The Ominous Greenhouse Gas Accumulation Continues: Peak Methane Approaches 3,000 Parts Per Billion as CO2 Growth Rate Jumps Higher

The world finally appears like it’s slowly starting to wake up from the grips of a fossil fuel influence-induced fever dream. Slowly, despite endemic political meddling by these powerful entities, some changes are starting to happen. Global carbon emissions growth remained flat during 2014 and likely 2015. Renewable energy adoption ramped up. Some major international commitments to reducing global carbon emissions were made.

But the very pertinent question must be asked — are we waking up fast enough? And the still rapidly growing concentrations of gasses that heat the Earth’s atmosphere would seem to supply the answer in the form of a resounding, thunderous — “NO!”

Another Troubling Methane Spike

On January 8th of 2016, we saw another record methane reading for the global atmosphere. The most recent single point peak for NOAA’s METOP measure hit a new all-time atmospheric high of 2,963 parts per billion or just 37 parts per billion shy of the milestone 3,000 parts per billion threshold.

Peak Atmospheric Methane Levels Approach 3,000 Parts Per Billion

(Another record methane spike rockets its way toward the ominous 3,000 parts per billion milestone in the NOAA METOP satellite array. The location of the current spike appears to be in the region of the Arctic where a number of very large carbon stores are now starting to warm up. Image source: NOAA OSPO.)

As has been typical of this particular sensor array, peak methane readings appear directly over the upper Latitudes of the Northern Hemisphere — hinting that this particular spike may have been generated by some Arctic amplifying feedback related carbon source. It’s also worth noting that the array continues to pick up the overall methane overburden pattern centered atop the Arctic. A troubling overburden that has showed up in a number of sensor arrays over recent years and has been one key bit of evidence pointing toward a potential new trend of amplifying carbon feedbacks in the Arctic.

Atmospheric Methane Averages Continue Measured Upward Trend

In the broader context, we continue to see rising average global methane concentrations after a pause in atmospheric increases during the 1990s through the mid 2000s. This rate of increase is a sign that either new human sources, new global feedbacks from methane sources, or a combination of the two are pushing global totals higher. It is worth noting that the lower Latitude measures like Mauna Loa, however, did not pick up a signal that some kind of major-to-catastrophic environmental methane emission was underway. A situation some observational scientists fear may be possible, but that other, more well-established specialists tend to consider far, far less likely. Regardless of the current scientific conjecture, heightened and rising methane readings in the Arctic remain rather troubling.

To these points, methane readings at Mauna Loa by end of 2015 had hit a range of around 1855 parts per billion even as peak atmospheric averages for the year had hit around 1840 parts per billion. Continuing a general trend of rapid atmospheric methane accumulation of about 7-8 parts per billion per year that started in 2008.

Mauna Loa Methane

(Significant rates of atmospheric methane increase that began during 2008 continue in the ESRL/Mauna Loa measure. Though these rates of increase are troubling, they do not at this time indicate that a major or catastrophic release from the global environment has taken place. Image source: NOAA ESRL.)

Next to CO2, methane generates the second strongest atmospheric heat forcing. Its accumulation in the Earth’s atmosphere since the beginning of major industrialization at the end of the 19th Century has primarily been driven by a number of human sources — chiefly through the activities of coal, oil and gas extraction, industrial agriculture (meat farming), and waste accumulating in landfills. During recent years, there has been some signal that global wetlands — including the thawing permafrost zones of the world — are also starting to contribute to the overall methane load as the world warms up and the carbon cycle starts kicking into higher gear.

Rates of Atmospheric CO2 Accumulation are Also Ramping Higher with El Nino

To this point, rates of atmospheric CO2 accumulation (the primary heat trapping gas in the atmosphere) also appear to be ramping higher coincident with the influence of a monster El Nino now taking place in the Pacific acting together with global greenhouse gas emissions from human fossil fuel burning that remain near all-time record highs. As large regions of the global ocean warm, the ocean’s ability to act as a carbon sink becomes inhibited. In more extreme cases, where the sea surface temperatures of an ocean that’s already saturated with human-emitted carbon become too warm, then CO2 starts to vent back into the atmosphere. And with what is possibly the strongest El Nino on record occurring coincident with a period of massive fossil fuel based carbon emissions, impacts to the rate of atmospheric CO2 accumulation can become quite dramatic.

It’s for this reason that El Nino years in the context of massive, human-based burning can see spiking global CO2 readings. And it appears that just such an event may now be underway.

Mauna Loa 3 ppm CO2 increase december to december

(Atmospheric CO2 levels pushing rapidly above 400 parts per million is the ugly legacy of human-based fossil fuel burning. Most recent two-year section of the Keeling Curve shows a substantial accumulation of CO2 in the Earth’s atmosphere that is well above the current and already very rapid average annual accumulation of 2.2 parts per million each year. Image source: The Keeling Curve.)

According observations taken by Dr Ralph Keeling and fellow researchers at the Mauna Loa Observatory, atmospheric CO2 concentrations jumped by more than 3 parts per million from December of 2014 through December of 2015. This jump in concentration is pretty far in excess of average annual rates of increase in the range of 2.2 parts per million CO2 each year that have been ongoing since the early-to-mid 2000s.

With El Nino still ongoing, we should continue to see such ocean-warming related impacts on atmospheric carbon dioxide levels continue into 2016. Impacts that may be further enhanced as another strong westerly wind burst along the Equatorial Pacific will likely serve to reinvigorate the current El Nino — making its already substantial influence more long-lasting.




The Keeling Curve

CO2: The Principle Control Nob Governing Earth’s Temperature

A4R Global Methane Tracking

Hat Tip to mlparrish

Hat Tip to islandraider




Ominous Arctic Methane Spikes Continue — 2666 Parts Per Billion on October 26th

Imagine, for a moment, the darkened and newly liberated ocean surface waters of the Kara, Laptev, and East Siberian Seas of the early 21st Century Anthropocene Summer.

Where white, reflective ice existed before, now only dark blue heat-absorbing ocean water remains. During summer time, these newly ice-free waters absorb a far greater portion of the sun’s energy as it contacts the ocean surface. This higher heat absorption rate is enough to push local sea surface temperature anomalies into the range of 4-7 C above average.

Remnant Arctic sea surface heat

(Remnant extreme heat at Arctic Ocean surface on October 8, 2014. Extraordinary warmth in the range 0f 4-7 C above average is due to recent loss of summer sea ice in the Kara, Laptev, East Siberian and Beaufort Seas. Newly exposed dark surface waters absorb more of the sun’s rays which results in a highly visible temperature anomaly. Image source: Climate Reanalyzer. Image archived by: Arctic News.)

Some of the excess heat penetrates deep into the water column — telegraphing abnormal warmth to as far as 50 meters below the surface. The extra heat is enough to contact near-shore and shallow water deposits of frozen methane on the sea-bed. These deposits — weakened during the long warmth of the Holocene — are now delivered a dose of heat they haven’t experienced in hundreds of thousands or perhaps millions of years. Some of these deposits weaken, releasing a portion of their methane stores into the surrounding oceans which, in turn, disgorges a fraction of this load into the atmosphere.

The rate of release intensifies throughout summer. But during the Arctic Fall, it reaches a peak. Then, as sea ice begins to re-form over the surface waters, a kind of temperature inversion wedge develops. The surface cools and the ice solidifies — forming an insulating blanket, trapping heat. The insulating layer, in turn, pushes the anomalously hot mid level waters toward the bottom. This process delivers a final and powerful dose of heat to the Arctic Ocean bottom water and sea bed.

Methane release rates spike as the methane flooding up from the sea bed squeezes out through cracks in the newly forming ice or bubbles up through open waters just beyond the ice edge.

Observed Arctic Methane Over-Burden

During recent years, a troubling methane over-burden has been observed in the atmosphere above these regions during the months of September through November. Dr. Leonid Yurganov — a researcher at the University of Maryland — has been using the IASI sensor to record these events. Last year, he developed this map of September through November methane readings for the 2009-2012 period:

Arctic methane concentrations Sep-Nov 2009-2012

(Highest lower troposphere global atmospheric methane readings were found in the region of the East Siberian, Laptev and Kara seas during September through November of 2009 through 2012. Data provided by IASI. Image source: Dr. Leonid Yerganov via Arctic News.)

The readings above show near-surface averages over a three month period in the regions of highest release. Note that highest methane levels occur over coastal Siberia and in the above ocean zones of near-Russia Arctic Ocean waters.

These measurements have been ramping higher in recent years with near-surface readings in the range of 1950 to 2000 ppb now common for the months of September through November in the areas affected (for comparison, global surface averages are now in the range of 1840 ppm).

By themselves, these measurements are evidence of a substantial Arctic methane release. But further up in the troposphere — at the mid cloud level — even higher levels of methane have been recorded.

For as methane releases from the sea and land surface, it becomes trapped in the mid-cloud layer. There, a sandwich of cloud and moisture form a cap beneath which methane tends to concentrate. In this layer, readings can be quite a bit higher than surface measurements. Recent years have shown numerous instances where methane readings in the mid-cloud layer spiked above 2300 parts per billion.

Last year during September, the now annual plume of methane emitting from the Arctic Ocean pushed readings as high as 2571 parts per billion at this level of the atmosphere. It was a reading more than 700 parts per billion above the global surface average. A spike fueled by the anomalously high rates of methane emission from the Arctic surface waters and Siberian tundra during the Fall of 2013.

This year, despite extraordinarily spotty coverage due to cloud interference, the METOP sensor found Arctic methane concentrations in the range of 2666 parts per billion in the mid cloud layer. The spike occurred just this past Sunday and exceeds the September 2013 spike by 95 parts per billion — a level more than 800 parts per billion above current global surface averages.

Arctic methane spike 2666

(Arctic methane spikes to 2666 parts per billion in the mid-cloud layer on Sunday October 26. Image source: OSPO/METOP.)

In combination, observations of a rapidly warming Arctic Ocean and observations of Arctic methane readings between 6 and 60 percent above the global average in near surface regions and in the mid cloud layer are a clear signal that human-caused Arctic warming is forcing an ever-greater methane release. To a greater and greater extent, large carbon stores are being weakened and tapped by the various mechanisms that are an up-shot of human warming. The location of these large-scale releases, as observed in the satellite record, is confirmation of ground and ocean based observations conducted by Arctic researchers such as Dr. Semiletov and Shakhova. And the releases themselves may well be some validation of our more dire concerns.

This new spike is yet more evidence of a sizeable, anthropogenic-spurred, release that is impacting not only regional methane levels, but global levels as well. Whether this newly observed release is part of a slow global response to the initial human heat forcing — one that will take centuries to fully emerge — or is part of a much more rapid and dangerous response to an also very rapid human heat forcing is now unclear.

What is clear is that feedbacks to the human heat forcing are now starting to become plainly visible. That they are providing evidence of a stronger release from some sources on a yearly basis. A troubling amplifying feedback to the already dangerous and extraordinary human emission. One that should serve both as a warning and as a spur to reduce and eliminate human greenhouse gas emissions from all sources and to switch energy systems away from fossil fuels as swiftly as possible.



Climate Reanalyzer

NOAA’s Office of Satellite Operations

Arctic News

Dr. Leonid Yurganov

%d bloggers like this: