after-effect. The Great Lakes which, prior to the mid 20th Century, used to freeze solid almost every year, despite the recent cold snaps, remain ice free over a broad area.

The last year all the Great Lakes froze solid? 1979…

Great Lakes with Substantial Portion still ice-free

(Great Lakes with substantial portion still ice-free. Image source: Lance-Modis)

Links:

Arctic Heatwave Sets off Hottest Ever Winter Time Temperatures for Alaska

NASA: Lance-Modis

The Climate Change Institute

The University of Washington

Weather Underground

NSIDC

Cryosphere Today

%d bloggers like this: