Harmful Contacts with our Living Earth and Redounding Shots Across the Bow

About two-thirds of all infectious diseases in humans have their origins in animals. Scientists say the ability of a virus to mutate and adapt from animals to the human system is very rare, but the expansion of the human footprint is making that rare event much more likely. — Jeff Berardelli

Contact — the state or condition of physical touching.

Harmful or unwanted contact — an assault.

Redound (archaic) — to come back upon; rebound on.

*****

How do you get sick from a virus? In the most simple sense, the virus touches your skin, your eye, the inside of your mouth, your blood or some other part of your body. It makes contact. Then it gets inside to do its damage. Often, this is through some action that you take. Some voluntary, some involuntary. Breathing, moving, picking up objects, putting contaminated clothes or blankets on or venturing into environments where other carriers of the virus can touch you. Or even, in a broader sense, disturbing the virus carriers and changing their environment is such a way that makes it easier for them to literally come to your home community to roost.

Contact.

In the last chapter we briefly explored how the world houses many, many potential, new, and re-emerging illnesses. Kept away from humans in mostly safe or remote places. We also briefly looked at how those illnesses are expanding. In this chapter, we will take a deeper dive into the second part. To look at how some harmful elements and activities within of our civilization have wrecked some of those safe places, how they’ve gotten us into what amounts to a brutal embrace with the places and beings in living nature that are reservoirs to those illnesses. How in this epic and global struggle, often bad actions and behaviors have shaken some illnesses loose. How it’s all gotten many of us sick.

That’s our present and recent history. One of harmful contact. Of touching and grasping for things best left undisturbed. And how it’s getting worse. How the general disturbance is rippling outward and bounding back.

We’re living in a time of an explosion of new illness or the re-emergence of old illnesses previously thought contained onto the global scene. How this has happened first became a major part of the discussion among health and epidemic experts since around the 1980s. For at the time, we experienced one of our initial major warnings that diseases may be dedounding onto expanding global civilization. And this first warning came from a terrifying new illness. For HIV humbled a global health corps that until that point had seen a long string of victories arising from the advances in medical science during the 19th and 20th Centuries.

HIV — Major Warning Shot to the Global Health System

HIV heralded an ominous new era. One where victory against infectious illness was less certain or at least came much slower and at a much higher price than earlier medical science victories might have given us hope for. One in which disrupted, damaged, or harmfully contacted life (and its supports) appears to return a toll on humankind as various enormous and harmful activities spread — burning, deforesting, killing and eating, and polluting their way across the globe.

virus3d rendering of a virus

3D rendering of HIV. Image source: National Foundation for Infectious Diseases.

Since its first outbreak as a pandemic during the early 1980s, HIV has infected over 75 million people of which around 32 million have died as a result of an illness that jumped to human beings from primates. Many deaths occurred early in the pandemic outbreak as first treatments were mostly ineffective. But even today HIV kills between 500,000 and 1,100,000 people each year (770,000 during 2018).

HIV originated in the broader African rainforests. There its progenitor reservoir existed as semian immuno deficiency virus (SIV) in the great apes and monkeys of the jungle for more than 10,000 years. All without transferring to humans until very recently. Our best present understanding is that the ultimate zoonosis occurred due to the bush meat trade in Africa which produced multiple contacts between SIV in apes and the blood of humans.

Hunting, Rubber and Bush Meat

The story of the bush meat trade is one that should be eerily familiar to those researching the climate crisis. Because it is also a story of forced displacement of human populations which then results in a harmful interaction with the natural world and subsequent damaging upshots. In the period from around the 1880s to the 1920s, sub-saharan Africans were forced from their native rural homes in droves as waves of Europeans descended on the jungles of Africa.

The Europeans wanted elephant tusks from the hunting trade to be sent home to Europe. They wanted rubber vine sap for industrial uses. They wanted to commoditize the jungle for these and other products. But often the Europeans didn’t have the manpower or local knowledge to conduct effective hunting expeditions into the jungle without the help of native populations. And they needed a local labor force for the rubber vine trade. Tribal Africans were pressed into service for the expeditions and the industrial exploitation of jungle plant products, often at the point of a gun.

This was a kind of mass invasion of the jungle in which abused and often under-nourished natives needed a new food source to survive. Rural subsistence agriculture wasn’t a possibility for a constantly mobile porter in an elephant hunting expedition. Nor was it for rubber plant harvesters or those newly impressed into factory work in burgeoning cities.

Bushmeat

“At this bushmeat market in Pointe Noire, a butchered chimpanzee is shown in the middle of the photograph, along with other smoked and fresh meat. It has been theorized that SIV moved from chimpanzees and sooty mangabeys to humans—evolving into pathogenic HIV-1 and HIV-2 respectively–through exposure to primate blood, most likely as a result of the bushmeat trade. The HIV-1 group M epidemic likely began in the region of Kinshasa, Democratic Republic of Congo. Although wild chimpanzees are not found in the immediate vicinity of Kinshasa, the city is situated on the Congo River, which allowed for the easy transport of SIV-infected bushmeat and of infected humans from rural to urban areas.” Image and caption source: Physicians Research Network and the Goldray Consulting Group.

So a kind of shadow trade in bush meat arose. Porters on hunting expeditions would opportunistically kill and butcher the jungle animals they came into contact with to supplement their diets. It was an ironic and ominous outgrowth of the abuse handed down to the native Africans by the Europeans. It was almost as if they’d been corrupted by the hunting and killing they were forced to take part in such that it became a new means of survival for them.

The Monster that Lives in the Jungle and the Monster that Lives in Us

Various strains of SIV lived in the blood of apes and monkeys in Cameroon and Sierra Leone. Porters and laborers driven into the jungle killed and ate their hominid relatives to survive the European expansion into Africa and its subsequent exploitation. Hunted chimps and monkeys fought back. They bit. They flung feces. Tired porters and laborers hunting chimps after endless hours of work made mistakes. They missed when cutting chimp meat off of bones. They under-cooked bloody meat. They cut themselves with bloody knives containing the blood of their hominid fellows. The SIV living in the blood of the monkeys and apes its way into the blood of the porters and laborers. It happened many, many times.

At first, SIV was a mild virus in humans. It didn’t live well in the new host. But viruses are weird. Like life, they mutate. They change. They adapt to new environments. If there is one prime directive a virus has in its intrinsic design it is to self-replicate. At some point in all the butchering and eating and messy cutting or in the conflicts between the people hunting the apes and monkeys for food and the fighting creatures struggling for very existence, there was an SIV transmission into humans that caught fire. Changing from the mild SIV to the raging and lethal human immuno-deficiency virus that we know today.

It had to have happened multiple times. We know this, in part, because there are not one but two progenitor strains of HIV — HIV 1 which links back to apes and chimps in the Cameroon region and HIV 2 which links back to Sooty Mangabays in the Sierra Leone and Ivory Coast region. A grim bit of evidence pointing to how widespread the harmful contact was that resulted in the virus’s leap into humans. The point in time at which the consistent leap was made is thought to have occurred in the pre-World War 2 period — possibly as early as 1908.

Once the leap happened, the machine of exploitation in Africa that the colonialists had set up then served to help spin the virus out into the broader human population. Industrial centers and related communities had sprung up around the animal products and jungle harvesting trades. And in those centers prostitution of various kinds was rampant. Already established human illness such as syphilis, chlamydia and gonorrhea became widespread in Africa. These illnesses assisted the spread of HIV into hundreds of people by the mid 20th Century. This created a consistent viral HIV reservoir in humans from which the major pandemic later emerged.

Ebola — Novel Jungle Hemorrhagic Fever

If HIV was the first known serious illness to arise through harmful human interactions with ancient tropical and subtropical disease reservoirs, it became sadly apparent early on that it would not be the last. More human beings were coming into contact with the old animal disease reservoirs moving from previously sequestered habitats than before.

Ebola cdc

An electron microscope image of Ebola virus. Image source: CDC.

Cities were extending into the jungles, animals carrying illnesses foreign to humans were moving into those cities. Deforestation and slash and burn agriculture was displacing them, driving them. And in most new places that the animals moved there were human beings as well. A new harmful interaction, the climate crisis driven by fossil fuel burning, was also beginning to heat up the world. This served as a new pathway for expansion — increasing the habitable range for creatures used to hot weather and typically averse to cooler climes. This greatly increased and continues to increase the spatial range of tropical and semi-tropical illnesses capable of infecting people.

Of the jungle fevers that arise from the hot regions of the world, that are carried by animals that live in this heat, the viral hemorrhaigc fevers are perhaps some of the most terrifying. Like HIV, they are seriously lethal — tricking the body’s immune response in a way that enables them to multiply out of control. Directly attacking the body’s linings, they thus cause such great cell death that they effectively blow holes in tissue. This breaks down the body’s integrity causing loss of fluid and ultimately bloody hemorrhage.

From Viral Brush-fire to Conflagration

The first instances of Ebola occurred in 1976— in Sudan and then in Zaire. These initial infection outbreaks were highly lethal and terrifying to the local populations effected. Of the 284 people suffering from the Sudan strain of the virus, 151 died. In Zaire, 280 out of the 318 infected souls (88 percent) perished. For a relatively short-lasting infection, Ebola was amazingly lethal. Though later, less deadly strains emerged, many of the outbreaks to follow would continue to kill a surprising number of those afflicted. Presently, the World Health Organization estimates the lethality rate for Ebola, overall, at 50 percent. Sudan and Zaire both hosted different strains (SUDV and EBOV) of the same virus — Ebola — which was named after the river region from which it emerged.

It is still not fully known how the deadly Ebola virus first made its leap into humans from animals. But it is well known that tropical fruit bats, porcupines, and primates — yes our poor hominid relatives again — can carry the virus. As with HIV, the harmful bush meat trade is one of the key suspects. Although with Ebola, there are many other possible modes of zoonosis from animals to humans.

The virus is more transmissible than HIV, though less so than many other illnesses, such that direct contact with blood, secretions, organs or other bodily fluids of infected people or animals, and with surfaces and materials (like bedding and clothing) contaminated with these fluids can result in sickness. It is thought that eating fruits partially eaten by fruit bats, food contaminated by bat or other infected animal feces, or consuming bush meat are all means of animal to human transfer of the illness.

Ebola Jungle Ecology CDC

Initially, the bush meat trade was a prime suspect for transmission of Ebola to human beings. Presently, it’s understood that other contacts with infected animals or their bodily fluids may transmit the virus. Also, at first, Ebola primarily impacted areas bordering the jungle. But in recent outbreaks, major population centers have been impacted. Image source: Ebola Virus Ecology — CDC.

Notably corpses of both humans and animals who were killed by the illness remain infectious for some time — requiring special burial. The disease typically spreads from human to human through direct contact with the blood, semen, saliva, vomit or other body fluid of infected persons. Surfaces contaminated by these fluids are also a means of infection. The virus is thankfully fragile in air, but splashing with droplets can transfer illness. And the virus is known to live in droplets on surfaces for up to 3 days.

After Ebola first burst onto the scene in 1976, there was a long hiatus of epidemic outbreaks in humans. Some thought, hopefully, that the disease had faded back into its tropical environs. But in 1995, nearly two decades after its first emergence, the virus broke out among humans in Zaire again — this time infecting 315 and killing 254. Subsequent outbreaks occurred every five years or so leaping to Uganda in 2000 (425 cases, 224 deaths), the DRC in 2003 (143 cases, 128 deaths), again in DRC in 2007 of a less lethal strain (149 cases, 37 deaths) and in 2012 in both Uganda and DRC yet again in three separate outbreaks (Uganda — 31 cases, 21 deaths; DRC — 57 cases, 29 deaths).

Thus far, outbreaks of the novel illness had been relatively small if intense viral brushfires. And, though lethal, the virus was thought be inhibited in transmission. A major outbreak spanning from 2013 through 2016 would belie that impression. Looking back, the illness had mostly been confined to small settlements bordering jungle regions in the 1976 to 2012 timeframe. But in 2013 and 2014 the virus, possibly through the enlarging span of its animal reservoirs, penetrated into more densely populated urban and city environments. From these more packed regions the virus would explode to rage out of control for years — consuming many thousands of human lives.

The West African outbreak which would hitherto dwarf all previous episodes of Ebola began in late 2013. Then, a one year old child perished from Ebola infection from an unknown source. Afterward, the disease rapidly spread through her community in Guinea, out into the local region and then on through the nearby countries of Liberia and Sierra Leone. What precipitated was a global health emergency that reached catastrophic proportions by summer of 2014 with the virus overwhelming the medical capacity of impacted countries. At this point the illness threatened to go global — with a handful of cases leaping to neighboring countries in Africa and even transferring overseas. But intense contact tracing and strict isolation both inside and outside the virus hot zone was largely responsible for preventing further spread.

By the end of the outbreak in 2016, an estimated 28,646 infections had occurred of which 11,323 were reported to have died. Ebola had risen from the ranks of a fringe if rather scary illness cropping up on the outer edges of society to an illness striking directly at the bones of global civilization. It had shown its ominous potential.

Subsequent outbreaks in 2017 and 2018 in DRC and Equateur Province mirrored previous less widespread infections. But a new outbreak that began in 2018 in the Kivu region of DRC and extends to today is considered a global health emergency by WHO. This particular outbreak as of 29 March, 2020 is reported to have infected 3453 people of which 2273 have died.

Warning Shots Across the Bow

Both Ebola and HIV served as early warning shots across the bow of global civilization. Visible signals that the risk of catastrophic emergence of new infectious illness was on the rise. That our harmful contacts with the natural world were the primary source of this rising risk. And that many, many more human souls may be at stake. These two novel illnesses were not the only major emergences to occur in this time. In fact, a plethora of new and re-emergent sicknesses have come onto the global scene over the past four decades. But they both represented the ominous character of the larger risk human beings now faced. They also foreshadowed the follow-on emergence of SARS into a major global pandemic — which we’ll be talking about in the next chapter.N

(Up Next — The Emergence of Severe Acute Respiratory Syndrome)

From Ancient Reservoirs

“The insidious emergence of HIV/AIDS and the lack of due attention by policymakers illustrate how some outbreaks that start subtly can grow to global proportions if they are not aggressively addressed early on.” — Dr Anthony Fauci

The Infectious Diseases Society of America recognizes climate change as a global health emergency and calls for policies responding to the intrinsic links between warming temperatures and rising sea levels and epidemic and pandemic events as well as other infectious disease threats to public and individual health. — IDSA

The climate system of our world envelopes it.

It represents the state of our atmosphere, our oceans, and the frozen regions we rely on. It interacts with and influences all things living here on Earth.

The present changes we now experience due to a climate in crisis are far-reaching. Disruptive to the balance of life itself. Harmful or even demolishing to ecosystems. Driving species of all kinds into new environments after their old safe places have been changed, disrupted, or taken away.

This is a story that we have become sadly familiar with as the burning of fossil fuels keeps dumping heat-trapping carbon into our atmosphere — resulting in rising seas, melting ice, stronger storms, worsening droughts, expanding heat, and far larger and more dangerous wildfires.

Global examples of emerging infectious diseases NIH

Global examples of emerging and re-emerging infectious diseases. Even before COVID-19, they were growing more numerous. Back in the early 1990s, this map showed just one illness — HIV. To humans, quite a few are now rather new. Others are re-emerging. Many are influenced by the climate crisis in various ways. Image source: Three Decades of Responding to Disease Outbreaks — NIH.

But there is one aspect of our changing climate that is often nuanced and overlooked — how the climate crisis can influence the spread of disease itself. How a disrupted global climate can drive sickness up out of the ancient reservoirs that have harbored it throughout the ages. How it can help accelerate the spread of new illness, make us more susceptible to sickness, or cause the re-emergence of previously well-contained diseases. Given the present context of a global pandemic caused by an entirely new illness — COVID-19 — it’s crucial to take a look at generally how harmful interactions with the natural world, particularly through climate crisis, are increasing risks of new and re-emerging diseases.

Reservoirs as Illness Havens

For what we know of as illness is also a kind of life.

Bacteria are micro-organisms. Viruses are pseudo-life and life-altering. And parasites are living things that dwell within or upon other living things. Climate change can generate or worsen such illnesses by directly affecting their environments as well. Creating the conditions that facilitate the transfer of diseases from typical ranges — called reservoirs — to new hosts. Developing pathways for expanded or new (novel) infections.

An illness reservoir is any person, animal, plant, soil or substance in which an infectious agent normally lives and multiplies. A harbor for the bacteria, viruses, or parasites that cause disease.

Human beings are reservoirs for certain diseases. These could be living humans or the dead — long buried and held dormant in ancient frozen tundra for hundreds or even tens of thousands of years. It is possible that the devastating illness smallpox (Variola virus), which was recently considered eradicated, may still be harbored by frozen dead humans entombed in the permafrost. That permafrost is now thawing as the Arctic heats up.

Animals can also be reservoirs — rabies, for example, lives in bats, raccoons, skunks, and foxes. Cholera is a bacteria that lives in water. It can also live in humans and zooplankton. And there is a link between the spread of Cholera and the loss of water security — which the climate crisis risks. Anthrax lives in herd animals like sheep and reindeer. Because it is capable of developing spores, Anthrax can survive for decades in the bodies of dead reindeer and the climate crisis produced thaw of permafrost has already resulted in new outbreaks of this illness in herd animals and, in rarer possible cases, human beings. Dengue fever is a nasty virus harbored by both humans and mosquitoes. And it is worth noting for diseases which cause illness and loss of life in human beings that mosquitoes — whose range can be greatly altered by changes in climate — weigh quite heavily.

Zoonosis — The Transfer of Illness From Animals to Humans

During recent years, human beings have unfortunately seen the emergence of numerous new or novel illnesses. Many of these illnesses have arisen as the result of mistreatment of nature. Our disruption of the natural world and harmful or abusive relationships with animals appears to have done double duty in getting us ill. For a good share of the nastier new ailments have arisen as the result of zoonosis — or the transfer of diseases that previously affected only animals to human beings — involving such harmful acts.

The harmful bushmeat trade in Africa is thought to be the origin of the novel HIV virus transferring from its original reservoir in primates as SIV before mutating into a stronger illness in humans during the 20th Century to become common from the 1980s onward. Though there is little clear and present evidence that the jump from animals to humans for HIV was directly influenced by the climate crisis, the link between harmful industry and disease transfer is a bit close for comfort here. It is also worth noting that those living with HIV are among the most vulnerable to increasing extreme weather events and related disruption of human habitat and support systems driven by the climate crisis.

SARS illnesses (of which COVID-19 is a subset) and Ebola are also novel viruses in humans. As with HIV, they are likely zoonotic illnesses. This means they originated in animal host reservoirs but, through some process of contact, transferred to human beings. These viruses are still rather mysterious in that they presently have unconfirmed reservoirs. But both are reasonably suspected to be harbored by animals — with tropical and subtropical bats relatively high on the list.

With Ebola in particular (we’ll talk about some similarities between Ebola and SARS due to suspect reservoirs in the next chapter), there is a bit of an ominous interaction with the climate crisis. New modeling produced in Nature Communications suggests that under the present pathway of global heating, Ebola epidemics in Africa could occur once every 10 years — or almost twice as often as they do at present. This is because the bats and other animals that are thought to harbor the virus are expected to be driven by warming temperatures into new areas — expanding the epidemic-prone region by 20 percent.

Expanding Heat

The heating function of the climate crisis is very well understood. And, early-on, scientific research from world health and climate agencies identified the risk that more global heat posed to expanding illness. In particular, mosquitoes which are both reservoirs and vectors (agents of disease transfer) for numerous harmful illnesses are seeing their ranges greatly expand as the world heats up.

Mosquito-borne infection is an ancient and well-known threat to humankind. But it has thankfully been relegated to warmer climates. Despite knowing little about mosquito-borne Malaria, the Roman aristocrats of antiquity did know they could avoid infection by retreating to villas in the cooler hills. Away from where mosquitoes were plentiful. Unfortunately, the climate crisis is driving heat, and the mosquitoes that come with it, both uphill and into higher latitudes.

A single populous species of mosquito — Aedes aegypti — can spread four serious illnesses. They include Dengue Fever, Zika virus, Chikunyunga and Yellow Fever. As global heating continues to be driven by fossil fuel burning, the range of this mosquito is expected to greatly expand. How much depends on how rapidly we halt fossil fuel burning and transition to clean energy (or not). But a business as usual (worst case) fossil fuel burning scenario in which the clean energy transition continues to be hobbled will bring this so-called jungle fever carrier to the Arctic by the 2080s (see image above).

There are over 3,500 species of mosquito. Most are relegated to warmer climates. In addition to the illnesses mentioned above, these insects also carry Malaria and West Nile virus among many others. And as the climate heats up, their range and their ability to transfer diseases among humans will expand.

But mosquitoes are not the only disease reservoir and disease vector species now on the move as a result of the disruption caused by climate crisis. There are many. Some which we probably don’t yet know about.

Receding Cold

If tropical heat spreading northward bringing with it flights of mosquitoes and displacing other disease carriers presents one illness expansion problem, the ongoing thaw of cold regions presents another. In particular, there is evidence that the Arctic has locked away numerous ancient illnesses that could be released in the thaw produced by climate crisis.

The Variola virus which causes Smallpox may well be sequestered in the various graves and burial mounds scattered throughout the Asian and European north. A study conducted in the 1990s detected fragments of smallpox DNA in the remains of Stone Age humans as well as people who were known to have died from smallpox during the 19th Century. Though smallpox was considered eradicated from human beings, long deceased humans frozen in the Arctic may serve as a reservoir that results in potential new infections. If such a reservoir exists, the Arctic thaw produced by the climate crisis will disturb it.

Other pathogens that may still be harbored by dead humans frozen the Arctic includes the 1918 Spanish flu (H1N1) which was found in frozen regions of Alaska. In 2007, scientists discovered Spanish flu RNA in the body of an Inuit woman who’d been buried for 75 years in the permafrost.

Anthrax is a bacteria-caused infectious disease that typically afflicts herd animals such as sheep and reindeer. But Anthrax can pass to humans that are exposed to the bacteria. In 2016, 2,000 reindeer became infected with Anthrax in the Yamal Peninsula region of Siberia. Nearby, it is thought that a reindeer killed by anthrax decades before thawed out, spreading the bacteria into the lands where the reindeer grazed. These reindeer then spread the illness to a number of human beings, including a 12 year old boy who died.

The potential for the release of both known and other as-yet unknown infectious agents from the thawing regions of our world have generated concern among top researchers. Jean-Michel Claverie a professor of microbiology at Aix-Marseilles University recently noted to BBC:

“Following our work and that of others, there is now a non-zero probability that pathogenic microbes could be revived, and infect us. How likely that is is not known, but it’s a possibility. It could be bacteria that are curable with antibiotics, or resistant bacteria, or a virus. If the pathogen hasn’t been in contact with humans for a long time, then our immune system would not be prepared. So yes, that could be dangerous.”

A Context of General Disturbance

Overall, it is likely that there are more numerous climate influences to disease transfer than mere heating and thawing. The general disturbance to the natural world generated by more extreme fires and floods, by instances of flash drought, and even by the mechanism of rising seas is likely to displace more disease reservoirs, creating previously unknown illness transmission potentials.

As far as our general scientific knowledge of illness related to or influenced by the climate crisis at this time, what we see now is likely the tip of the proverbial iceberg. And, as with all things climate crisis related, we require more research, more knowledge-sharing, more general public support of scientific discovery to pull back the veil on this particular new threat. So in conclusion of this chapter on the climate crisis relationship to human illness, we’ll depart with a statement from the World Health Organization:

Changes in infectious disease transmission patterns are a likely major consequence of climate change. We need to learn more about the underlying complex causal  relationships, and apply this information to the prediction of future impacts, using more complete, better validated, integrated, models.

Up Next — Harmful Contacts with our Living Earth and Redounding Shots Across the Bow

Ebola, Climate Change and Going Airborne — Merciless Outbreak Raises Fears

  • UN Warns of Remote Possibility Ebola Could Become Airborne
  • 3,330 dead and more than 7,100 infected during recent outbreak
  • 5 new infections every hour
  • One confirmed US case of Ebola in Texas, another suspected in Hawaii. Both air travelers from Africa.
  • US dispatches 1,400 troops to Liberia to aid in massive effort to contain the virus
  • Death rate for Ebola is 25-90 percent
  • Climate change only indirectly related to current outbreak

 

west-africa-distribution-map

(Current extent of Ebola outbreak in West Africa, according to CDC sources. Image source: Google/CDC)

As of this July of 2014, the number of recorded Ebola deaths worldwide since the mid 1970s was a little over 1,500 with less than 3,000 infections. That was before a massive outbreak centering on Sierra Leone in Africa killed more than 3,300 and infected more than 7,100.

Today, the estimated rate of infection is about 5 persons every hour. Persons infected with the virus have come as far as Texas in the United States prompting the immediate US quarantine of over 100 people thought to have been exposed. In total, this outbreak is likely to infect more than 20,000. And that’s if a massive international effort to stop the virus is effective.

It’s an effort that includes all the resources the UN has available to fight and contain diseases. An effort that has resulted in the mobilization of 1,400 US Military troops from Fort Campbell Kentucky bound for the West African hot zone.

Ebola — A Deadly Killer

Some years ago, I managed the editing of a Jane’s emergency response guide called The Chem-bio Handbook. The handbook was a compilation of information from leading experts about the world’s most deadly poisons and diseases. A quick reference guide for first responders unfortunate enough to have to deal with the most nightmarish toxins and infections dreamed up by nature or humankind.

Among these, Ebola was certainly one of the most feared and mysterious.

Ebola progression

(Ebola progression of symptoms. Image source: CDC — Ebola.)

It was transferred by contact with bodily fluids — blood, sweat, saliva, semen, excrement. It waited latent in the body for between two and twenty one days before first flaring into flu-like symptoms. Headache, fever, sore throat, weakness, muscle pain. These indistinct symptoms could go along with a hundred other illnesses. But after some days, Ebola went hemorrhagic. At this point vomiting, diarrhea, rash, failing liver and kidneys, and internal and external bleeding displayed Ebola’s all too familiar and terrifying call signs.

In the end, the disease claimed between 25 and 90 percent of all those who fell ill with it. A death rate that is among the worst of the worst for any disease now active on the Earth.

Treatment for the illness is primarily limited to supportive care and isolating the patient to prevent the infection from spreading. But during recent years a serum derived from the blood of victims who have survived the illness has provided some hope for raising recovery rates. Investigation for an effective vaccine is ongoing.

Rapid Mutation

One issue with the current strain of Ebola now impacting Seirra Leone and broader Africa is that it is a rapid mutator. The strain separated from the standard forms of Ebola seen in humans about ten years ago. Since that time, the virus has accumulated about 395 mutations. After leaping back to humans this summer, the virus had accumulated 5o new mutations in just one month.

The problem with rapid mutation is that it gives the virus a chance to become more virulent. In the worst case, some researchers and international officials fear that the virus could become airborne.

Today, Anthony Banbury, the UN Secretary General’s Special Representative, raised these dire concerns in public stating:

‘The longer [Ebola] moves around in human hosts in the virulent melting pot that is West Africa, the more chances increase that it could mutate. [Airborne contagion] is a nightmare scenario, and unlikely, but it can’t be ruled out.’

Most researchers consider the risk for such a transfer from fluid-borne to airborne infection for any illness, even a rapid mutator, to be very low. So it is rather odd that the UN’s special representative would voice these fears without special cause for concern.

Highest Risk Event Ever

This high level of concern may well be related to the terrors UN and international aid workers are witnessing on the ground.

Mr. Banbury, who has worked with the UN on the issue of dangerous and infectious diseases, wars, natural disasters and other extreme events since 1988 appeared both horrified and taken aback by the ferocity of the current outbreak:

“We have never seen anything like it. In a career working in these kinds of situations, wars, natural disasters – I have never seen anything as serious or dangerous or high risk as this one. I’ve heard other people saying this as well, senior figures who are not being alarmist. Behind closed doors, they are saying they have never seen anything as bad,” he said.

In order to contain the outbreak, the international community is scrambling to set up thousands of clinics and isolation centers throughout affected regions. The idea is to isolate more than 70 percent of the infected persons to prevent the virus from making yet another explosive advance. Ultimately, the goal is to get a reduction in cases after a strong three-month-long response:

“We intend to see a significant improvement in the 30 to 60-day window, so that by 90 days the curve is headed in the right direction. We are putting resources in place very fast, and we will continue to flow in. It is not all there at the moment,” Mr Banbury said. “That’s the theory and that’s the plan. If it spreads in an urban setting, then it’s a different story.”

“I would not say I am confident we will succeed [in the 90-day plan] given the absolutely merciless numbers of the spread and what needs to be done to get it under control. These are extremely, extremely ambitious targets, set by doctors. We are blowing down bureaucratic barriers to get things done…but I don’t know if it will be enough…I would not want to give the impression that we can wave a magic wand.”

Climate Change an Indirect Factor

Back in August, both Newsweek and MSNBC provided speculative stories raising the possibility that the current Ebola outbreak was directly related to climate change. But unlike vector driven illnesses such as Cholera and Malaria, it is very difficult to pin down a specific link between Ebola and the human-caused warming of the globe.

Related factors such increasing poverty and hunger driving humans to consume more bush meat and therefore expose themselves to higher risk of contracting an animal-borne infection such as Ebola are likely at play. And larger factors such as increasing human population density, global travel, and human concentration into urban centers all likely increase risks linked to Ebola. But the heat driven influences on Ebola are far less than expanding the range of Malaria bearing mosquitos or a proliferation of flooding events greatly magnifying the risk of Cholera outbreaks.

It is worth noting, however, that diseases, overall, tend to become more virulent with warming as pathogen killing cold spells are retreating further and further poleward.

Links:

Please See the CDC Website for Official Information on Ebola and for Frequent Updates

UN Chief Raises Warning That Ebola Could Become Airborne

Ebola Could Become Airborne

Ebola in the Air?

Nature: Ebola Mutating Rapidly as it Spreads

Nightmare Chance that Ebola Could Become Airborne, UN Warns

Fort Campbell Troops Headed to Liberia to Fight Ebola

Google/CDC

Media Jumps to Conclusions on Ebola and Climate Change

 

 

 

 

%d bloggers like this: