Greenland Melt Extent Breaks 50% on July 4; 2 Standard Deviation Line Shattered Yet Again

These days — in the age of the fossil-fueled hothouse — it’s never good news when a high pressure system forms over Greenland during Summer.

Human dumping of carbon into the atmosphere has forced warming over the last remaining great Northern Hemisphere ice sheet at a rate of about 0.5 degrees Celsius each decade. A constant rain of soot from human industry and from increasingly prevalent and intense Arctic wildfires has painted the ice sheet dark, lowering its ability to reflect 24 hours of incoming radiation from the Summer sun. And the result is that each Summer, when the skies clear and high pressure systems form over the ailing Greenland ice, you end up getting these huge surface melt spikes.

Greenland smoke

(Smoke from record Alaskan and Canadian wildfire outbreaks traverses Greenland and enters the North Atlantic on July 2 of 2015. Arctic wildfires are intensified by human-caused warming both through the mechanism of added heat and through the reintroduction of long sequestered carbon fuels through permafrost melt which aids in the initiation, intensification and extension of Arctic wildfire burn periods. In essence soil carbon in the form of thawed permafrost and related methane adds to boreal forest, tundra and bog as burn risks. Soot from these fires can then precipitates onto land and sea ice, reducing its ability to reflect the 24 hour Summer Arctic sun. Image source: LANCE MODIS.)

Generally a big melt spike can be defined as anything greater than 35 percent of Greenland ice surface area. And we’ve had quite a few of these abnormal events in recent years. The worst of which happened in mid Summer of 2012.

During late June and early July of that year, an extreme high amplitude Jet Stream wave generated very warm surface temperatures over the Greenland Ice Sheet. A very warm fog settled over the ice, eating away at it. By July 8th, more than 90 percent of the surface was melting — an event that hasn’t happened in Greenland for more than 100 years. June, July and August of 2013 and 2014 saw similar, though somewhat less intense, Greenland melt spikes. During those years the ice sheet experienced multiple days in which melt covered between 35 and 45 percent of its surface. And though these instances were not as intense as the unprecedented 2012 melting, they did traverse well beyond the 1981 to 2010 average line (an average that itself includes a rapid warming trend) to, in cases, exceed the upper 2 standard deviation margin.

Melting on Greenland surface 2014

(Record Greenland surface melt during 2012 compared to still strong surface melt years of 2013 and 2014. Image source: NSIDC.)

After record 2012 melt, surface melt for Greenland has remained abnormally high — indicating an increased likelihood that more near 100 percent surface melt summer days may not be too far off in the future. The post 2012 environment for Greenland has thus been a period of continued and heightened surface melt. One that appears to be in the process of building up to another big pulse.

50 Percent Melt Threshold Exceeded During July of 2015

The summer of 2015 marks a continuation and intensification of this ominous surface melt trend. After getting off to about an average melt start during April and May, June saw surface warmth build over the Greenland Ice Sheet with melt extents jumping to between 30 and 40 percent of surface area by mid-to-late month. Further warming coincided with massive Alaskan and Canadian wildfires injecting soot plumes into regional airspace and the building of a substantial high pressure ridge over Greenland. These factors helped enable further atmospheric and ice warming — shoving surface melt above the 50 percent line by July 4th.

Greenland melt extent 2015

(Major Greenland melt spike indicated on July 1-5 in the NSIDC surface melt extent graph. Image source: NSIDC.)

This puts 2015 Greenland surface melt in a range well above 2013 and 2014, with the first week of July already exceeding 2012 melt for that period.

Over the next seven days, models predict a larger warming of the overall Arctic environment even as a high pressure system and associated ridge remains entrenched across Greenland. This predicted weather pattern will tend to lock in significantly warmer than 20th Century average temperatures. That said, forecast highs do not yet indicate a substantial risk for a repeat of 2012’s near 100 percent surface melt. However, projected high temperatures do show some potential that melt percentages are likely to continue to range between 40 and 60 percent surface melt over coming days with the highest risk for melt spikes occurring on July 6th, 7th and 8th.

It is worth noting that we are now in the midst of a substantial Greenland melt spike, one that we’ll continue to monitor over coming days for further developments.




Dark Snow

GFS Forecast Summary

Record Alaskan Wildfire Outbreak

Hat Tip to Wili

Hat Tip to Andy in San Diego

Hat Tip to Colorado Bob

Hat Tip to DT Lange


Smokey Greenland Sees Another Summer of Substantial Melt

Smoke From Canadian Wildfires Near Greenland

(Smoke from Record Northwest Territory Wildfires on August 1, 2014 crossing Baffin Bay and the West Coast of Greenland. Image source: LANCE-MODIS.)

According to our best understanding of paleoclimate, at current greenhouse gas levels of 402 parts per million CO2 and 481 parts per million CO2e, the Greenland Ice Sheet eventually melts out entirely. It’s a level of atmospheric heat forcing we’ve already set in place, a level that keeps rising at a rate of about 2.2 parts per million CO2 and 3 parts per million CO2e each and every year due to our ongoing and reckless carbon emissions. And it’s a level that is already starting to receive substantial additions from destabilizing permafrost carbon together with likely increasing releases from sea bed methane stores.

In this, rather stark, geological, climatological and physical context, we ask the question — is it possible for us to stop a wholesale collapse of Greenland’s ice? And we wonder, how long can the ice sheet last as human greenhouse gas forcings together with ongoing releases from some of Earth’s largest carbon stores continue to rise?

Greenland Jacobshavn July 30 2014

(Extensive melt ponds, Dark Snow on West Face of Greenland Ice Sheet near the Jakobshavn Glacier on July 30, 2014. Extensive darkening of the ice sheet surface, especially near the ice sheet edge, is resulting in more solar energy being absorbed by the ice sheet. Recent studies have shown that edge melt results in rapid destabilization and speeds glacier flows due to the fact that edge ice traditionally acts like a wall holding the more central and denser ice pack back. Notably, the Jakobshavn is currently Greenland’s fastest glacier. Image source: LANCE-MODIS.)

For ultimately, our ability or inability to rapidly mitigate and then draw down extreme levels of atmospheric greenhouse gasses will provide an answer these key questions. And whether we realize it or not, we are already in a race against a growing Earth Systems response that may eventually overwhelm our efforts, if we continue to delay for too long.

But there’s a lot of inertia in the ice. It represents aeons and aeons of ancient cold locked in great, mountain-high blocks. And its eventual release, which is likely to continue to ramp higher and higher this century, is bound to result in a temporary and weather-wrecking outrush of that cold causing dramatic swings in temperature and climate states to be the rule of the day for Greenland as time moves forward.

Melt Ponds Zachariae Glacier July 25, 2014

(Large melt ponds, extensive surface water over Zachariae Glacier in Northeast Greenland on July 25 of 2014. For reference, the larger melt ponds in this image range from 1 to 4 kilometers at their widest points. The Zachariae Glacier sits atop a deep, below sea level channel that runs all the way to a massive below sea level basin at the center of the Greenland Ice Sheet. This Glacier is now one of more than 13 massive ice blocks that are moving at ever increasing velocity toward the ocean. Image source: LANCE-MODIS)

So we should not expect any melt to follow a neat or smooth trend, but to instead include large variations along an incline toward greater losses. In short, we’ve likely locked in centuries of great instability and variability during which the great ice sheets are softened up and eventually wither away.

Another Year of Strong Greenland Melt

In the context of the past two decades, the 2014 summer melt has trended well above the 30 year average in both melt extent and surface mass losses. Though somewhat behind melt during 2012, 2014 may rank in the top 10 melt years with continued strong melt in various regions and an overall substantial loss of ice mass.

Surface melt extent appears to be overall above 2013 values, ranging well above the 1981-2010 average, but significantly below extents seen during the record 2012 melt:

Greenland Melt Summer 2014Greenland melt 2013

Greenland Melt 2012

(Last three years of surface melt extent with the most current melt graph for the 2014 melt season at the top and the preceeding years 2013 and 2012 following chronologically. Dotted blue line indicates 1981-2010 average. Top three surface melt years in the record are 2012, 2010 and 2007, respectively. Image source: NSIDC.)

Overall, 2014 showed four melt spikes above 35% melt coverage with three spikes nearing the 40% melt extent coverage mark. By contrast, 2013 only showed two such melt spikes, though the later spike was slightly more intense than those seen during 2014. 2012’s 150 year melt, on the other hand, showed melt extents ranging above 40 percent from mid June to early August with two spikes above 60% and one spike above 80%.

Losses of mass at the surface also showed above average melt trends, but with net melt still below both 2013 and 2012:

Greenland Surface Mass Balance 2014

(Greenland surface mass balance trend for 2014 [blue line] compared to mean for 1990 to 2011 [gray line] and record melt year of 2012 [red line]. Image source: DMI.)

2012 was a strong record year and, on average, we’d expect to see the record jump back to lower levels after such a severe event. However, there’s little to indicate that either 2013 or 2014 have bucked the trend of ongoing and increasing surface melt over Greenland. To the contrary, that trend is now well established with yearly surface mass losses now taking place during all but one of the last 13 years. And there is every indication that 2014 will be a continuation of this trend.

Basal, Interior Melt Not Taken Into Account in the Surface Measure

While surface measures are a good measure of melt on the top of the ice sheet, it doesn’t give much of an idea of what’s happening below the first few feet. There, during recent years, sub surface melt lakes have been forming even as warming ocean waters have eaten away at the ice sheet’s base. And since more than 90% of human-caused warming ends up in the world’s oceans even as many of Greenland’s glaciers plunge hundreds of feet into these warming waters, one might expect an additional significant melt to be coming from the ocean-contacting ice faces.

We can see an indication of the severe combined impact of basal, interior and surface melt in the GRACE mass measurements of the Greenland Ice Sheet since 2002. A record that finds a precipitous and increasing rate of decline:

Greenland Cumulative Mass Loss Through Late 2013

(Greenland cumulative mass loss through mid 2013. Data provided by the GRACE satellite gravity sensor. Image source: NOAA.)

It is this ongoing overall mass loss that tells the ice sheet’s full tale. One that now includes an ever-increasing number of destabilized glaciers speeding more and more rapidly seaward.






Nature: Human Warming Now Pushing Entire Greenland Ice Sheet Into the Ocean

Dark Snow

The Arctic Methane Monster Exhales

Large Methane Plumes Discovered on Laptev Continental Slope Boundary




The Arctic Methane Monster Exhales: Third Tundra Crater Found

Yamal Hole

(One of three massive holes found in Siberia. The prominent theory for the holes’ formation is a catastrophic destabilization of sub-surface methane under thawing tundra. Image source: The Moscow Times.)

Add salt, sand, and thawing methane pockets buried beneath scores of feet of warming permafrost together and what do you get? Massive explosions that rip 200-300 foot deep and 13-98 foot wide holes in the Siberian earth.

The name for the place where this strange event first happened, in Russian, is Yamal, which roughly translates to mean ‘the end of the Earth.’ Now, three holes of similar structure have appeared over a 700 mile wide expanse of Siberian tundra. The most likely culprit? Catastrophic destabilization of Arctic methane stores due to human-caused warming.

A Tale of Dragon’s Breath: How the Yamal Event Likely Unfolded

About 10,000 years ago, as the great glaciers of the last ice age gave up their waters in immense surges and outbursts into the world ocean, a broad section of Siberian tundra was temporarily submerged by rising seas. But with the loss of the great glaciers, pressures upon the crust in these zones subsided and, slowly, the newly flooded tundra rose, again liberating itself, over thousands of years of uplift, from the waters.

The land remained frozen throughout this time, covered in a layer of ice — solid permafrost hundreds of feet deep. But the oceanic flood left its mark. Salt water and sand found its way into cracks in the icy soil, depositing in pockets throughout the frozen region’s earth.

And there this chemical brew remained, waiting to be deep-frozen and sequestered as the glaciers of a new age of ice advanced over the Earth.

Arctic Warming Trend 1960 to 1990

(Arctic warming trend from 1960 to 1990. Image source: NOAA.)

But this event, foretold and anticipated in the bones of Earth, did not come to pass. Instead, human beings began dumping billions of tons of heat-trapping carbon into the atmosphere. They dug up mountains of ancient carbon and burned it. And now those mountains of carbon lived in the air, thickening it, trapping heat.

For Siberia, this meant rising temperatures. At first, the increase was slow. Perhaps a tenth of a degree per decade. But by the time the 20th Century was closing and the 21st Century emerged, the pace of warming was greater than at any time even the Earth could remember — an increase of 0.5 degrees Celsius or more every ten years.

Now, the glaciers will probably not return for hundreds of thousands of years, if ever. And now, the brew that was waiting to be buried is instead thawing and mixing. A deep, heat-based cracking of the frozen soil that flash-bakes an alchemical mixture deposited over the ages. The result: dragon’s breath erupting from the very soil.

Explosive Eruptions From Smoking Earth

One Taz District local described the day the crater formed–

The earth was first observed to smoke. This continued for some time and then a bright flash followed by a loud bang exploded above the tundra. After the mists and smoke cleared, a large hole surrounded by mounds of ejected soil was visible. The hole tunneled like a cone more than 200 feet down. Its walls were frozen permafrost.

Siberian Craters Map

(Broad expanse of Siberia containing three massive holes, indications of explosive eruptions in the permafrost set off by thawing methane mixed with salt, water and sand. The holes are all in the range of 200-300 feet deep. Deep enough to contact subsoil methane pockets or, in some cases, frozen clathrate. Image source: The Daily Mail.)

A single event of this kind might be easy to overlook as an aberration. A freak case that might well be attributed to unique conditions. But over the past two weeks not one, not two, but three large holes, all retaining the same features, have appeared within the same region of Yamal, Russia.

A single event may well be easily marked off as a strange occurrence, but three look more like the start of a trend.

Weather Underground notes:

The holes may foreshadow bigger problems for our planet in the near future, scientists worry. Permafrost around the Arctic contains methane and carbon dioxide, and both could be dangerous to our environment if released, according to a report from the National Snow and Ice Data Center. As long as the permafrost remains frozen, the report adds, this isn’t a concern, but climate models have painted a grim future for rising temperatures in the Arctic.

And with temperatures in the Arctic, and especially over Siberia, rising so fast, the permafrost is not remaining frozen. It is instead thawing. And together with this thaw comes a growing release of carbon stored there over the 2-3 million year period since the ice ages began their long reign. It is a release we can expect to continue together with human-caused warming. One that is critical to abate as much as possible, if we are to have much hope for a climate favorable for human beings and the continuing diversity of life on this world. How rapidly and violently the Arctic responds to our insults depends on how hard we push it. And right now, through an amazing human carbon emission, we are now pushing the Arctic very hard.

Jason Box, a prominent Arctic researcher and head of the Dark Snow Project, noted Sunday in his blog, Meltfactor:

What’s the take home message, if you ask me? Because elevated atmospheric carbon from fossil fuel burning is the trigger mechanism poking the climate dragon. The trajectory we’re on is to awaken a runaway climate heating that will ravage global agricultural systems leading to mass famine, conflict. Sea level rise will be a small problem by comparison. We simply MUST lower atmospheric carbon emissions. This should start with limiting the burning of fossil fuels from conventional sources; chiefly coal, followed by tar sands [block the pipeline]; reduce fossil fuel use elsewhere for example in liquid transportation fuels; engage in a massive reforestation program to have side benefits of sustainable timber, reduced desertification, animal habitat, aquaculture; and redirect fossil fuel subsidies to renewable energy subsidies. This is an all hands on deck moment. We’re in the age of consequences.

If the warming trends continue and fossil fuel burning does not abate, these holes may be only minor explosive outbursts compared to what may follow. In any case, given current trends, it appears entirely possible that more and more of these strange holes will be appearing throughout the Arctic. An ugly sign of the danger inherent to our time.


Another Siberian Hole Discovered

Not So Mysterious Hole Found in Siberia

Two New Holes Appear in Siberia

Is the Climate Dragon Awakening?

Siberian Tundra Holes are a Mystery to Me

Is this the Compost Bomb’s Smoking Gun?

It’s All About Frozen Ground

Arctic Climate: A Perspective For Modeling


Late June 2014: Arctic in Hot Water as Sea Ice Thins and Tundra Fires Erupt

Atmospheric warming due to human-caused climate change. It’s the general measure we’ve used to track a devastating and ongoing heat amplification due to a terrible greenhouse gas emission. But if we were to look for where the greatest amount of that heat has accumulated, it would be in the world’s oceans. For from its air-contacting surface to its depths thousands of meters below, the World Ocean has captured 93.4% of the total heat forcing humans have already unleashed. The remainder is almost evenly divided between the atmosphere, the continents, and the ice.

We rely on floats and deep-plunging sensors to keep track of total ocean heat content. But on any given day we can see well enough what is happening at the surface. And today ocean surface heat is screaming through the world’s satellite sensors. Overall global anomalies are spiking higher than +1 C above the 1979 to 2000 average. In the Equatorial Pacific, an El Nino that looks to be far stronger than the one that occurred in 2009-2010 is building, heating a massive wedge of the Eastern Equatorial Pacific to +2 to +4 C above average. And in the far north, we see extraordinary high surface water temperature departures exactly where we need them least — bordering Greenland and the remaining Arctic sea ice.

Arctic Sea surface temperature Anomaly on Jun 24

(Arctic sea surface temperature anomaly on June 24, 2014. Image source: NOAA/NWS.)

For encircling the Arctic from the West Coast of Greenland, to Iceland, to Svalbard, to the Barents and Kara Seas, to the Chukchi and on to the Beaufort we see surface water temperatures ranging from 2.25 to 4 C or more above average. And just west of Svalbard, we have water temperatures ranging in a zone exceeding a terrifying 8 C above average. When a sea surface temperature departure of 0.5 to 1 C above average is considered significant, these values represent extremes that are far outside what was once considered normal.

Melt Pressure to Ice Sheets

Such high surface water temperatures have numerous effects. The first is that adjacent submerged ice sheets, such as the calving faces of Greenland’s great glaciers plunging into the ocean, are faced with a far greater melt pressure than before. The glacial fronts in many cases expose 500 or more feet of ice directly to these much warmer waters. And on almost every side of Greenland, but especially in the west, along Baffin Bay, these great ice masses are confronting extraordinary warmth. The heating is without respite. It occurs at all hours of the day and since it is delivered by water, it is many times more energy intensive than a similar volume of equally heated air.

Widespread Sea Ice Thinning and Melt

In the sea ice edge zone, the warmth also provides added heat pressure to the vulnerable and already greatly thinned ice floes. This heating is especially apparent in areas where continental rivers disgorge their waters into the Arctic Ocean. Warmer than normal water temperatures have coincided with much warmer than normal land temperatures, particularly over tundra regions like Canada’s Northwest Territory and the Yakutia region of Russia. These warmer lands result in warmer river flows. And the hot rivers spill into an already hotter than usual Arctic Ocean.

The result, as we can see in today’s MODIS satellite shots are numerous zones of greatly thinned ice.

Beaufort Thin Ice

(Ice melt, thin ice and melt ponds in the Beaufort Sea on June 25 of 2014. Image source: LANCE MODIS.)

A Beaufort Sea confronted with warm water outflow from the Mackenzie River, sea surface temperatures in the range of +1 to +4.5 C above average, and a broad swath of above freezing air temperatures, is now starting to show major melt effects. The sea ice has already withdrawn by as much as 150 miles from a broad section of the Canadian and Alaskan coasts. The off-shore ice features numerous very large polynyas and leads. And, overall, the ice has taken on a bluish tint indicative of widespread melt pond formation.

Russian Arctic Ocean sea ice june 25

(Arctic Sea Ice over the Laptev and East Siberian Seas. Image source: LANCE MODIS.)

Meanwhile on the far side of the Arctic, effects appear to be even more widespread. Though sea surface temperature values are somewhat lower than those seen in the Beaufort, at +0.5 to +1.25 in most open water areas, the entire region is rife with 150-200 mile wide polynyas, shattered and broken floes, and thinning (blue in the satellite picture) ice covered in melt ponds. The ice in this region is so frail that even the mildest storms, featuring 15-20 mph winds, are enough to rip through and splinter previously contiguous ice. And the storms in the region this year have been quite mild, ranging from 990 to 1000 mb in strength.

Sea ice measures show current area and extent at between 3rd and 5th lowest on record. That said, observed ice response to even the mildest high and low pressure weather systems reveals a startling vulnerability with much warmer than normal sea surface temperatures surely a contributing factor.

Wildfire Eruptions From The Northwest Territory to Siberia

In net, much warmer water temperatures and retreating sea ice in the Northern Hemisphere trigger both Jet Stream erosion and increasing south to north air flow. Over the continents, where lands are far more susceptible to rapid warming, this can result in Arctic regions seeing summer time temperatures comparable to those in latitudes much further south.

Over the past week, temperatures in the upper 70s to upper 80s (Fahrenheit) covered a broad region of Canada’s Northwest Territory including Alberta and the Mackenzie Delta region along the Beaufort Sea. These temperatures, in the range of 20-25 F above average rapidly dried out the shallow topsoil zone over the frozen and thawing tundra. Such rapidly dried soil and newly liberated tundra is a volatile fuel for fires. The human-thawed tundra itself contains burnable organic material and hosts pockets of methane while the dry soil bed is suffused with tinder-like grasses and shrubs. Any ignition can set off extraordinary fires of almost unimaginable scope and intensity.

Great Slave Lake Fires NWT

(Massive fires rage near Great Slave Lake in Canada on June 24, 2014. Image source: LANCE MODIS.)

By June 24, four massive fires, each with a front ranging from 20-30 miles in breadth, raged along the shores of Great Slave Lake in Northwest Canada. Four smaller, though still significant fires also burned nearby. The fires are plainly visible as white, comet-like plumes of smoke in the satellite picture above. For reference, Great Slave Lake is more than 200 miles across at its widest point. Bottom edge of frame is about 300 miles.

To the south and east by about 250 miles lies the Fort McMurray tar sands operation. A smaller, though still intense, tundra fire raged within 20 kilometers of that sprawling site but did not yet encroach on one of the most powerful and dangerous means of carbon-to-atmosphere delivery on the planet.

On the other side of the Arctic in Siberian, Russia, the situation was, once again, more dire. There a region very vulnerable to mid summer wildfires during recent years erupted into numerous blazes belching smoke into a swirling cloud caught up in the heat dome overhead:

Lake Baikal Fires Re-Ignite

(Massive region of wildfires North of Lake Baikal, Russia. Image source: LANCE MODIS.)

These fires were sparked by temperatures that, during recent days, ranged in the 80s and even 90s. An extraordinary heat forcing for rapidly melting tundra regions that also saw far warmer than typical temperatures this past winter.

This area, about 800 miles to the north of Lake Baikal, Russia, is a region of rapidly thawing tundra that has burned again and again during recent summers. For scope, the satellite shot frame, above, is 750 miles on an edge. In the picture are about 50 fires with fronts ranging from 4-35 miles.

This spring, a broad area to the south of the current fire zone and just north of Lake Baikal saw massive fire activity prompting Russia to dispatch an army of hundreds of firefighters to the region. Such intense fire activity so early was unprecedented for Russia. But the real fire season typically peaks from mid July to August. And, in the above picture, we see what is likely the opening salvo for the summer fire season in earnest.

Smoke and soot from these massive fires are swept up in the circumpolar Jet Stream. There they are born aloft for hundreds of miles, often traveling northward to find a final resting place upon the sea ice or atop Greenland’s glaciers. This ultimate darkening of the snow further enhances glacial melt even as it completes the cycle of warmth, finishing a dance of heat that rises up from the oceans, assaults the ice, and heats the once frozen lands to erupt in flame.



Support the Dark Snow Project

Where is Global Warming Going?



When April is the New July: Siberia’s Epic Wildfires Come Far Too Early

Global Warming Pushing Canadian Wildfires to Spike



Arctic Heatwaves Rise to Threaten Sea Ice as Lake Baikal Wildfires Re-Ignite

According to model forecasts, Arctic heatwaves are forming that will, throughout this coming week, bring 50-70 degree (F) temperatures to the shores of the East Siberian and Laptev Seas, the estuaries of the Kara and on through Arctic Eastern Russia to Coastal Scandinavia. These heat pulses will push a series of wedges of above-freezing temperatures across the Arctic Ocean zones of the Chukchi, East Siberian, Laptev and Kara Seas to within a few hundred miles of the North Pole, creating conditions that set up the potential for a severe early-season weakening of sea ice.

They are the most recent in a long train of severe warming events arising out of a wide region of Northwest North America and Eastern Asia since at least late last fall. The heat waves have continued to ride up weaknesses in the Jet Stream and deliver warmth to the High Arctic, creating havoc for Arctic climes. During Winter, the heat pulses collapsed the Polar Vortex and sent Arctic temperature anomalies spiking to 5-6+ degrees Celsius or greater above the already hotter than normal 1979 to 2000 average even as they set off a series of heat-related weather emergencies for Alaska.

Triple Arctic Heatwaves

With the emergence of late spring, high temperature anomalies typically cool in the Arctic as polar amplification seasonally fades. However, the two Jet Stream weaknesses have continued to provide heat transport and push Arctic temperatures above normal and into ice-threatening ranges. Now, a third hot ridge, this one over Western Russia and Eastern Europe, has emerged and strengthened to provide yet one more Arctic heat delivery engine:

Dual Arctic Heat Waves

(Triple Arctic Heatwaves — one over the East Siberian Region of extreme northern Yakutia, one over Western Russia and Eastern Europe, and a final one that, in this May 24 forecast, is centered in Canada west of Hudson Bay and extending toward the Canadian Arctic Archipelago. Note the long tongue of above freezing temperatures extending into the Arctic Ocean from the East Siberian and Laptev Seas. In the current picture, it is night over Alaska and Canada, day over Russia. Information Source: Global Forecast System Model. Image source: University of Maine.)

This combination of gathering heat waves has frequently pushed late-spring Arctic temperature anomalies into the range of 1 to 2 C above average with local areas forecast to see between 10-20 C or higher departures. It is extraordinary heat for late spring. A gathering event that appears to be setting up for a major blow to Arctic sea ice.

Smoke on the Waters of Lake Baikal

The formation of what is now a growing and broad-ranging Arctic heatwave was, this weekend, heralded by a return to extreme and anomalous wildfires in the region of Lake Baikal, Russia. Ever since April, immense fires have been springing up in this region requiring massive response from an Army of Russian firefighters. Over the past two weeks, the fires have been held at bay by a combination of Russian emergency response efforts and cloudier, rainier conditions.

But, over the past two days, extreme seasonal heat has returned to this vulnerable region, an area where winter warmth, early melt, and thawing tundra have provided ample and excessive heat and fuel sources for the ignition of extreme wildfires. By today, the fires near Lake Baikal in Yakutia were both massive and intense featuring numerous blazes with 20 mile or greater fire fronts as the entire burning region cast off a tail of dark and heavy smoke stretching more than 1,500 miles west and north toward the Pacific Ocean:

Lake Baikal Fires May 18

(Lake Baikal Fires May 18, 2014. Lake Biakal is in the lower center frame. Width of frame is about 2,000 miles. Image source: LANCE-MODIS.)

This early proliferation of fires, as hinted at above, is the continuation of a massive event that began very early this spring and is likely to continue to show intensification and emergence in the three Arctic heatwave zones.

Fires of this immense scope pose their own threat to ice in the form of delivery of very high volumes of black soot that darken sea ice and glacial ice sheets alike. This darkening is, yet one more, amplifying feedback to climate change in the Arctic and remains a suspected factor in the acceleration of Greenland ice sheet melt (See Dark Snow). With so many fires so early, the risk of a long, summer-period snow and ice darkening is well on the rise, potentially playing a role in what is now also a spiking risk of rapid melt pond formation.

Disposition of Melt Ponds

A recent study found that a proliferation of melt ponds during late spring and early summer has preceded record melt seasons in all instances between 2007 and now. With current heat pulses and Arctic wildfires setting in place conditions that may well result in the ignition of widespread very early season melt pond formation in mid-to-late May, risks for end season melt spikes are on the rise. Regions impacted by these heat pulses and related early season albedo loss are similar to areas showing widespread melt pond formation prior to the massive 2012 sea ice collapse event (there has been educated speculation over at the Arctic Ice Blog that the location of these melt ponds on the Russian side may have played a key role in 2012’s massive melt).

The Role of El Nino and Upping the Chances for a Near Zero Sea Ice Event

The rise of El Nino in the Eastern Pacific is also likely playing a part in these building heat waves. El Nino typically enhances high amplitude Jet Stream ridge formation over Alaska and Canada. Furthermore, in recent years, we’ve seen the tendency for ridge and heat dome formation over Eastern Europe and Western Russia during El Nino. So at least two of the three observed Arctic heat delivery zones are likely getting a kick from what appears to be a strong El Nino gathering in the Pacific.

If El Nino arises and continues to increase atmospheric heat transfer to the Arctic, to proliferate extreme wildfires, and to enhance early loss of albedo, this year will, indeed, be a very bad one for Arctic ice. Given observed and ongoing trends along these lines, we are increasing our risk for a near-zero sea ice event by end of this summer to 30%. Eyes turn to Greenland as well, since both loss of sea ice cooling and a proliferation of early season fires can result in compounding risks to the increasingly unstable glaciers of that thawing land.


NOAA’s Global Forecast System Model

The University of Maine


September Ice Minimum Predicted by Melt Pond Formation

Dark Snow

The Arctic Ice Blog

Extensive Dark Snow, Very Large Melt Lakes Visible Over West Slope of Greenland as Late Season Melt Pulse Continues

Late Season Greenland Melt Pulse Continues.

Late Season Greenland Melt Pulse Continues.

(Image source: NSIDC)

A strong, late-season melt pulse continued over the Greenland ice sheet this weekend as melt covered a much greater portion of the ice sheet than is typical for this time of year. As of late July, the area of the Greenland ice sheet subject to melt had spiked to nearly 45%. Soon after, a second melt spike to around 38% followed. Over the past two weeks, melt area coverage has fluctuated between 5 and 25 percentage points above the seasonal average for this time of year, maintaining at or above the typical melt season maximum of around 25% for almost all of this time.

This late-season melt surge was driven by a switch in the polar Jet Stream. A trough which had dominated through much of summer, bringing near average temperatures and melt conditions, had eroded and by late July a broad ridge began to form. This high amplitude wave dredged warm air up from as far south as the south-eastern US, then dumped it on the west facing coast of Greenland. There, last week, a new record all time high temperature of 78.6 degrees (Fahrenheit) shattered Greenland’s previous highest temperature of 77.9 degrees.

And this record heat is beginning to have a very visible affect on the ice. Aqua satellite passes this weekend recorded a visible darkening of ice cover in the region most greatly impacted by high temperatures last week. The snow and ice cover there has taken on a sooty appearance with darker gray tendrils finding their way deep into the ice pack. At the same time, large melt lakes expanded over the region with some of these lakes measuring more than  three kilometers across.

In this first Modis shot we see a broad region of darkened, melt-pond speckled ice forming over a very large swath of Greenland’s western ice sheet:

Greenland west coast melt, August 4.

Greenland west coast melt, August 4.

(Image source: Lance-Modis)

For reference, Baffin Bay is toward the left of the image, the southern tip of Greenland, toward the bottom, and the far right frame of the image runs about down the center-line of the south Greenland ice spur. Note the swatch of dark ice that appears much like dirty snow running down western side of the ice sheet. This major melt region, at its widest, appears to dive as much as 100 miles into the ice sheet. Even at this level of resolution, we can see the large melt lakes speckling the inland border of this darkened region.

Zooming in to a region where melt appears to have penetrated deepest into the ice pack, we find even more dramatic features.

Greenland melt lakes, dark snow, August 4, 2013.

Greenland melt lakes, dark snow, August 4, 2013.

(Image source: Lance Modis)

The orientation of this particular image is the same as the larger image above, but we have just zoomed in to a large, central melt region. Toward the coast, we can see melt and ice flowing into channels and fjords. Adjacent to this rocky coastal zone is a region of more rapidly mobile and fractured ice flows. Few melt ponds are visible in this region and this is, likely, due to the large fissures and steep vertical faces that cover most of the ice surface in this area. It is beyond this boundary margin and inward toward the ice sheet’s center that we find a second region of very dark snow and ice. This area shows some large melt ponds, but its prominent feature is an almost complete loss of reflective snow cover with lower layers of soot deposition and darker sediment now exposed. Still further in, we find the third, and arguably most dramatic, melt zone. This particular area is coated, not in dark gray, but in blue. It is a feature primarily caused by a very extensive surface melt covering much of this region. In this single picture, we can count over a hundred large melt lakes mostly dominating this region. They range in size from about a half kilometer to over three kilometers across. Connecting these lakes is what appears to be a web of melt rivers, some of which terminate in moulins that core into the glacier’s heart, delivering warm melt water the frigid ice’s center and base. The general bluish color of this region indicates a very high degree of melt with puddles and pools below the 250 meter resolution of this particular satellite shot lending an azure tint to the ice.

Conditions in Context

Over the past two decades, Greenland has shown a very disturbing and rapid melt response to human-caused warming. During the mid 1990s, Greenland began to show a net loss of ice mass. Through the 2000s, this melt rate accelerated, growing generally, but rapidly peaking in rather disturbing melt surges as warm weather conditions grew more extreme during certain years. By 2012, a very extreme melt year had occurred, resulting in ice sheet losses on the order of 700 cubic kilometers in just one year. These peak melt years appeared to re-cur at a rate of once every 2-5 years even as overall average melt from Greenland grew to a disturbing 500 cubic kilometers by the early 2010s.

Even worse, sensors deep within the ice sheet indicated that the ice sheet had become more mobile, increasing in velocity by about 2-3 percent each year since 2010.

Though 2013 does not appear to be a peak melt year, as weather conditions have favored less melt than in 2012, the continued softening of the Greenland ice sheet remains a very disturbing summer feature. This year’s west coast melt has been particularly dramatic, with the most recent shots shown above featuring some of the worst melts I have yet witnessed.


Prokaryotes (think about the name) was kind enough to produce the following video of this blog on his own platform: Climate State. I’ve linked the YouTube version here:


Greenland Ice Sheet Slipping Under Hottest Temperatures Ever Recorded

Keep up with Greenland Melt by Reading Jason Box’s Website

The Dark Snow Project

NSIDC’s Review of the Record 2012 Greenland Melt Season

Global Warming Rolls Climate Dice Yet Again: High Amplitude Jet Stream Wave Brings Late July Melt Surge to Greenland

The old cliche is that lightning never strikes twice in the same place. In weather and climate terms, natural variability makes it highly unlikely that record year will follow record year, even when a forcing, such as human global warming, tends to push in that direction.

In the context of Greenland, it was very unlikely that record melt on the order of around 700 gigatons of ice lost during 2012 would repeat in 2013.  That said, even in a year like 2013, where climate attempts a return to the average trend line, it’s entirely clear that conditions are anything but normal.

Throughout late June and much of July, a downward dip in the Jet Stream dominated weather patterns over Greenland. Cold, Arctic air was locked over the massive island, pushing melt rates closer to ‘normal’ for a summer season. The term to use is definitely ‘closer,’ because even during weather conditions that would normally bring colder than average conditions to Greenland, warmth and melt were still above average.

Global warming adds a roll

A metaphor we can use to describe this phenomena of implied variability in a warming system is James Hansen’s climate dice. Imagine that a basic roll of a d10 gives us a typical weather pattern for Greenland. 1 on the dice represents record cold, 10 record warmth, 2 and 3 are colder than average, with 2 being near record lows and 3 being closer to average, 4, 5, 6 and 7 are average, 8 and 9 are hotter than average, and 10 is record heat.

This set of weather and climate possibilities is a basic representation of ‘normal’ for Greenland. But when we add in human climate change and global warming, we are essentially adding a new player to the mix, with its own set of dice. In this case, let’s add a 1d3 to the global warming hand. Now, with the extra dice roll for global warming, the potential for extreme hot, melting years just got far, far more likely and we begin to experience never seen before heat and melt events. But we still end up with colder than average years and normal years, just less of them.

The situation is probably worse than the simulation described above because on the typical 1 to 10 scale we can label 2012 about a 13 (with freakish never seen before record heat and melt) and 2013 through about July 26th a 7.1 — slightly hotter than average with ever so slightly above average melt.

The problem is that June and July were average when they should have been cold. I say this because a high amplitude wave in the Jet Stream flowed down over Greenland, pushing relatively colder air over the sea ice and into the freezer that is still Greenland. Such conditions usually push for colder than average Greenland temperatures and lower than average melt. This period of what should have been colder than average conditions instead resulted only in an abatement of record melt and a return to slightly above average melt.

Mangled Jet Stream switches back to ‘hot’

But now, even this brief respite appears to have evaporated. Over the past couple of weeks, the deep, cooler trough over Greenland eroded, weakening as warmer air pushed into southern Greenland. Now, the trough has completely reversed — becoming a ridge and somewhat mimicking the freakish conditions that occurred during 2012. So slightly above average melt conditions are now starting to swing back toward record melt conditions for this time of year.

You can see the large, high amplitude bulge riding from south to north, carrying air from the south-eastern US all the way north to Baffin Bay and southwestern Greenland, in the Jet Stream map for July 30th below:

Greenland Jet

(Image source: California Regional Weather Service)

This sudden Jet Stream switch brings back a weather pattern that caused such major melt conditions during summer of 2012 and such warm winter conditions for Greenland as 2012 turned to 2013. And the results, as far as ice melt goes, have been almost immediate. Earlier melt peaks at around 34% of the ice sheet during July were obliterated in one fell switch of atmospheric air flow that, once again, drew warm, temperate air into the Arctic.

Over the past two days, this extra warmth has increased Greenland melt area to above 40%, peaking at near 45% just a couple of days ago. This peak, though not as anomalous as the 90% + melt coverage experienced during early July of 2012, is still about 80% higher than the average melt peak observed for the period of 1981-2010 and more than double the average for melt in late July. It also puts Greenland further into above average melt year territory, possibly shifting the 2013 score from 7.1 to around 8.5.

You can see the melt coverages graph, provided by NSIDC, for the current year below:

Greenland Melt 2013 Late July

(Image source: NSIDC)

The warm air pulse that drove these anomalously high late season melt rates in Greenland appears to have settled in for at least the time being. Temperatures along the Greenland coast range from the upper 30s to the lower 60s — quite warm for this time of year — while summit Greenland is experiencing warmer than average temperatures in the lower 20s (Fahrenheit).

Above average melt when it should have been cold

So what is freakish about 2013 when compared to 2012 is not that it matched a major melt event that will likely stand as a record for the next five years or so, but that in a year where weather conditions would have pushed Greenland to be mostly colder than normal, above average warmth and melt were still experienced. In this case, it becomes very clear that we are rolling with loaded climate dice or, as the illustration above shows, human global warming is adding its own wicked set of rolls.


California Regional Weather Service


James Hansen’s Climate Dice

Learn about Dark Snow

Soot From Forest Fires: Yet One More Amplifying Feedback to Human-Caused Climate Change


(Los Conchas Fire. Image source: Wikipedia)

A new study produced by Los Alamos National Laboratory has found that soot from forest fires is a more powerful amplifying feedback to human caused climate change than previously thought. The study, based on empirical measurements following the 2011 Los Conchas Fire in the lab’s vicinity, found that tiny tar balls produced during burning served to reduce land and air albedo (reflectivity) and resulted in increased levels of solar absorption.

“We’ve found that substances resembling tar balls dominate, and even the soot is coated by organics that focus sunlight,” said senior laboratory scientist Manvendra Dubey, “Both components can potentially increase climate warming by increased light absorption.”

An increasing rate of wildfires is a primary result of human-caused warming. This feedback releases carbon stocks stored in trees and flora back into the atmosphere through burning, adding to the already elevated levels of carbon there. For years, the production of this feedback has been taken into account in climate models that estimate future warming. However, the effect of aerosols like the black tar balls in forest fire soot identified by the Los Alamos study have not been taken into account.

Previous climate models counted aerosols as warming-neutral due to the assumption that black carbon emissions that absorbed sunlight and heated the land and atmosphere were balanced by organic carbon aerosol emissions that reflected sunlight and cooled the land and atmosphere. Unfortunately, the Los Alamos study found that black carbon tar balls outnumbered organic carbon aerosols by a factor of 10 to 1:

“Most climate assessment models treat fire emissions as a mixture of pure soot and organic carbon aerosols that offset the respective warming and cooling effects of one another on climate,” Dubey explained. “However Las Conchas results show that tar balls exceed soot by a factor of 10 and the soot gets coated by organics in fire emissions, each resulting in more of a warming effect than is currently assumed.

“Tar balls can absorb sunlight at shorter blue and ultraviolet wavelengths (also called brown carbon due to the color) and can cause substantial warming,” he said. “Furthermore, organic coatings on soot act like lenses that focus sunlight, amplifying the absorption and warming by soot by a factor of 2 or more. This has a huge impact on how they should be treated in computer models.”

The Los Conchas fire emissions study provides new information that may help improve the accuracy of climate models going forward. Sadly, it’s bad news to find yet more evidence of sensitivity via amplifying feedbacks in the Earth climate system. Black carbon is also a subject of concern because it coats ice sheets, thereby reducing their overall resilience and reflectivity. In a recent expedition to Greenland, Dr. Jason Box and associates are attempting to measure the effects black carbon soot, some of it from forest fires, have on the great ice sheets there.

“The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done,” Dubey said.


A Vicious Cycle

The Dark Snow Project

Wildfires May Have Bigger Role in Global Warming

%d bloggers like this: