Advertisements

This Week’s Climate and Clean Energy Brief: Amazon on the Brink, Tesla Competitors Emerge, Civilization Collapse Report, Trump Trashed on Environment, Utilities Partner with EVs

There was quite a lot that we missed in the climate and clean energy world this week. So, in an effort to catch up, we’re going to provide you with a handful of the major highlights. But before we continue, I’d like to also mention that a major and potentially weather event with climate change related influences is now starting to slam the U.S. Northeast with high winds, waves and heavy surf.

We’re compiling a report for later this afternoon on yet one more extreme weather event in a long procession. So watch this space.

The Amazon Rainforest is on the brink of collapseFor a number of years now, we’ve been covering the dual impacts of human-caused climate change and deforestation on the Amazon Rainforest. One of our expert commenters, Umbrios, is a Brazil native and regularly provides updates in the threads below. So those who’ve followed along here have known for a while now that the Amazon is in serious trouble.

Rising temperatures are increasing instances of wildfires within the typically wet forest. Meanwhile, encroaching farms and settlements have cut and burned through the lush jungle, invading it with roads and threatening to choke off what is one of the great ecological treasures of our world.

(A combination of slash and burn deforestation, droughts, rising temperatures and wildfires are pushing the Amazon Rainforest to the brink. A new study finds that human encroachment and climate change are on the verge of transforming half of the Amazon into less productive grasslands. Image source: The Union of Concerned Scientists.)

The concern is that the Amazon, which is under increasing threat like so many other key environments around the world, reaches a tipping point where much of it is transformed into less productive and less helpful Savannah. Where that point rests on the temporal and spatial scale has long been a subject of debate. But a new study finds that it’s much closer than many had feared.

In total, about 17 percent of the Amazon has been deforested. And what the study found was that, due to continued rising temperatures associated with human caused climate change, only another 3 percent deforestation would be enough to transform fully half of the Amazon into Savannah. In this case, global warming is acting in concert with local clear-cutting to provide a dual threat to this great forest that is home to 14 million species and is one of the largest remaining carbon sinks on the planet.

Tesla competitors emergeOn the sustainability side of our ongoing story of tragedy, hope and crisis, we find that a number of automakers are emerging to challenge Tesla’s all-renewable business model. Unfortunately, so far, most automakers are confronting Tesla with single model designs rather than a full transformation of business strategies. But what is encouraging is the rising quality of EVs entering the production fleet.

A good example is this week’s announcement by Jaguar that its I-PACE EV can out accelerate some versions of the Tesla Model X. I-PACE is an EV sporting a 90 KW battery pack and a 240 mile range. It’s priced between 87,000 and 102,000 dollars (US) and it has a stated acceleration of 4.5 seconds from 0-60 mph. This makes it a peer or a near peer to the Tesla Model X which starts at 85,000 dollars, has an all electric range of between 257 and 289 miles, and can accelerate from 0-60 in 4.9 to 2.9 seconds (P100D).

(Jaguar promotes smaller, long-range, high performance, high-price I-PACE electric vehicle as competitor to the Tesla Model X. But is Jaguar really serious about transformational EV production? Or is it just trying to slow Tesla’s all-renewable Juggernaut down? Image source: Jaguar.)

The I-PACE is, however, smaller than the X. Weighing less, it likely relies on this lower mass to match Model X acceleration and range due to Tesla’s superior battery energy density. But what is clear is that Jaguar is trying to compete with Tesla on turf that the all-electric automaker has long dominated.

Jaguar claims that the I-PACE is part of a transformational strategy. But a single EV entry is hardly tranformational compared to Tesla’s larger EV-only production chain and design path. So the question for renewable energy supporters is — does this Janguar really help to speed the clean energy transition, or is it just another rock a primarily fossil fuel based motor company is throwing into the road to delay Tesla? Time, and the number of EVs Jaguar produces (both as models and as single model production) will tell.

Scientists are concerned about the risk of civilization collapse due to climate change and how harmful political ideologies are making matters worse. So my background is one of emerging threats. I worked in the U.S. military, as a member of the U.S. Navy’s DOD force protection group, and as Editor for Emerging Threats at Jane’s Information Group. And it has long been my goal here to analyze climate change impacts in the frame of a systemic threat that increases civilization collapse pressure.

In the military context, climate change is often described as a Threat Multiplier. Rising global temperatures and associated sea level rise, growing season disruption, and increasingly severe weather events can severely damage infrastructure or tear at the fabric of societies — generating conditions of mass desperation the world over. Those focused both on humanitarian relief efforts, often a military mission, and on combating rising instances of extremism (which are often fueled by economic desperation or inability to access shelter, food, and water) are now very concerned about the impact of climate change disruptions on global stability.

(Illustration of instances where climate change has multiplied instability. Note that effects range well outside the regions indicated in the above graphic. Image source: Climate Change as a Problem of National and International Security.)

Unfortunately, these disruptions do not always occur far from home. And no nation has a viable defense against harms associated with climate change. Over the past year, the U.S. has seen some of the most damaging extreme weather events in its history. And most of these have been scientifically linked to climate change. One instance — Maria’s strike to Puerto Rico — resulted in a systemic collapse that has yet to be fully repaired. Part of this failure is due to the severe nature of the climate change enhanced storm. But another aspect of the U.S.’s failure to support Puerto Rico was the fact that the Republican Party was held in the grips of the harmful ideology of climate change denial, jingoism, and anti-government thinking.

This ideology, which has captured so much of the political state of play of one of the world’s greatest nations, cripples responses to the growing existential threat of climate change. It denies both mitigation in the form of renewable energy funding even as it denies the necessary level of support in response to the disasters that climate change produces in ever-greater numbers and on increasingly destructive scales.

The new climate change collapse threat study discussed above is being conducted to examine the societal risks of climate change in light of political capture by harmful ideologies that fail to recognize realities on the ground as they emerge. We’ll be following it here with interest.

Trump trashed on terrible, disjointed, reckless environmental policies. Pretty much every thinking, rational person in the free world has now been woke to the fact that Trump cares little for the safety and security of the American people and sees the office of the Presidency primarily as a means to advance the personal interests of himself, his family, and his close associates. Never before has an Administration acted in so corrupt a fashion or courted so many nefarious entities in a brazen effort at self-promotion, damn all public consequences.

“Over and over again, the Trump administration has put the profits of multinational polluters over the health and well-being of everyday Americans,” — Eric Schneiderman, New York’s attorney general.

One of Trump’s first harmful and self-serving actions was raise Scott Pruitt to head of the Environmental Protection Agency. An unprecedented assault of critical safety-related protections of the American citizenry soon followed. An assault led by policies promoted, through Pruitt, not just by his allies in the coal, oil, and gas industry; but by practically every harmful polluting industry.

(The Center For Biological Diversity has filed 57 lawsuits against the Trump Administration. And it just just one of many agencies leveling an all out response to Trump’s assault on the environment.)

The Trump Administration has tried to enable the dumping of dental mercury into water systems, to allow the use of a substance harmful to child brain development, to enable the environmental release of such dangerous toxins as lead, to let gas companies leak poisonous and climate change enhancing methane plumes into the local environment, to allow trucks and automobiles that spew smog, to halt the protection of key species like bumblebees, and to roll back the Clean Power Plan, the Clean Air Act, and the Clean Water Act.

Such harmful and irresponsible actions have resulted in the Administration being hit by scores of court cases. Rick Sniedermann, the New York Attorney General, alone has produced 50 environmental lawsuits aimed at preventing the roll-back of key protections. And in many instances, the Administration’s pro-polluter policies are suffering serious losses in court.

Utilities partner with EV manufacturers. There’s an amazing clean energy synergy that’s yet to be fully leveraged. It’s a case where wind, solar, other clean energy sources, EVs and EV batteries are capable both of reducing emissions and of creating valuable new energy markets. PG&E apparently recognizes this opportunity and is more than willing to partner with automakers to incentivize it.

BMW and PG&E are offering a 10,000 dollar rebate for the BMW i3 to utility customers. The offer is beneficial to those purchasing an EV because it can reduce the cost of a 44,000 dollar EV to 24,000 after all state, federal, and utility/automaker rebates.

(PG&E power mix shows potential for substantial greenhouse gas emissions reductions for EV owners who purchase electricity from the utility vs those who own a gasoline or diesel-burning vehicle. At some point, PG&E may well considering changing its name to Pacific Electric. As the gas portion is increasingly less relevant to its energy portfolio. Image source: PG&E.)

The utility benefits due to increased electricity demand coming from the EV user. And BMW benefits from the marketing provided by PG&E which helps it to clear old models from its inventory and pave the way for more advanced electrical cars.

It’s also worth noting that PG&E generates more than 70 percent of its electricity from non-carbon-emitting sources and it has a goal for continuing to expand its clean energy allotment. So EV owners who are PG&E customers are engaged in substantially reducing their transportation based carbon emissions over time.

Advertisements

Endless Hot Summer of 2016 — Heavy Arctic Sea Ice Losses, Record Temps for Alaska and Hermine’s Rains Barreling In

From the Arctic leveling yet another challenge to all-time record lows for sea ice, to a ridiculously long spate of hotter-than-normal temperatures for Alaska, to Hermine — which appears to be readying to drop 20 inches of rain over parts of the Southeast — there’s a ton of concerning climate news today. Let’s get to it.

Storms, Mega-Dipoles, and Shattered Sea Ice

A few weeks ago, big storms of near-record intensity started ripping through the Arctic. These storms saw numerous pressure dips into the 960-millibar range. These severe systems raked the ice with gale-force winds, heavy seas, and rainfall. A vulnerable ‘arm’ of ice extending out from the central Arctic toward Wrangel Island began to disintegrate under these multiple insults.

Melt Lobes

(The two frames above provide a good visual of the most vulnerable Arctic Ocean melt regions for early to mid-September. These primarily compose the Siberian side of the Arctic and run on toward the Pole. A mostly detached and storm-battered region of sea ice north of Wrangel Island [left frame] is likely to see continued losses through mid-September. At the same time, another vulnerable lobe of ice extending from the Pole to the Laptev Sea [right frame] is seeing substantial thinning. As southerly winds pick up later this week over the Barents and Greenland Seas, the Atlantic side of the Arctic [lower right portion of right-hand image] may also take a final blow or two before refreeze starts to kick in. Images provided by: LANCE-MODIS. Date for images: September 1, 2016.)

Meanwhile, another melting wedge running out from the Pole toward the Laptev Sea was increasingly wracked, showing severe losses along the ice edge even as large openings expanded, stretching in toward the Pole. As a result, major late-season drops in Arctic sea ice area and extent measures began to show. Unfortunately, the damage had only just begun.

Last week, this stormy pattern saw the added wrinkle of a strong high-pressure system in the range of 1040 mb intensity forming over the Chukchi and Beaufort Seas. This new system created an extreme pressure gradient between itself and the storms raging near the Pole and on the Atlantic side. Expert Arctic sea ice observer Neven aptly coined this condition the 2016 Mega-Dipole.

Neven's Mega-Dipole

(Neven’s Mega-Dipole featured a burly high-pressure system over the Pacific side of the Arctic as strong storms continued to rage across the Atlantic side on August 29th. The combined force of these systems helped further damage the already weakened sea ice as warm winds blowing between them pulled heat up from Siberia, generating a late-season temperature spike over the Arctic Ocean. Image source: Earth Nullschool.)

Strong winds blew between the juxtaposed low- and high-pressure systems. This convergence sucked an intense pulse of warm air up from the south, not only providing a severe blow to the ice from gales and waves, but also injecting a surge of late-season heat into the High Arctic. In addition to the damage being done to the two melt arms, the whole of the remaining contiguous ice was driven in one big push toward the Canadian Arctic Archipelago — a shove that has now likely resulted in the complete separation of the thinned near-Wrangel ice from the pack even as large polynya (or holes) opened up within 10 kilometers of the Pole.

Late Season Arctic Heat Spike

(A late-season temperature spike in the region above 80° North Latitude is helping to generate a surge in ice losses during early September. Image source: DMI.)

All this pushing and shoving and storming and low and high pressuring in the context of never-before-seen Arctic warmth has brought most of the major measures within range of beating out 2007 as second-lowest extent on record by mid-September. Meanwhile, a few of the measures are now making serious challenges to the 2012 record-low marks.

Over the coming days, the various high-pressure systems are predicted to shift more toward the Siberian side of the Arctic. Meanwhile, storms are expected to gather around Greenland, with some hitting the 970 to 980 mb range as they circulate up from the North Atlantic. Warm air is expected to funnel in from the Barents and Greenland Seas even as the region north of Greenland starts a cooling trend.

Sea Ice Extent Measures

SSMI

(Japan’s JAXA monitor shows [top left] sea ice extent beating out 2007 in the daily extent measure. Meanwhile, DMI’s EUMETSAT-based monitor shows [top right] extent falling to near the 2012 line. Sea ice area in NERSC’s SSMI monitor [bottom] over recent days comes uncomfortably close to the 2012 line.)

This hot-cold juxtaposition combined with ongoing pressure from storms, winds, and waves should continue to damage and expel the most vulnerable sections of ice in the near-Pole region and on toward the Laptev as well as the detached ice floes near Wrangel Island. Additional losses in the range of 150,000 to 300,000 square kilometers or more over the coming seven days are entirely possible. If this happens, it would be a rather severe rate of loss for early September all on top of a year that, on average so far, has seen lowest-recorded sea ice extents for the January-to-August timeframe and remains on track to hold that low mark through year-end.

An Amazingly Hot Year for Alaska

We should be very clear that despite all the storms and other weather drama going on over the Arctic Ocean, the primary cause for severe sea-ice losses is a record-hot world in which a lion’s share of the temperature rise is occurring over the far northern latitudes. And not too far from the melting Arctic sea ice, another Arctic region is also getting a big dose of this record heat.

This year, Alaska appears set to exceed all previous marks for warmest temperatures ever recorded during an annual period for the state:

(Through August 27, Alaska had experienced zero cooler-than-typical days, 22 days of relatively normal temperatures, and 218 days in which temperatures were in the top third of all daily averages. It’s a record that makes previous all-time hot years 2014 and 2015 look somewhat cool by comparison. Image source: Climatologist Brian Brettschneider.)

As climatologist Brian Brettschneider recently found, above, the number of days featuring temperatures in the top third of measurements included nearly nine out of ten of all days so far during 2016 and through August 27th. This extreme Alaskan heat has already exceeded the number of warmer-than-normal days during record-hot years 2014 and 2015. With four months in 2016 still remaining, and with the Arctic Ocean opening up to its north, it appears that Alaska is about to blow these previous record years out of the water.

Alaska in hot water

(Sea-surface temperatures surrounding Alaska are between 3 and 5 degrees Celsius above average. Such extreme ocean heat should help keep temperatures abnormally warm over the state for at least the next couple of months and continue to add to a period of record heat during 2016. Note that the graphic above shows temperature departures from normal ranges, not absolute temperature values. Image source: Earth Nullschool.)

La Niña is settling in, though. This would normally provide some hope that temperatures in Alaska might start to fall off a bit, but right now, the local ocean waters surrounding Alaska are extraordinarily warm. It’s as if the Pacific ‘hot blob’ that plagued the U.S. west coast in 2014 and 2015 has shifted north toward Alaska in 2016. This climate change-related warm-water feature is likely to continue to create a warm surface temperature bias for the state over the next couple of months.

20 Inches of Rain Possible for Parts of the Southeast

Moving south and away from the various heating and melting in the Arctic, we find yet another big rainstorm brewing in the moisture-stacked atmosphere of the Gulf of Mexico. In this case, unlike the big deluge that roared through Louisiana during early August, this collection of towering thunderheads has a name — Hermine.

Hermine 4

(Hermine, which may produce severe flooding over the U.S. southeast in the coming days, barrels toward Florida in this National Hurricane Center satellite animation.)

Punching up to minimal hurricane status early in the afternoon (EST) on Thursday, Hermine is predicted to make landfall along the big bend of Florida (pushing in 3-8 foot storm surges), track north into Georgia and then run up along coastal South Carolina, North Carolina and Virginia. Along this path, 4-10 inches of rainfall are expected with local amounts hitting as high as 20 inches.

To this point, The National Hurricane Center notes:

Hermine is expected to produce storm total rainfall accumulations of 5 to 10 inches over portions of northwest Florida and southern Georgia through Friday, with possible isolated maximum amounts of 20 inches. On Friday and Saturday, Hermine is expected to produce totals of 4 to 8 inches with isolated maximum amounts of 10 inches possible across portions of eastern Georgia, South Carolina, and eastern North Carolina through Saturday. These rains may cause life-threatening flash flooding.

As with past rain-bomb events this year, Hermine is churning through a record-hot atmosphere and feeding on overall record-high moisture levels. Sea-surface temperatures over the Gulf of Mexico and particularly over the Gulf Stream region of the Atlantic near the eastern seaboard are extraordinarily hot. Ocean surfaces off coastal Virginia, for example, now rival those along the eastern Gulf at near 30 degrees Celsius (86 F). The result is that a ton of storm energy in the form of heat and moisture is blanketing a big swath from Florida to the U.S. northeast. In this heat- and moisture-rich environment, even the high forecast rainfall amounts have a potential to be exceeded.

Hot Water Gulf Stream

(Ocean temperature and currents map for 8/30/16. Water temperatures in the Gulf Stream off the U.S. east coast are near 30 C [86 F] or about 4 C hotter than normal. This means there’s almost as much potential storm fuel for a hurricane off the eastern seaboard as there is in the northeastern Gulf of Mexico — fuel that can both provide energy for extreme rainfall events related to Hermine and for a possible rapid reintensification. Image source: Earth Nullschool.)

Moreover, Hermine is predicted retain a degree of strength over land due to this fuel even as it is expected re-emerge over water along the North Carolina sounds and then track toward the hot Gulf Stream. Along this track, the storm is expected to restrengthen and lash coastal North Carolina, Virginia, Delaware and New Jersey before it skirts Long Island and Massachusetts. Given the hot ocean waters, some models even show Hermine bombing into a significant storm with ECMWF model runs earlier today highlighting a potential for a 969 mb storm center off Delaware on late Saturday.

Fortunately, the storm center is currently predicted to remain offshore after re-emerging over open waters on Saturday. However, the large circulation of the system means that any reintensification will likely see some of the storm’s related rain bands swirling out over the mid-Atlantic and northeast coasts.

******

So from big sea ice losses to record heat in Alaska, to what’s shaping up to be another extreme rain event for the U.S. southeast, the climate hits just keep on coming. It’s all a part of the context of climate change that’s been steadily settling in over the past few decades, which paints a rather obvious picture of ongoing climate shifts and alterations to expected weather patterns — to include the loss of sea ice, the intensity of heat over Alaska and the severity of rains falling out during storms like Hermine.

Links:

Warm Arctic Storm Tears Sea Ice to Shreds

LANCE-MODIS

2016’s Mega-Dipole

Earth Nullschool

DMI

JAXA

SSMI

Brian Brettschneider

The National Hurricane Center

Dan Leonard

Hat tip to Colorado Bob

Hat tip to DT Lange

Hat tip to DavidlWindt

Hat tip to Jay M

Hat tip to the Arctic Sea Ice Forum

Hat tip to Greg

Warning From Scientists — Halt Fossil Fuel Burning Fast or Age of Superstorms, 3-20 Foot Sea Level Rise is Coming Soon

First the good news. James Hansen, one of the world’s most recognized climate scientists, along with 13 of his well-decorated fellows believe that there’s a way out of this hothouse mess we’re brewing for ourselves. It’s a point that’s often missed in media reports on their most recent paper — Ice Melt, Sea Level Rise, and Superstorms. A paper that focuses on just two of the very serious troubles we’ll be visiting on ourselves in short order if we don’t heed their advice.

The way out? Reduce global carbon emissions by 6% each year and manage the biosphere such that it draws carbon down to 350 ppm levels or below through the early 22nd Century. To Hansen and colleagues this involves a scaling carbon fee and dividend or a similarly ramping carbon tax to rapidly dis-incentivize carbon use on a global scale. Do that and we might be relatively safe. Safe, at least in the sense of not setting off a catastrophe never before seen on the face of the Earth. That’s pretty good news. Pretty good news when we consider that some of the best climate scientists in the world see an exit window to a hothouse nightmare we’re already starting to visit upon ourselves.

The bad news? According to Hansen and colleagues, even if we just continue to burn fossil fuels and dump carbon into the atmosphere at a ‘moderate’ pace some of the terrifically catastrophic impacts of human caused climate change are not too far off.

A Moderate Pace of Burning

The new Hansen paper takes a look into both our geological past and our climate future in an attempt to give us an idea what may be in store. In this scenario, model, and paleoclimate based study, Hansen and colleagues assume two things about global human civilization. The first assumption is that we don’t follow the worst case, business as usual carbon emissions policies that lead to around 1000 ppm CO2 in the atmosphere by 2100. It is instead assumed that some effort is given to reducing coal, oil, and gas consumption. That some renewable energy, increased efficiency and behavior changes replace a significant portion of future fossil fuel emissions. But the most effective solution — a complete transition away from fossil fuel burning over the next few decades — fails.

A1B1

(A1B is a ‘moderate’ emissions scenario that, according to model essays, is likely to see between 2.5 and 3.5 C warming by the end of this Century and around 700 ppm of CO2 accumulation. That is, without the kind of major ice sheet response indicated in the new Hansen study. Image source: Knutti and Sedlacek.)

As a result, we end up with around 700 parts per million carbon dioxide in the atmosphere by 2100. In such a case we’ve followed what the IPCC community terms as the A1B or ‘moderate’ fossil fuel emissions scenario.

A Question of Melt Rate Doubling Time

It is in this context that the Hansen paper attempts to determine a key factor that will have wide-ranging impacts on ocean health, the continued existence and lifespan of coastal cities, and on the severity of the weather itself. That factor is captured by a single simple question — if we continue a moderate pace of fossil fuel burning, then how rapidly will ice sheet and ice shelf melt double?

To Hansen this is a critical question. One he has already done quite a bit of work to answer over recent years. And according to his findings it looks as if land ice melt rates for both Greenland and West Antarctica could now be doubling every 5-20 years. It’s a doubling rate that may find a historical allegory in the milder yet still intense glacial outflows of times long past. And it’s something that, according to Hansen, is being directly driven by an extreme pace of human-based greenhouse gas accumulation.

The Eemian — Significant Sea Level Rise and Terrible Storms Under Far Lower CO2 Forcing

To this point, Hansen’s new paper takes a dive into the paleoclimate study of an ice age interglacial that bears some stunning similarities to our own, human warmed, time period. He looks at the Eemian, a warm period that occurred 130,000 to 115,000 years ago. A period that featured temperatures in the range of 1-2 C above 1880s values (we’re in the process of hitting 1 C above 1880s values this year). A period in which CO2 levels were in the range of 285 parts per million (about 15 parts per million higher than the Holocene average before humans spiked that level to 400 parts per million during recent years). And a period that, according to Hansen’s broad study of past research, included numerous Heinrich type glacial outburst and melt events.

Back then, at 285 parts per million CO2 levels, seas were as much as 5-9 meters (16 to 30 feet) higher than they are today. The global climate, on the other hand, was much stormier. For two Heinrich type events that Hansen investigated were found to have dramatic impacts on severe storms in the North Atlantic during the Eemian. Hansen found large boulders propelled up onto the islands of Bermuda and the Bahamas by what appear to be powerful storm waves. Hansen also noted chevron shaped wave channels carved into the calcified sand beds in the Bahama Island Chain.

Heinrich Event

(Heinrich events included major glacial outflows like the one seen here at Jacobshavn, Greenland. Note the significant ice volume outflow through the channel at center frame. Also note the white dots in Baffin Bay indicating ice berg discharge. For reference, bottom edge of frame is about 100 miles. In past Heinrich Events outflows like the one seen above hit high gear as glaciers released armadas of ice bergs into the oceans which generated ocean and atmospheric changes. As the ice bergs melted, they deposited rocks on the sea bed. These piles of ice raft debris then became a signature geological feature of Heinrich events in the ancient past. Image source: LANCE MODIS.)

It paints an overall picture of very stormy weather in the North Atlantic as a result of these Heinrich ice sheet melt episodes affecting Greenland and West Antarctica. These melt events drove fresh water out into the North Atlantic and the Southern Ocean at the rate of about 0.5 to 1 meters of sea level rise per century. The expanding cold, fresh water along the surface zones in the upper latitude waters shut off heat exchange between the ocean and the atmosphere by generating a stratified ocean state. This fresh water wedge interrupted the plunging of heavier, salt-laden waters in the North Atlantic and the Southern Ocean. A loss of heat exchange that resulted in the cooling of airs directly over the fresh water outflow pools.

Meanwhile, since heavy, saltier waters were no long diving to the ocean bottom in these regions — broader ocean circulation was interrupted. As a result, heat from the equator was no longer traveling poleward. The equator warmed. The cold, fresh water outflow regions cooled. And this high temperature gradient subsequently became a powerful storm generator — providing extreme baroclinic potential energies for the storms that likely reshaped the ocean bottom and deposited massive boulders upon islands throughout the North Atlantic.

It’s worth noting that the 5-9 meter sea level rise during the Eemian occurred in the context of global temperatures that are now similar to our own (1-2 C above 1880s values). But it’s also worth considering that the underlying CO2 and greenhouse gas conditions for the current age are far, far worse. Peak global CO2 during the Eemian never hit higher that 285 parts per million. For the Anthropocene age we are now leaving the 400 parts per million CO2 level in the dust. Meanwhile, the pace at which we are warming is also more than 10 times faster than the pace of warming to peak Eemian heat values. And it’s these two factors — an extreme greenhouse gas overburden combined with a very rapid pace of warming that has Hansen and colleagues very concerned about our climate situation over the next 10-80 years.

Land Ice Below Sea Level — Amplifying Feedback For Melt

Turning to the current day, there’s a growing number of reasons why we should be concerned that rapid land ice melt, large fresh water outflow to oceans, and resulting superstorms could be in our future. First, we’ve learned that the topography of Greenland and Antarctica include numerous channels that tunnel deep into its great glaciers at depths well below sea level. When oceans warm, and they’re warming as you read this, the submerged, sea-facing slopes of glaciers are confronted with more and more heat gnawing away at their under-bellies. Just a 0.1 C increase in water temperature can melt away a meter of ice over the course of a year. Multiply that by glaciers with faces that are submerged hundreds of feet deep whose sea fronting cliffs extend for many miles and you can end up with quite a lot of melt due to very little warming. As more of the undersides of glaciers melt, more of the water tunnels inland and large masses of ice are rafted away from the central ice exposing still more of the land anchored ice to a warming ocean flood.

image

(Image from Hansen Paper shows how land ice melt generates ocean stratification which is an amplifying feedback that enables ocean bottom warming and more land ice melt. Note — AABW stands for Antarctic bottom water, NADW — North Atlantic down welling. Image source: Ice Melt, Sea Level Rise, and Superstorms)

As bad as this dynamic may sound, the process includes one more wrinkle that makes it even worse. As the undersides of ice shelves erode and more fresh water laden ice bergs are pulled out into the ocean, these ice bergs begin to melt en mass. This massive ice melt develops into an enormous and expanding pool of fresh water at the surface. And its this troublesome demon that traps heat in the deeper ocean levels. So, in other words, as the ice from the land glaciers floats away and melts it traps and focuses more heat at the base of these great glaciers. It’s an amplifying feedback. A very serious kind that doesn’t even require the human forced kick to create severe trouble. One that during the Eemian really wrecked the weather and caused massive surges in ocean height.

It’s a process that Hansen and his colleagues believe make both Greenland and West Antarctica very vulnerable. A process that could, when combined with the high velocity human heat forcing, produce melt rates that double every 20, 10 or even every 5 years. But of the two — Greenland or Antarctica — which is worst off?

Greenland topography

(Topographic map of Greenland sans its great ice sheet. Most of central Greenland’s mass is now below sea level. It’s a basin that now holds a miles high ice mountain. Various channels allow ocean water access to the central ice mass should the channel openings melt due to warming oceans. Such an invasion could set off a rapid sea level rise driven by Greenland melt. Image source: Livescience.)

Greenland, for its part, is little more than a great Archipelago held together by its stunning ice mass. Remove the ice and the interior of Greenland would flood, leaving a ring of islands as a final remnant. Though deep, most of these channels run up slope. And this feature, according to the Hansen study, may be one saving grace for potential Greenland ice melt pace. Up slope channels limit the impact of basal melt by serving to check rates of catastrophic destabilization. So though Greenland is certainly vulnerable to ice melt due to the fact that many channels cut hundreds of feet below sea level and into the island’s glacial heart, it is not as vulnerable as West Antarctica.

There, many channels cut deeper beneath the Antarctic ice mass. But not only are they below sea level by hundreds of feet as with Greenland, they slope down. They slope down and not for just a little ways under the ice sheet — some of these ocean heat skids extend in down-sloping fashion for hundreds of miles beneath the Antarctic ice. The result is a kind of skid, that once unlocked by initial melt, can continue to expose larger and large chunks of bottom ice to the warming ocean. Allowing, ultimately, the creation of new warming seas underneath the ice and floating it away in very rapid fashion.

In West Antarctica, ice shelves facing the Weddell and Ross seas both feature these dangerous retrograde slopes. In East Antarctica, the Totten Glacier is likewise vulnerable as are many other glaciers surrounding the vast periphery of Antarctica.

Retrograde slope Ross ice shelf

(Retrograde slopes behind ice sheet grounding lines are just one reason why Antarctic land ice is so unstable. Image source: Ice Sheet Mass Balance and Climate Change.)

Finally, in addition to being surrounded by the warming, deeper waters of the Southern Ocean, in addition to featuring dangerous retrograde slopes that channel warming sea water further and further inland and beneath the ice sheets, West Antarctica itself sits on a geological hot bed. Though not mentioned in the Hansen study, recent work also highlighted that West Antarctica rests atop a geologically active zone that had formed numerous sub-glacial lakes warmed by geological activity. This added geological heat makes West Antarctica that much less stable — an instability that when given the shove of human heated oceans is leading the Larsen B Ice Shelf to completely collapse by 2020. It makes Antarctic land ice that much more vulnerable to the added heat human beings are forcing into the oceans and opens up the ominous possibility that melt rate doubling times for West Antarctica could become quite extreme indeed.

Modeling Land Ice Melt’s Impact in the 21st Century — Facing A Coming Age of Superstorms

So what does all this mean? In the worst case (5-10 year melt rate doubling times), it’s possibly 3 meters of sea level rise by mid Century, perhaps 7 meters by end Century under business as usual fossil fuel emissions. Even in the more moderate cases (10-20 year melt rate doubling times), 1 meter of sea level rise by mid Century and 3 meters or more of sea level rise by end Century is not entirely out of the question, according to Hansen’s new research. These potentials are markedly different than the more conservative rates outlined by IPCC which is still calling for a less than 1 meter sea level rise under even the worst case human carbon emissions scenarios (1000 parts per million CO2, in the range of 1200 ppm CO2e).

So much fresh water hitting the oceans would cause a rapid stratification. A rapid loss of ocean to atmosphere heat exchange in the regions impacted. A train wreck of heat backing up at the equator. Such a train wreck would result in temperature extremes and gradient differences that would make the Eemian Heinrich events (mentioned above) seem moderate and slow by comparison.

Hansen has been working on global atmospheric models for tracking these events for a number of years now. And this new study is an improvement on his earlier, model-driven “Storms of My Grandchildren” work. Hansen’s new model runs are imperfect simulations of what may happen given large melt pulses from Greenland and Antarctica. The models, according to Hansen, mix the ocean water too much, reducing the overall impacts of stratification through the mechanism of the fresh water wedge. However, even with this imperfection, the temperature gradients displayed by these models are absolutely stunning. A clear warning to anyone who still wants to keep burning fossil fuels that they’re really grabbing the dragon by the tail.

image

(A mid range simulation including 10-20 year melt rate doubling times and 6 feet of sea level rise by 2080 — half Greenland, half Antarctica — shows enormous weather impacts in the form of a severe, superstorm generating, temperature gradient. Image source: Ice Melt, Sea Level Rise, Superstorms.)

In the above image we can see just one of these model runs. The model assumes a 10-20 year doubling time for rate of land ice melt. It contributes equal portions of melt from Greenland in the north and Antarctica in the south. Greenhouse gas accumulation is considered to be along the moderate case A1B track. By 2080 we have about six feet of sea level rise globally and about 600 parts per million CO2 in the atmosphere. The more rapid rate of melt has put a temporary damper on the rate of global atmospheric warming which has dipped to 1.11 C above 1880s values (just slightly higher than today). But much of this cooling is localized to the Southern Ocean and to an extreme cold pool in the North Atlantic between Northwestern Europe and Greenland.

There a massive outflow of fresh water has shut down the ocean’s ability to exchange heat with the atmosphere. AMOC has been vastly weakened. The Gulf Stream is backed up along the US East Coast and into the Gulf of Mexico. Heat is building in the Arctic opposite Greenland and all along the Equator. Temperature anomalies in the range of 17 degrees Celsius below average occur over the ocean fresh water pool. This drop is enough to generate year round winter like conditions in the cold pool region even as other sections of the atmosphere around it continue to warm or retain severe excess heat.

Energy imbalance at the top of the atmosphere rockets to between 2 and 4 Watts per meter squared. What this means is that, in failing to ventilate heat to the atmosphere in the North Atlantic and Southern Ocean, the world ocean system has continued to accumulate a massive amount of heat. Heat that is now going to work warming the ocean bottom and hitting the bases of the already rapidly melting land ice.

Sandy

(More superstorms in our future. If Hansen’s new research is correct storms like Sandy will grow both more powerful and more common as Greenland dumps ever increasing volumes of fresh water into the North Atlantic. Image Source: NASA.)

For the North Atlantic, it is the greatest of understatements to say that an area of perpetual winter surrounded by warming airs and sitting atop a warming deep ocean is a major storm generator. Summer time temperature deltas between the center of the cold pool will range from near zero C to 20s, 30s and 40s C over nearby ocean and continental land masses. It’s like taking the High Arctic and shifting it to Scotland while all the adjacent airs warm. Temperature gradient and baroclinic (pressure gradient) energy for storm generation will be on the order of something that modern humans have never experienced. The potential for superstorms in this model simulation will, notably be quite high.

Final Notes — Superstorm Conditions Could Emerge Sooner than Models Indicate

The point to consider here is that large scale land ice melt sets in place forces that result in a weather wip-lash of epic proportion. It’s been the heart of Hansen’s work for many decades and it’s an issue that we really need to consider as time goes forward. A dwindling time for response that may well be much shorter than even Hansen’s models indicate. First, ice sheet vulnerability may well be higher than IPCC officials imagine and we could well be on a slope of melt rate doublings in the range of 5-20 years now.

global sea level change

(Global sea level rise keeps hitting a steeper and steeper slope. Image source: Dr. James Hansen, Columbia University)

Second, Hansen’s models likely capture the atmospheric impact of such large-scale land ice melt later than would happen in the real world. This later capture is due to the fact that his low resolution models mix the ocean heat more with the atmosphere than would occur under the kinds of ocean stratification events that we are likely to see due to these doubling times. Third, and finally we return again to the paleoclimate time of the Eemian where there is ample evidence that a mere 0.5 to 1 meter per century rate of sea level rise due to melting Greenland and West Antarctic ice during that time set in place conditions to generate superstorms with high enough peak intensity to deposit massive boulders upon islands in the Atlantic and to carve the impression of gigantic, long-period waves into the sea bed.

Anyone reading this work and considering the notion that some of the greatest scientific minds this age has birthed could be right is immediately confronted with the realization that the gargantuan forces we are playing with are not to be trifled with. And yet, the trifling continues despite the wise and well considered scientific warning to relent.

Links:

Hansen Paper: Ice Melt, Sea Level Rise and Superstorms

Dr. James Hansen, Columbia University, Former NASA GISS Lead Scientist

Knutti and Sedlacek: Robustness and Uncertainties in Climate Model Projections

The Eemian

LANCE MODIS

Livescience — Topographic Map of Greenland Sans Ice Sheet

Ice Sheet Mass Balance and Climate Change

NASA: 10,000 Year Old Ice Shelf to Collapse by 2020

IPCC Sea Level Change

NASA Earth Data

Storms of My Grandchildren

 

Onrush of Second Monster Kelvin Wave Raises Specter of 2015 Super El Nino

And so it appears we are living in a time of Monster Kelvin Waves — powerful confluences of Pacific Ocean heat running just beneath the surface — bringing with them the potential for both record global temperature spikes and strong, climate-wracking El Nino events.

*   *   *   *   *

Last year, a powerful pulse of sub-surface heat called a Kelvin Wave rippled across the Equatorial Pacific. It shoved sub-surface temperature anomalies into an extreme range of 6 degrees Celsius above average at a depth of 90-130 meters over an equatorial zone stretching out for hundreds of miles. Overall, this heat surge pushed anomalies below the rippling waves of the vast Equatorial Pacific from New Guinea to the Central American Coastline above 1.8 degrees C hotter than average.

image

(Building heat in Pacific Equatorial Surface waters on April 9 of 2015 — a sign of a massive pulse of hotter than normal water running at about 100 meters depth. A heat pulse that may be setting in place conditions for a powerful El Nino later this year. Image source: Earth Nullschool. Data Source: Global Forecast System Model.)

This immense heat pulse was enough to shove the equatorial region inexorably toward El Nino status. By September, mid-ocean values were hot enough to have reached the critical threshold of 0.5 C above surface value average. Perhaps more importantly, the Winter/Spring 2014 Kelvin Wave also contributed to record positive PDO values for the Pacific by December of 2014. A surface heat departure that was unprecedented to modern climates. Block-busting ocean warmth that almost certainly spurred 2014 global atmospheric temperatures to new all-time record highs in the current age of human warming.

Monster Kelvin Wave Redux

Now, a second, and equally strong monster Kelvin Wave is again rippling across the Pacific Ocean subsurface zone. A powerful pulse of heat that will reinforce the current weak, mid-ocean El Nino, lend energy to ridiculously warm Pacific Ocean sea surface states, and pave the way for a long-duration equatorial heat spike.

monster kelvin wave redux

(Monster Kelvin Wave Redux. A second powerful Kelvin Wave is surging across the Pacific Equatorial Subsurface zones, strengthing prospects for both a continued El Nino and for a record hot year in 2015. Image source: NOAA/CPC.)

As we can see in the NOAA CPC rendering above, the current Kelvin Wave is a massive and extraordinarily warm beast of a thing. It encompasses most of the thousands-miles broad Equatorial Pacific with its hottest zone peaking at 5-6 degrees Celsius above average temperatures — a region that stretches from near the Date Line all the way to just west of Central America. At +1.75 C for the entire below-surface equatorial region, the current Kelvin Wave is already approaching last year’s peak values. Values it may well exceed in the coming days.

Overall, the current Kelvin Wave seems to have more connection to the surface environment than last year’s powerful surge. A massive plug of Pacific Ocean heat readying to belch back into the atmosphere.

Some Models Show Potential For Super El Nino

Already, NOAA is upping its forecast chances for El Nino to continue through summer to 70 percent and is placing a greater than 60 percent chance that El Nino will stretch on through late autumn. An upshot from earlier predictions made just a little more than a month ago that El Nino formation for 2015 remained uncertain. Now, we have a rather high certainty that El Nino will continue throughout at least the next 4-6 months.

But perhaps more concerning is the fact that a strong El Nino is again starting to show up in some of the long range models. NOAA’s CFS ensemble shows El Nino continuing to steadily strengthen throughout 2015 reaching overall Nino 3.4 surface values above +2.1 C by October, November and December of this year:

nino34Sea

glbSSTSeaInd6

(Top frame shows predicted sea surface temperature anomalies in the critical Nino 3.4 zone exceeding 2.2 C by late 2015. Such an event would be a monster to rival or possibly exceed 1998. The lower frame shows sea surface temperature departures for the entire globe. Note the seasonal spike of 2-3+ C above average for the Eastern Equatorial Pacific. Image Source: NOAA’s Seasonal Climate Forecast.)

The departures we see in this long range forecast are extraordinary — rivaling or possibly exceeding the intensity of the 1998 Super El Nino. An event of this kind would result in powerful ocean and atmospheric surface temperature spikes, catapulting us well beyond the climate range previously established by the 1998 event. Globally, we would be entering new, record hot territory, possibly approaching 1 C above 1880s values for the 2015-2016 period.

Troubling Situation With High Uncertainty

As such, we should consider this to be a troubling situation, in need of close, continued monitoring. To this point, it is worth noting that El Nino prediction during Spring is highly uncertain. Last year’s very strong Kelvin Wave also set off predictions for a moderate-to-strong El Nino event by summer-through-fall. Though El Nino did eventually emerge, it was weaker and later in coming than expected. Now, a new set of conditions is setting up similar, and perhaps, even more intense ocean and atmosphere heat potentials.

Though still uncertain, what we observe now are ocean conditions that raise potentials for both extreme El Nino and human-warming related weather. Powerful ocean heat pulses of the kind we observe now, when combined with an extraordinary human greenhouse gas heat forcing, also increases the likelihood of another record warm year. El Nino associated droughts and heatwaves — particularly for South America, India, Australia and Europe through Central Asia are at rising risk. In the event of mid-ocean El Nino, the risk increases that the 1200 year California drought will continue or even intensify. If the heat pulse shifts eastward, a switch to much heavier rainfall (potentially terribly heavy) could coincide with a breaking of the Ridiculously Resilient Ridge pattern that has warded moisture away from the US West Coast for nearly three years. Extra heat of this kind would also tend to enhance precipitation extremes — more rain when it does rain and far more intense drought in areas affected by heat and atmospheric ridging.

Given the patterns we have observed over the last year, we could expect worsening conditions for some regions (India, Australia, some sections of South America, Eastern Europe) and the potential for a shift from one extreme to the next for other regions (US West Coast). These potentials depend on the disposition and intensity of surface heat in the Pacific, which bears an even closer watch going forward.

Links:

NOAA’s Climate Prediction Center

NOAA’s April 9 El Nino Statement

NOAA’s Seasonal Climate Forecast

Earth Nullschool

Global Forecast System Model

Monster El Nino Emerging From the Depths?

Atmospheric Warming to Ramp up as PDO Swings Positive?

Record Warm World’s ‘Weird’ 2015 El Nino Sees Westerly Gales, Growing Kelvin Wave

“The 2015 El Nino is finally here, but it’s weak, weird and late,” said Mike Halpert, deputy director of the Climate Prediction Center last week.

And the current El Nino is certainly an odd bird. According to reports from NOAA and the National Weather Service, the center of highest sea surface temperatures for the El Nino this year is offset westward — coming closer to the date line than it typically does. This is a weird heat disposition for El Nino which is, at least, a mid ocean event and often pushes warming well across the Pacific to South American shores.

image

(Pacific sea surface temperature anomaly [SSTA]. Note the hot water pools off both Australia and North America. These zones are joined by a vast blanket of warmer than average waters arranged diagonally across the Pacific from SW to NE. This disposition includes the warm anomaly along the Equator which is hot enough to reach weak El Nino status. But the disposition of sea surface temperatures throughout the Pacific, with highest equatorial anomalies near the date line and warmer spikes near Australia and the North American West Coast is unusual. SSTA graphic provided by Earth Nullschool. Data Source: Global Forecast System Model and NCEP.)

It’s also late in coming, as typical El Ninos have tended to arrive in full form during late fall or early winter. A Christmas-time warming of waters off the West Coast of South America was a traditional call-sign for El Nino and one that resulted in its name — which is Spanish for “The Christ Child.” Late winter and early spring are more typical times for the formation of deeper warmer water that may trigger an El Nino later in the year but often do not herald a fully-developed event (see What is El Nino? for more related information).

Lastly, the El Nino is currently rather weak — barely meeting a requirement for El Nino from NOAA and still not reaching the threshold that Australia’s Bureau of Meteorology applies.

But despite all this relative oddity, the 2015 El Nino is here. And it appears to be growing.

Intense West Wind Back-burst Coincident with Powerful Cyclone Formation

For earlier this week strong westerly winds began to roar against the typical flow of the trades along the Equator. The west wind back-bursts (WWB) push warmer West Pacific waters eastward and downward, enhancing the sea surface temperature anomaly spikes that fuel El Nino.

image

(Very strong West Wind Back-Burst hosting 85 kph 10 minute west wind at 7.45 South Latitude on early March 11. Image source: Earth Nullschool.)

As of early Wednesday, March 11, these west winds had formed a gale force wall stretching just past the date line from about 5 North Latitude to 10 South Latitude. A gale driven by parallel cyclones — a weaker system to the north (Bavi) and the newly gathering Pam, which may challenge south Pacific records as the strongest storm ever to form in that region. In the above graphic we see a related ten minute sustained WWB of a rather extraordinary 85 kilometers per hour (about 50 mph) along the 7.45 degree South Latitude line.

Strengthening Kelvin Wave in a Record Warm World

Just before the formation of these strong westerlies, sub-surface temperatures also began to spike. A warm Kelvin wave that had already started its run beneath the sea surface, as of March 4, was beginning to show signs of strengthening well in advance of the added shove coming from the vigorous WWB shown above.

Strengthening Kelvin Wave

(A new Monster Kelvin wave? Sub surface temperature anomalies are again entering the far above normal range for the Equatorial Pacific. Image source: Climate Prediction Center.)

Peak temperatures in the wave as of a week ago had hit more than +6 C above average. A heat signature that is starting to look, more and more, like the very powerful Kelvin Wave of early 2014 that belched so much warmth into the atmosphere and likely contributed to both the current strongly positive PDO as well as 2014’s new record high temperatures.

An event that top ocean and atmospheric scientists Kevin Trenberth and Axel Timmerman attribute to signalling a possible start to much more rapid atmospheric temperature increases.

The Kind of Mid-Ocean Event That Some Scientists Say we Should See More of

If this is the case, then what we may be seeing is a slow start to an El Nino that could be much stronger and longer than expected. Last year’s intense Kelvin Wave may have simply been preparation for a slowly building event in conjunction with what was, during December, a record broader warming of the Pacific called positive Pacific Decadal Oscillation (PDO). Some model runs, especially those at Australia’s BoM, appear to have picked up this track.

In addition, NOAA sea surface temperature models now are predicting continued Central Pacific Warming (CPW) in association with the current El Nino over the coming months. If this El Nino continues to progress along CPW warming lines, then it is likely to be more indicative of what Japanese scientists call an El Nino Modoki event:

El Nino Modoki

(Sea surface temperature signature of an El Nino Modoki, which is closer to what we are seeing now, even if the higher temperature levels are currently shifted more toward the Date Line. Image source: Japan Agency for Marine-Earth Science.)

During recent years, some scientific reports have indicated that Central Pacific Warming or El Nino Modoki will be more prevalent as a result of human-caused climate change. Study authors Tong Lee and Michael J McPhaden, in the 2010 paper entitled Increasing Intensity of El Nino in the Central Equatorial Pacific note that increases in Pacific Ocean temperatures are primarily expressed through more intense warming of the central regions:

Satellite observations suggest that the intensity of El Niño events in the central equatorial Pacific (CP) has almost doubled in the past three decades, with the strongest warming occurring in 2009–10. This is related to the increasing intensity as well as occurrence frequency of the so-called CP El Niño events since the 1990s. While sea surface temperature (SST) in the CP region during El Niño years has been increasing, those during neutral and La Niña years have not. Therefore, the well-documented warming trend of the warm pool in the CP region is primarily a result of more intense El Niño events rather than a general rise of background SST.

If so, it seems possible that global warming may well be influencing the rather strange El Nino evolution we are witnessing now.

In any case, Central Pacific Warming El Ninos have a somewhat different impact than Eastern Pacific Warming El Ninos. For one, they tend to ramp up, rather than cool down North Atlantic Hurricanes. They also tend to result in more, not less, drought for the US West Coast. For India, mid-ocean warming of the kind we are seeing now can result in an enhanced disruption of the Asian monsoon — kicking off drought and related food security risks.

Tong Lee and Michael J McPhaden continue by adding:

…. the amplitude of this new type of El Niño has increased in recent decades (Lee and McPhaden 2010). For convenience, hereinafter we refer this new type of El Niño as to CP warming (CPW). Compared with the canonical EPW, the CPW exhibits distinctly different impacts on worldwide climate. For example, the CPW shifts the anomalous convection westward and usually forms two anomalous Walker circulations in the tropical Pacific (Ashok et al. 2007; Weng et al. 2007; Weng et al. 2009). The westward displaced convection was suggested to be more effective in causing Indian drought (Kumar et al. 2006). The CPW increases hurricane frequency both in the Atlantic Ocean (Kim et al. 2009) and western North Pacific (Chen and Tam 2010), and also shifts tropical cyclone tracks in the western North Pacific (Hong et al. 2011).

But the authors’ research doesn’t directly point toward the odd seasonal change we are witnessing now, nor the off-setting of the initial hot pool about 1,500 kilometers further west than even during a typical El Nino Modoki event. For this reason, our ‘weird’ El Nino and equally weird and warm Central Pacific bear close watching.

Links:

El Nino Finally Here, But it’s Weak, Weird, and Late
NOAA
National Weather Service
What is El Nino?
NOAA’s ONI Index
BoM ENSO Wrap-up
Earth Nullschool
Global Forecast System Model
NCEP
Pam at Category 5 Strength
Warming Pacific Drives Global Temperatures
Bad Climate Outcomes
2015 El Nino to Bring Back-to-Back Hottest Years on Record?
Increasing Intensity of Central Pacific El Nino — Links to Climate Change
Japan Agency for Marine-Earth Science
El Nino Declared as Climate Scientists Watch on With Amazement

Hat tip to Phil

Hat tip to Wili

Hat tip to Timothy Chase

Arctic Heatwaves Rise to Threaten Sea Ice as Lake Baikal Wildfires Re-Ignite

According to model forecasts, Arctic heatwaves are forming that will, throughout this coming week, bring 50-70 degree (F) temperatures to the shores of the East Siberian and Laptev Seas, the estuaries of the Kara and on through Arctic Eastern Russia to Coastal Scandinavia. These heat pulses will push a series of wedges of above-freezing temperatures across the Arctic Ocean zones of the Chukchi, East Siberian, Laptev and Kara Seas to within a few hundred miles of the North Pole, creating conditions that set up the potential for a severe early-season weakening of sea ice.

They are the most recent in a long train of severe warming events arising out of a wide region of Northwest North America and Eastern Asia since at least late last fall. The heat waves have continued to ride up weaknesses in the Jet Stream and deliver warmth to the High Arctic, creating havoc for Arctic climes. During Winter, the heat pulses collapsed the Polar Vortex and sent Arctic temperature anomalies spiking to 5-6+ degrees Celsius or greater above the already hotter than normal 1979 to 2000 average even as they set off a series of heat-related weather emergencies for Alaska.

Triple Arctic Heatwaves

With the emergence of late spring, high temperature anomalies typically cool in the Arctic as polar amplification seasonally fades. However, the two Jet Stream weaknesses have continued to provide heat transport and push Arctic temperatures above normal and into ice-threatening ranges. Now, a third hot ridge, this one over Western Russia and Eastern Europe, has emerged and strengthened to provide yet one more Arctic heat delivery engine:

Dual Arctic Heat Waves

(Triple Arctic Heatwaves — one over the East Siberian Region of extreme northern Yakutia, one over Western Russia and Eastern Europe, and a final one that, in this May 24 forecast, is centered in Canada west of Hudson Bay and extending toward the Canadian Arctic Archipelago. Note the long tongue of above freezing temperatures extending into the Arctic Ocean from the East Siberian and Laptev Seas. In the current picture, it is night over Alaska and Canada, day over Russia. Information Source: Global Forecast System Model. Image source: University of Maine.)

This combination of gathering heat waves has frequently pushed late-spring Arctic temperature anomalies into the range of 1 to 2 C above average with local areas forecast to see between 10-20 C or higher departures. It is extraordinary heat for late spring. A gathering event that appears to be setting up for a major blow to Arctic sea ice.

Smoke on the Waters of Lake Baikal

The formation of what is now a growing and broad-ranging Arctic heatwave was, this weekend, heralded by a return to extreme and anomalous wildfires in the region of Lake Baikal, Russia. Ever since April, immense fires have been springing up in this region requiring massive response from an Army of Russian firefighters. Over the past two weeks, the fires have been held at bay by a combination of Russian emergency response efforts and cloudier, rainier conditions.

But, over the past two days, extreme seasonal heat has returned to this vulnerable region, an area where winter warmth, early melt, and thawing tundra have provided ample and excessive heat and fuel sources for the ignition of extreme wildfires. By today, the fires near Lake Baikal in Yakutia were both massive and intense featuring numerous blazes with 20 mile or greater fire fronts as the entire burning region cast off a tail of dark and heavy smoke stretching more than 1,500 miles west and north toward the Pacific Ocean:

Lake Baikal Fires May 18

(Lake Baikal Fires May 18, 2014. Lake Biakal is in the lower center frame. Width of frame is about 2,000 miles. Image source: LANCE-MODIS.)

This early proliferation of fires, as hinted at above, is the continuation of a massive event that began very early this spring and is likely to continue to show intensification and emergence in the three Arctic heatwave zones.

Fires of this immense scope pose their own threat to ice in the form of delivery of very high volumes of black soot that darken sea ice and glacial ice sheets alike. This darkening is, yet one more, amplifying feedback to climate change in the Arctic and remains a suspected factor in the acceleration of Greenland ice sheet melt (See Dark Snow). With so many fires so early, the risk of a long, summer-period snow and ice darkening is well on the rise, potentially playing a role in what is now also a spiking risk of rapid melt pond formation.

Disposition of Melt Ponds

A recent study found that a proliferation of melt ponds during late spring and early summer has preceded record melt seasons in all instances between 2007 and now. With current heat pulses and Arctic wildfires setting in place conditions that may well result in the ignition of widespread very early season melt pond formation in mid-to-late May, risks for end season melt spikes are on the rise. Regions impacted by these heat pulses and related early season albedo loss are similar to areas showing widespread melt pond formation prior to the massive 2012 sea ice collapse event (there has been educated speculation over at the Arctic Ice Blog that the location of these melt ponds on the Russian side may have played a key role in 2012’s massive melt).

The Role of El Nino and Upping the Chances for a Near Zero Sea Ice Event

The rise of El Nino in the Eastern Pacific is also likely playing a part in these building heat waves. El Nino typically enhances high amplitude Jet Stream ridge formation over Alaska and Canada. Furthermore, in recent years, we’ve seen the tendency for ridge and heat dome formation over Eastern Europe and Western Russia during El Nino. So at least two of the three observed Arctic heat delivery zones are likely getting a kick from what appears to be a strong El Nino gathering in the Pacific.

If El Nino arises and continues to increase atmospheric heat transfer to the Arctic, to proliferate extreme wildfires, and to enhance early loss of albedo, this year will, indeed, be a very bad one for Arctic ice. Given observed and ongoing trends along these lines, we are increasing our risk for a near-zero sea ice event by end of this summer to 30%. Eyes turn to Greenland as well, since both loss of sea ice cooling and a proliferation of early season fires can result in compounding risks to the increasingly unstable glaciers of that thawing land.

Links:

NOAA’s Global Forecast System Model

The University of Maine

NASA’s LANCE-MODIS

September Ice Minimum Predicted by Melt Pond Formation

Dark Snow

The Arctic Ice Blog

On Death Ground: Bangladesh is Fighting for its Life by Installing Solar Panels — Why Every Coastal City, State and Country Should Follow Suit

Apparently tired of waiting for the rest of the world while its fragile coastlines and mangrove wetlands are devoured by rising seas, Bangladesh has recently kicked its pace of solar panel installation into high gear.

Reports from the International Renewable Energy Agency found that Bangladeshis were installing small, rooftop solar photovoltaic generators at the stunningly rapid rate of 80,000 units each month in early 2014. In a country as financially strapped as Bangladesh, where only 47% of households have access to electricity, this is an extraordinary achievement, especially when one considers that the 2.8 million solar rooftops already gathering clean sunlight in Bangladesh will expand to challenge the 6 million threshold in just a few years.

Low Lying Coastal Bangladesh

(On the front lines of climate change low-lying coastal Bangladesh is one of an increasing number of regions vulnerable to sea level rise from rapidly destabilizing glaciers. Image source: LANCE-MODIS.)

While fossil fuel special interests twist the arms of politicians in an attempt to stymie solar development in Western countries like Britain, Australia, and the US, employing underhanded political tactics and pumping Orwellian terms like ‘solar blight‘ and ‘sea ice contamination‘ into the mainstream presses, Bangladeshis are charging ahead. And the reason couldn’t be more clear — the seas are rising.

The Gift of Fear

In the media analysis of human response to climate change, we often encounter the analogy of the frog in a pot of slowly heating water. As the analogy goes, the frog stays in the pot as it grows ever-warmer. The slow rise of temperature disables the frog’s pain and fear responses. Eventually, the frog’s muscles shut down and the frog boils.

Admittedly, this is a flawed analogy. Put a frog in a heating pot and it is wise enough to jump out once the water gets too warm — about 25-30 C. Why does the frog escape? Simple: the gift of fear. Eventually, the frog becomes uncomfortable about its situation in a slowly heating pot. The water is just a little too warm and it continues to head in the wrong direction. Rational survival instinct, at this point, intervenes to remove the hazard. The frog jumps out.

Now, keeping the frog in mind, let’s consider Bangladesh’s situation for a moment. They can see the storms that take more and more of their vulnerable lowlands with each passing year. They can see the ever-increasing advance of the tides. They know their land is in danger. To their west, their nearest neighbor, India, is building a wall to keep them out, should they have need of a refuge. And when the tides rise, as they will due to the vicious force that is human-caused climate change, they will most certainly need a refuge.

Last week’s announcement by NASA that six key glaciers in West Antarctica are now in irreversible collapse hammers the fact further home — the entire nation of Bangladesh is standing on what Sun Tzu used to refer to as death ground. In short, if the nation of Bangladesh does not decisively act, it will perish. And the only difference between Bangladesh and every coastal city, state, and country is this — Bangladesh is aware of its plight and is fighting to do something about it.

In essence, this is the gift of fear: the rational ability to fight for one’s survival — be it frog, person, city or nation.

Every Coastal Region is Now on Death Ground

greenland_velocity-base

(Greenland ice sheet velocity map as of 2010 shows numerous high-speed glacial flows toward the ocean. In the above map, blue is slow motion, red is fast motion. In the upper right hand corner of the map, the Zacharie Glacier, indicated by the letter Z, features a high speed flow that reaches all the way to the center of the Greenland ice mass. As of early 2014, scientific reports found that the recently confirmed destabilization of the Zacharie Glacier meant the entire circumference of Greenland was destabilized and moving at an ever more rapid pace toward the ocean. Image credit: Joughin, I., B. Smith, I. Howat, and T. Scambos.)

With at least 15 feet of sea level rise now locked in by the world’s destabilized glaciers and with potentially far worse sea level rise on the way if fossil fuel burning continues, one cannot hammer home the point enough — every coastal region in the world and every person living in these regions is now living on death ground. They are all in Bangladesh, even though most aren’t yet aware.

Survival action is as required of them as it is of the frog, as it is of the Bangladeshi. Swift and sure action. And even then survival is not guaranteed.

Miami, a city living in the state of climate change denial that is Florida is certainly on death ground. It is a place that will be severely challenged by another foot or two of sea level rise, much less 15 or more. The Outer Banks of North Carolina — a thin and beautiful strip of land, a redoubt between ocean and sound — bound to be swept away. Virginia Beach — a city surrounded on three and a half sides by water. Washington DC — built on a low-lying swamp at the mouth of the tidal Potomac. New York City — a place whose vulnerability to the rising seas and storms of human warming became all too real two years ago.

The list is almost endless. For wherever there are coastlines, seas, harbors, tidal rivers, mudflats, estuaries, oceans, there are human beings. We are nothing if not a water and ocean loving species — ever drawn to the life-giving edge of the sea.

According to the UN Atlas of the Oceans, about 3.1 billion people live within 150 miles of a coastline. My parents, my sister, my grandmother, my grandfather and a majority of my other friends and relatives are among them.

How many of your friends and family live on or near the coast? Or is it you who is also standing with the Bangladeshis on death ground?

Links:

International Renewable Energy Agency’s 2014 Annual Report

NASA: West Antarctica’s Entire Flank is Collapsing, Fifteen Feet of Sea Level Rise Locked-in

Marco Rubio: I don’t believe in Climate Change

The UN Atlas of the Oceans

Nature: Human Warming Now Pushing Entire Greenland Ice Sheet Into Ocean

 

 

 

 

 

 

 

 

 

 

Warm Winds Gather to Invade the Arctic: Summer Sea Ice Melt and The Storms of 2014

If there’s an aspect of global warming science that remains unsettled, it’s the general state of prediction and analysis over the fate of Northern Hemisphere sea ice. As is well known by now, model predictions greatly underestimated the pace of sea ice loss as a response to human-caused warming. Big melt years like 2007 and 2012 brought sea ice extent and area, by end 2012, to less than 50% of 1979 values. Sea ice volume for the same period was nearly 80% lower than 1979 measures. Such lows were generally not predicted to appear until the 2060s at the earliest.

Ice response to rapid human warming and polar amplification, in these cases, was, for lack of a better description, outrageously stunning. And the weather impacts of such amazing losses were increasingly dangerous and far-reaching. Climate systems inertia, in the case of sea ice, seemed to be no match at all for the strong and likely unprecedented warming forces we’d already unleashed.

Sifting through the sea ice tea leaves

Though much of what happened was and continues to be unexpected, a few overall patterns emerge in the data. Dynamic melt trends for area and extent were composed of massive melt years (2007 and 2012) followed by pseudo recovery years (2008, 2013) where the ice seemed to bounce back a little before inching again toward previous record lows (2009, 2010) or setting minor new melt records (2011 area) before the next big hit.

Sea ice volume measures were somewhat less messy with massive melt years (2007, 2010), more minor melt years (2011, 2012), one minor pseudo-recovery year (2008) and one major pseudo-recovery year (2013). In this set, one year (2009) stands out as neither showing a new record low volume nor showing pseudo-recovery as end season volume fell off slightly from the previous year. The fact that 2009 followed a pseudo-recovery year (2008) may or may not be instructive for the current melt season.

It is worth noting that in the volume progression, four out of seven years during the 2007 to 2013 period all showed new record lows.

Piomas Minimum Arctic Ice Volume

(Graph of minimum Arctic sea ice volume as measured by PIOMAS since 1979 with various trend line projections. Data source: PIOMAS Image source: Wipneus.)

What one can read from these data points is that strong pseudo-recovery years (like 2013 and 2008) have typically been followed in recent years by a return to the decline trend but not to new record lows. So, statistically, this is what we would expect for 2014.

That said, keep in mind that though it remains extraordinarily difficult to predict end sea ice states for any single year, the overall trend of major and unprecedented melt is most likely to continue and the window for a total sea ice loss by end season before 2020 remains wide open. Further, statistical analysis will, in every case, bow to emerging conditions on and beneath the ice.

Evolution of the early 2014 melt season

For the 2014 melt season, the fickle Arctic does not at all disappoint. By late April and early May of 2014, an extraordinarily warm winter period had wiped out most of the 2013 recovery in sea ice volume measures. By mid April, PIOMAS was showing volume in the range of second or third lowest year on record for the date.

By today, May 12, sea ice area and extent measures were in the range of 4th to 5th lowest on record with both measures approximately mirroring 2007 values for the date.

Given the potential for very rapid melt during June and July, as displayed in recent melt years, these values are within striking distance of new record lows should the weather conditions for rapid melt emerge.

Observed conditions for early to mid May 2014

It is worth noting that May does not generally tend to be a predictive month for sea ice loss. In most cases, it is more a bottleneck period where values tend to crunch together as the sea ice softens up but generally shows few breaks toward the more rapid melt trends typically seen in June or toward a slower melt due to weather that is less favorable for ice degradation.

That said, a few currently ongoing conditions may provide some strong indicators for how the 2014 melt season could progress.

High amplitude Jet Stream waves through Eastern Siberia, the Bering Sea and Alaska. A doggedly persistent weakness in the polar Jet Stream along an arc from East Siberia to Western Canada has resulted in much warmer than usual conditions for the Bering Sea, the Chukchi Sea and regions of the Beaufort adjacent to the Alaskan and Canadian coasts. Warm air originating over a pool of much hotter than normal water in the Northern Pacific just south of Alaska has continued to flow up through the Bering Sea, into the Chukchi, and over Alaska and Western Canada and on into the Beaufort.

Tracking this warm air flow resulted in a bit of incredulity as day after day observation showed the air continuing on through the Beaufort, past the North Pole zone, down over Svalbard and the Fram Strait, into the North Atlantic and finally being swept east in the strong cross-ocean wind pattern toward England and Ireland. In this way, air from 40 North Latitude in the Pacific jumped the pole to end up in the Atlantic near England.

A persistence of this weather pattern would have numerous and potential critical impacts for the Arctic during the summer of 2014. First, it would result in a constant pressure of warmer than usual conditions for sea ice along an arc from the Mackenzie Delta and Adjacent Canadian Arctic Archipelago to the East Siberian Sea. Warm winds would assault the ice from launching pads over warmer land masses in this zone, resulting in increased and early ice erosions.

Already, we can see such conditions emerging in the following MODIS satellite shots provided by NASA:

Mackenzie Delta May 11, 2014

(The Mackenzie Delta [upper left] and adjacent Canadian Archipelago waters. Image source: LANCE-MODIS.)

The above image shows the Mackenzie Delta and the Canadian Arctic Archipelago on May 11 of 2014. In these images, we can seen the result of continued warm winds from the south and near-or-above freezing temperatures. For the Mackenzie Delta, temperatures since early May have ranged between 23 and 42 F, or between 5 and 25 F above average for this time of year. The high temperatures have brought the snow melt line all the way to the coast very early and have resulted in both ice melt and retarded refreeze in the broken ice and large polynyas offshore in the nearby Beaufort. Note that an additional heat influx to these coastal waters will occur once the shallow Mackenzie River fully melts, likely resulting in the early break-up of land-fast ice near the delta.

Chukchi Beaufort Melt May 11, 2014

(The Chukchi and Beaufort Seas on May 11, 2014 from the Bering Strait [upper left] to past Barrow, Alaska [lower center]. Image source: LANCE-MODIS.)

Further along the Canadian and Alaskan coasts, we find a continuation of sea ice weakness and break up in the off-shore regions north of Barrow Alaska and on into the Chukchi Sea. Large polynyas remain open throughout the region and exhibit no refreeze in the open water sections. Past the Bering Strait zone, Chukchi melt is very well advanced for early-to-mid May due to a combination of near constant warm southerly wind influx and an advancing warm water wedge through the Bering Strait.

This warm wind pattern through Eastern Siberia, Alaska and Canada and into the Arctic Ocean is reinforced by a combination of ongoing factors including a weakened polar Jet Stream which has tended to generate high amplitude ridges in this zone, a very warm pool of water in the Northern Pacific south of Alaska, and an emerging El Nino which historically has tended to push a high amplitude split in the Jet Stream up toward Alaska. These self-reinforcing factors make it likely that the overall pattern of warm southerly winds over the region will continue to persist and have an impact well into summer.

Finally, it is worth noting that the current and ongoing warm air influx through this region provides a constant source of energy for Arctic storm genesis, a factor that may well become more significant as melt season progresses. Forecasts for the next 24 hours show a storm pulling warm, above-freezing temperatures deep into the Beaufort as it begins a transition toward the northern polar zone. It is the second system to exhibit such anomalous warm air inflow and progression into the Central Arctic during the month of May.

GFS Warm Storm

(GFS model summary showing warm storm with associated above-freezing temperatures invading deep into the Beaufort Sea during late Monday and early Tuesday of this week. Image source: University of Maine.)

A third warm air invasion, this time from Eastern Siberia, and potential related storm development is also projected for late this week or early next week.

The Arctic dipole: storms over the Arctic Basin, high pressure over Greenland. Today, we track three Arctic low pressure systems — one emerging from the warm air influx over the Beaufort, one over the Laptev and one north and east of Svalbard. Greenland, meanwhile, shows a high pressure system centered almost directly over its large ice sheet. The net effect of these lows and highs is to funnel the warm wind streaming up from the Beaufort over the Northern polar zone near the Canadian Arctic Archipelago and out over the Fram Strait and Svalbard.

It is a dipole of high pressure over Greenland and low pressure over the Arctic Basin on the Central and Eastern Siberian side that has lasted for about two months through Northern Hemisphere Spring. This set-up creates a strong and consistent wind pressure providing transport of sea ice out of the Fram Strait. It is worth noting that Fram Strait export was one of the primary factors involved in the record low sea ice total seen during 2007, so a consistent dipole pattern of storms over the Arctic basin and highs over Greenland promoting ice export could well weigh heavily as melt season progresses.

Warming over Western Russia and Eastern Europe. A second zone showing consistent ridge development, polar Jet Stream weakness and coincident anomalous warming has emerged over western Russia and Eastern Europe. Such warming was seen during the weak El Nino of 2010 and resulted in severe heatwaves and wildfires for the region. A similar pattern has emerged in tandem with the rising and potentially far stronger 2014-2015 El Nino currently developing in the Eastern Pacific. Though it is too early to tell if this emerging hot zone will reach the extremes seen in 2010, this heat pool is likely to contribute warmth to sea ice zones in the Kara and Laptev Sea as the summer melt season progresses.

So far, Kara sea ice retreat has remained within usual boundaries for recent years. However, it is worth considering the potential strength of this developing warm air pool and how it may impact adjacent Arctic zones as May progresses into June. This week’s forecast now shows above-freezing temperatures predicted to progress into the Kara and 50 degree F readings predicted to push into estuaries bordering the Kara over the next few days.

Warm water upwelling, north wind flush, storm suction for Baffin Bay. Finally we come to Baffin Bay, a place many may well consider the Arctic Ocean’s red-headed stepchild. Over recent years, warm water up-welling, possibly driven in part by sea-bed methane release, in Northern Baffin Bay has resulted in an almost constant weakness and erosion of sea ice. This condition creates a bizarre circumstance in which Baffin is often surrounded by warmer waters north and south by late spring. This year is no exception. In addition, a north wind now appears to be flushing Baffin Bay sea ice toward the North Atlantic. The result is an expanding zone of ice-free water along the West Coast of Greenland pushing toward a widening gap in the north of Baffin Bay near the Nares Strait.

To the south, a persistent storm has developed near an anomalous cool zone in the North Atlantic waters off of Newfoundland. This cold pool is likely a residual of the continued dipole, hot-west, cold-east temperature anomaly over North America which has increasingly been squashed toward Newfoundland with the emergence of summer. The cold North Atlantic pool is also likely fed by a rising outflow of fresh, cold water from Greenland glaciers as well as the Baffin Bay ice export already described. A growing Gulf Stream weakening is also well established for the region.

The persistent storm is fed by high temperature differentials in the dipole zone. It is one of the remnant storm systems of this winter’s epic assault on the coasts of Great Britain — a possible precursor to even more vicious storms this coming winter.

But, today, the storm is simply providing added suction to drain ice out of Baffin Bay.

Storm off Greenland and Newfoundland

(Like a drain in a massive bathtub: storm off Greenland and Newfoundland on May 12 reinforces northerly wind flow pulling sea ice out of Baffin Bay. Image source: LANCE-MODIS.)

A final word on Storms and Warm Winds

During late April, we talked a bit about the impact of early season melt ponds on end-season sea ice levels. For recent scientific studies have found that early season melt pond formation has a high correlation with new record lows in sea ice area and extent.

But given the current very thin and broken state of sea ice, it’s worth considering whether the rules for sea ice loss aren’t in the process of changing.

Ever since the 2012 melt season’s close, the Arctic Ocean has exhibited a very battered sea ice state. One featuring widely disassociated packs of broken and brittle ice riddled with a long and pervasive spidering of leeds. For large melt pond systems to develop, the ice pack needs to be relatively contiguous. But the recent ice pack shows very little continuity and could, instead, be said to basically lack integrity. Such a state may well prevent a degree of melt pond formation in areas in which the ice is more and more highly disassociated into floes. And it is this disassociated ice state that may be the current and future norm as sea ice continues to thin and weaken.

In addition, rising temperatures in and around the Arctic have resulted in increased atmospheric water vapor content, increased cloud formation, and increased storm presence during summer periods. This progression toward storminess is consistent with paleoclimate studies showing that ice-free or near-ice-free Arctic states were much stormier than the current one. In the event of an expected stormier Arctic, melt pond formation may well result less from direct solar insolation through clear Arctic skies and more from an increasing number of rainfall and warm fog events over sea ice.

Cyclonic pumping of warmer waters from below the ice pack into surface water zones and the mixing of waters by waves generated by storm winds is also likely to have a far greater impact on sea ice melt than seen in recent years. It is likely we saw a prelude to just such an event during the great, late-season Arctic Cyclone of 2012 which sent waves the size of houses roaring across the Beaufort Sea to batter and disassemble the already weakened sea ice.

In this dynamic and changing system, warm winds are also likely to play a much greater role. Jet Stream erosion, in such a case, unleashes warm southerly winds on the sea ice. The winds, being warmer, hold a higher water vapor content than was typical for the Arctic prior to the human warming insult. Encountering ice and cold water, the water vapor in the winds condenses to form fog. The latent heat in the water vapor is thus released to do work melting the sea ice and warming the sea surface. In such cases, a kind of snow and ice eating mist develops from the warm wind — a blow torch for the sea ice.

Links:

LANCE-MODIS

Dual Ridges Form Sea Ice Achilles Heel for Summer 2014

University of Maine

PIOMAS

Wipneus

Cryosphere Today

NSIDC

Arctic Sea Ice Graphs

The Arctic Sea Ice Blog

The Storms of Arctic Warming

Advertisements
%d bloggers like this: