The Emergence of Severe Acute Respiratory Syndrome (SARS)

“The message we are getting is if we don’t take care of nature, it will take care of us.” — Elizabeth Maruma Mrema, Acting UN Executive Secretary on the Convention on Biological Diversity.

“It boggles my mind how, when we have so many diseases that emanate out of that unusual human-animal interface, that we don’t just shut it down. I don’t know what else has to happen to get us to appreciate that.” — Dr. Anthony Fauci on live animal markets, aka wet markets, in Asia and elsewhere. 

“The term wet market is often used to signify a live animal market that slaughters animals upon customer purchase.” — X. F. Xan

“This is a serious animal welfare problem, by any measure. But it is also an extremely serious public health concern.” — Kitty Block, President and CEO of the Humane Society of the United States.

*****

As we come closer to the present time, to the present COVID-19 Climate of Pandemic, we run into illnesses that are more mysterious. HIV, for example, has been the object of intense investigation and scrutiny for many decades now. So the level of knowledge about how HIV emerged is quite rich. Less so with Ebola, but that infection is still moderately well understood.

SARS — Another Novel Illness

With the newer SARS illness — short for severe acute respiratory syndrome, the well of scientific understanding from which we can draw is far more shallow. But it is certainly relevant. For the present global pandemic which now has paralyzed our entire civilization and which threatens to take so many of our lives resulted from the second strain of human SARS to emerge in our world.

What we do know is that the SARS virus is another new zoonotic illness. The first strain of SARS broke out in a 2002 epidemic in China that then rapidly spread. It emerged from a family of coronaviruses. A set of viruses that typically cause mild respiratory infections in humans. But SARS virus is not mild. It is quite often severe — resulting in hospitalization in a high proportion of cases. It also shows a much higher lethality rate than typical illness.

SARS comes from a lineage, like HIV and Ebola, that had previously thrived in the hotter regions of the globe. It was harbored in tropical and subtropical animal reservoirs. It emerged at a time when animal sicknesses were likely amplified by direct environmental stresses caused by forest clear cutting, human encroachment, and the broader sting inflicted by the climate crisis. The novel awakening of SARS was, finally, yet another case where harmful contact with sick animals resulted in a transfer of a new illness to human beings. 

Coronaviruses in Hot-Bodied Bats in a Hot Weather Region

The first strain of human SARS illness was genetically traced back to a coronavirus ancestor in horseshoe bats — a tropical and subtropical bat species — in 2002 by Chinese researchers. Like the Ebola Virus and HIV before it, SARS-like illness circulated through various species in tropical and sub-tropical environments in a traditional reservoir long before transferring to human beings.

 

Horseshoe bat primary range

The primary range of horseshoe bats is paleo-tropical. Horseshoe bats, according to genetic research, are an animal reservoir of SARS virus. Image source: Paleo-tropical environment.

Studies note that bats are a reservoir for a great diversity of coronaviruses. The bat anatomy is a warm one in a hot weather environment — subject to constant exercise and exertion in regions where it’s not easy to cool off. Elevated body temperature is a traditional mechanism for fighting infection. So these viruses have to constantly adapt and mutate to keep hold in the bat population.

At some point, one particular strain of coronavirus jumped out of the bat population and into another animal species. A paper in the Journal of Virology suggests that the genetic split from bat cornaviruses and SARS occurred some time around 1986 or 17 years before the 2002-2003 outbreak. At that time, it is thought that this hot weather illness from hot-bodied bats had moved to another, intermediary, animal host.

SARS in the Little Tree Cats — Palm Civets

The first emergence of SARS is thought to have occurred when palm civets — a kind of Southeast Asian tree cat — consumed coronavirus inflected horseshoe bats. The civets typically dine on tree fruits. But as omnivorous creatures they also eat small mammals. In this case, civets are thought to have eaten sick bats and become sick themselves.

Himalay_Palm_Civet
The Palm Civet of Southeast Asia — hunted as bush meat for the Asian wet markets. A practice suspected for transferring SARS from bats to humans. Image source: Black Pearl, Commons.

Palm civets live throughout much Southeast Asia. Inhabiting a swath from India eastward through Thailand and Vietnam, running over to the Philippines and southward into Indonesia. A tree-dwelling creature, they prefer primary forest jungle habitats. But they are also found in secondary forests, selectively logged forests, and even parks and suburban gardens. All of which overlap the environment of horseshoe bats and their related coronavirus reservoir.

The leap from bats to civets and its development into SARS probably didn’t occur suddenly. Many civets probably consumed many sick bats over a long period of time before the coronavirus changed enough to establish itself. But at some point in the 1980s, this probably occurred.

From that point it took about 17 years for the virus to make its first leap into humans. How the virus likely made this move is eerily familiar — taking a similar route to the devastating HIV and Ebola illnesses.

Wet Markets — Butcheries For Asian Bush Meat

A major suspect for the source of this particularly harmful contact is the Chinese wet market system. A wet market is little more than a trading area that contains, among other things, live and often exotic animals for sale as food. A person entering a wet market is confronted with thousands confined live animals. They can point to a particular animal and a wet market worker will butcher the creature on the spot.

It’s literally a very bloody business. The butchering occurs in open air. Blood and body fluids can and often do splatter anywhere. As a result, the floors are typically wet from continuous drippage and, usually partial, cleaning — which is how the market derives its name.

Palm civets can often be found in wet markets as food in China. Trappers for the wet markets range the Southeast Asian jungles bringing in civets by the thousands. The civets were reservoirs for SARS virus. They were slaughtered in the messy markets. People were exposed. In 2002 and in 2019 they got sick.

Though palm civets have been identified by many avenues of research as a likely source of SARS, raccoon-dogs — whose meat was sold in wet markets — were also shown to be SARS type virus carriers. These animals have a similar diet to that of civets, share their habitat and were similarly vulnerable to infection from the bats. In addition, pangolins — a kind of scaly anteater — have been identified as a possible carrier of the SARS-CoV-2 virus. And pangolin meat is also sold for consumption in Vietnam and China.

Given our knowledge of how zoonotic illnesses move in animal populations, it’s possible that multiple species are involved in the ecology of SARS and related coronaviruses. In essence, there is a strange and ominous similarity between wet markets in Asia and the bush meat trade in Africa. They are both means of moving jungle meats from animals (who may be reservoirs for novel illnesses) in tropical regions into the human population. Often in a fashion in which the treatment and preparation of the meats to be consumed is haphazard and unregulated.

First SARS Outbreak — 2002-2003

Ultimately, the disease percolating through likely stressed natural systems found its way into the human population in late 2002. The epicenter was Guangdong Province in China where the highest proportion of early SARS cases by a significant margin (39 percent) showed up in people in the live animal food trade. In other words, people who butchered animals or worked closely with those who butchered animals.

The initial infections, which were traced back to November in China, resulted in spikes of pneumonia incidents in local hospitals. The cause — a then unknown illness that was later called SARS. SARS was another terrifying illnesses. Its symptoms could emerge rapidly or slowly over a couple of days or weeks. It could mimic flu-like symptoms before suddenly surging into a terribly lethal illness that attacked the lungs — rendering victims unable to breathe under their own power. At first, case fatality rates (the percentage of people who died as a result of SARS) ranged from 0-50 percent. The ultimate recorded fatality rate from the initial outbreak in 2002 would settle at 9.6 percent or about 100 times more lethal than seasonal flu.

SARS cases 2002 2003 outbreak

Cumulative reported SARS-CoV cases during the 2002-2003 outbreak. Note that early case reporting was incomplete. Image source: Phoenix7777 and WHO.

From the point of early infections, patients then passed on the virus to healthcare workers and others. Though SARS was not as crazy lethal as HIV and Ebola on an individual basis, it was quite infectious. Meaning it was much easier to pass on to others than either of those earlier emerging zoonotic illnesses. This higher transmission rate resulted in a greater risk that more people would fall ill from SARS over a shorter period of time — exponentially multiplying the virus’s lethal potential.

Transmission to workers in hospitals and care facilities was notable as typical sanitation procedures were not enough to limit virus spread. In hospital settings, the transmission rate for this first SARS illness (the number of people each infected person then got sick) was between 2.2 and 3.7. Outside of sanitized settings, the transmission rate ranged from 2.4 to 31.3. A particularly highly infectious patient, called a super-spreader, resulted in a mass spread of illness to workers at Sun Yat-sen Memorial Hospital in Guangzhou during January of 2003 and subsequently to other parts of China’s hospital system. Masks and protective gowns (PPE) were ultimately shown as necessary to contain SARS infection in hospitals.

China’s early failures to report on the 2002 SARS outbreak resulted in a somewhat delayed international response. But by early 2003, the World Health Organization was issuing warnings, advisories and guidance. Disease prevention agencies within countries issued their own responses including diligent contact tracing and isolation protocols. The containment response both within and outside of China was thus in full swing by early 2003. This action likely prevented a much broader pandemic. That said, a total of 8,096 cases were reported — 5,327 inside China and 2,769 in other countries. With the vast majority of cases occurring in China, Hong Kong, Taiwan, Canada, Singapore and Vietnam. In total, out of the 8,096 people reported infected during this first SARS outbreak, 774 or 9.6 percent, perished.

SARS-CoV-2 Tsunami on the Way

Unfortunately, infectious diseases show no mercy to fatigued and degraded infectious disease responses. They lurk. They mutate. In their own way, they probe our defenses. They are capable of breaking out to greater ranges when diligence, ability, or will to protect human life wanes among leaders. And a smattering of SARS cases reported during the 2000s following the 2002-2003 outbreak continued as a reminder of its potential. So as with HIV and Ebola, we face waves of illness with SARS. With the next outbreak resulting in a global pandemic that will likely infect millions and kill tens to hundreds of thousands during 2019-2020.

Up Next: COVID-19 First Outbreak — Viral Glass-Like Nodules in Lungs

 

What 2019’s Hottest June Ever Recorded Says About the Climate Crisis

Hint — It’s accelerating.

*****

To be a climate scientist, to read the science, or to otherwise track today’s unfolding global disaster brought on by fossil fuel burning, is to witness a historical event beyond the scope anything encountered by human civilization.

(July 14th’s record low Arctic sea ice ringed by far northern wildfires and related smoke plumes is just one signal of a rapidly heating global climate. Image source: NASA Worldview.)

Over the past Century, heat trapping pollution has forced the world to warm by about 1.1 degrees Celsius. That’s 1/4 the difference between what humans are used to and an ice age — but on the side of hot. Seas, swollen by this heat and by thawing glaciers, have risen by an average of about 17 centimeters since 1900. Nine trillion tons of ice — the equivalent to 9,000 mountains — have melted from those glaciers into our oceans. Wildfires in the U.S. now burn twice the number of acres as they did 30 years ago. Flood events are more than twice as frequent as during the 1980s. Strong hurricanes have doubled in frequency in the North Atlantic over a similar period. The Arctic’s sea ice is in full retreat.

And if we continue burning fossil fuels, this is just the beginning.

June of 2019 was the hottest June ever recorded in the 139 year global climate record provided by NASA. It was about 1.15 C hotter than 1880s averages and exceeded the past hottest June — 2016 — by a full 0.11 C margin. In climate terms, this was a big jump upward.

(Distribution of hotter and colder than average temperatures shows most of the globe sweltering under greenhouse gas induced heating. In particular, the Arctic has been hit quite hard in the most recent round of extreme temperatures. Image source: NASA GISS.)

Perhaps more importantly to the larger trend, the first half of 2019 was the second hottest first six month period on record. Meanwhile, 2019’s heat comes in the context of the past five years. All were one of the five hottest years ever recorded. And NASA GISS head Dr. Gavin Schmidt’s projection is pointing toward a potential second hottest 2019 as well. Dr. Schmidt stated as much to the Guardian, saying:

“It is clear that 2019 is shaping up to be a top-five year – but depending on what happens it could be second, third or fourth warmest. The warmest year was 2016, which started with a big El Niño, which we didn’t have this year, so a record year is not particularly likely.”

With the global climate system so large and subject to swings (produced mainly by El Nino and La Nina), consecutive hot years are a signal of accelerating global heating. A trend born out by NASA’s global temperature record. In the 1990s, decadal temperatures averaged around 0.61 C above 1880s readings. The 2000s — 0.8 C hotter. The 2010s thus far — 1.08C hotter. In other words, the global heat gain from the 1990s to the 2000s was approximately 0.19 C while the heat gain so far from the 2000s to the 2010s is about 0.28 C. A near doubling of past 0.15 C decadal temperature increases.

(Record hot July may follow record hot June…)

This apparently accelerating global heating is driven by rising atmospheric greenhouse gas concentrations. Dr Michael E. Mann noted to Mashable today:

“As we have shown in recent work, the record warm streaks we’ve seen in recent years simply cannot be explained without accounting for the profound impact we are having on the planet through the burning of fossil fuels and the resulting increase in atmospheric greenhouse gas concentrations.”

Carbon dioxide, which is the primary driver of heat gain, is now at around 411 parts per million37 percent higher than during any period in the last 800,000 years. This level of heat trapping gas is unprecedented in human terms — likely about as high as readings seen during the Middle Miocene 15 million years ago and at least as high as those seen during the Pliocene 3 million years ago.

Methane — another very potent greenhouse gas and the second strongest overall contributor to the climate crisis — is also continuing to rise in concentration. This rise, along with increasing CO2, has been the cause of some anxiety among scientists who monitor the global climate system.

(Rising atmospheric CO2, primarily driven by fossil fuel burning, is the main driver of the global heating crisis we are now experiencing. Image source: NOAA ESRL.)

Together with other trace heat trapping gasses, the global CO2 equivalent heat forcing is around 499 ppm during 2019 (extrapolated from NOAA data). In other words, we’ll be crossing the ominous 500 ppm CO2e threshold very soon.

What all this data means is that we have now turned the ratchet of climate crisis at least once. A set of serious impacts are now locked in. Indeed, we are seeing them. But if we keep burning fossil fuels and turn the ratchet again, it gets much worse from here on out.

(Want to help fight the climate crisis by transitioning to a clean energy vehicle? Get 1,000 free supercharger miles at this link.)

NASA: April of 2019 was Second Hottest on Record

Before we get into the latest record or near record global heat news, I’d just like to make a brief announcement. Concordant with editorial guidance from The Guardian, I’ll be changing my climate communications to more fully reflect the crisis that is now ongoing. Whenever possible, I’ll be using the words — climate crisis to replace climate change, and global heating to replace global warming.

I’ve already made liberal use of the term human forced climate change — this will change to human forced climate crisis or global heating when possible. In addition, the elevation of linkages between fossil fuel burning — which is the crisis’ primary driver — to present global heating will continue.

(Global heat for April of 2019.)

In my view, this verbiage more sufficiently communicates a necessary sense of urgency. For the climate crisis is upon us now and we are now experiencing more extreme impacts. In other words, we’ve already taken one full turn of the climate crisis ratchet by allowing fossil fuels to continue to dominate our energy systems. We don’t want to experience a second or third full turn and the related terrible tightening.

*****

The climate crisis deepens further…

According to NASA GISS, global temperatures have again jumped into near record hot ranges. Readings from this key global monitor found that April of 2019 hit 0.99 degrees Celsius above mid 20th Century ranges. This is about 1.21 C above 1880s values that bound the start of the NASA monitor. In total, it’s a value that makes April of 2019 the second hottest such month in the 139 year global climate record. And the temperatures we are experiencing now are likely the hottest annual and decadal averages in the last 120,000 years.

(April of 2019 anomalies paint a picture of global heat. Image source: NASA.)

Looking at the NASA temperature anomalies map above we find the greatest departures from typical April averages centering on the higher latitudes of the Northern Hemisphere. This distribution of abnormal warmth is consistent with polar amplification in which relative warming tends to center on the poles as atmospheric greenhouse gas concentrations increase. The ongoing and massive burning of fossil fuels — beginning in the 18th Century and rapidly ramping through the 20th Century — has provided the majority of these gasses. They are pushing the Earth system into the severe warming spike we now see today.

The Equatorial region also showed elevated heat — consistent with an ongoing weak El Nino (which also nudges Earth into the warm side of natural variability, making regional and global all time heat records more likely). Meanwhile, very few cool pools were found. The notable region being a persistent cool zone in the North Atlantic near melting Greenland (predicted by climate models and a facilitator of unstable weather for North America, the Northern Atlantic, and Europe).

Overall temperature track for 2019 is still behind the record hot year of 2016 (see predicted range by Dr. Gavin Schmidt above). And it appears likely that 2019 will hit in the range of 5th to 1st hottest on record. This year, however, is likely to strike close to or even above 2016 values during some months as the effect of the weak El Nino combined with the larger trend of global heating by fossil fuel burning sets the stage for potential new high temperature records.

(Want to help fight the climate crisis by transitioning to a clean energy vehicle? Get 1,000 to 5,000 free supercharger miles at this link.)

 

Hot March, Melting Sea Ice, Record High CO2, and a Weak El Nino 

Good afternoon everyone. It’s April 15 of 2019. And it’s high time I provided another update on the present global climate state.

(Indicators explained.)

Yes, I’ve been off this cart for a bit due to my personal climate action that I’m calling extreme clean. And I’ve got to say that this action is in solidarity with the tens of thousands of young people who continue to demonstrate for a more responsible political response to climate change around the world.

Action of all kinds is very important. But political action is where the rubber is really going to meet the solar and wind powered EV road of the future. It’s what’s going to help us navigate a necessarily fast clean energy transition away from the carbon spewing fuels of the present. And the fossil fueled politicians like Trump are going to have to be kicked out for that to happen.

(Human forced climate change loads the dice for stronger storms like Idai which devastated parts of Africa during March of 2019. Image source: NASA Worldview.)

At present, fossil fuel burning has really put us in a tough spot. That is the subject of today’s writing. Where we are today according to some major climate indicators — atmospheric CO2 (the primary greenhouse gas driving climate change), global surface temperature, Arctic sea ice, and the near term ENSO climate variability factor.

Atmospheric CO2 likely to hit between 413 and 415 ppm in May (monthly average)

For the first factor, atmospheric CO2 during recent days has risen to between 411 and 416 parts per million. This level is likely higher than at any time in at least the last 5 million years and is probably closer to ranges seen during the Middle Miocene around 15 million years ago. That’s pretty bad — implying about 2-3 C or more of global warming over the long term if those values aren’t somehow brought down.

(Present atmospheric CO2 levels are ranging between 411 and 416 parts per million on a daily basis at the Mauna Loa Observatory. These are the highest levels seen in at least 5 million years, possibly more. Image source: NOAA.)

Of course, due to the present pace of fossil fuel burning, atmospheric CO2 just keeps rising. Which is why a clean energy transition to get us to net zero and net negative carbon emissions is so, so important for our future.

CO2 isn’t the only greenhouse gas related to human activity. But according to agencies like NASA, it is the most important. Adding in other greenhouse gasses like Methane, NOx, and various other manufactured chemicals that trap heat, you end up with an atmospheric CO2 equivalent of approximately 497 ppm during 2019 (extrapolated from NOAA’s greenhouse gas index). This is a bit of a scary number for me as it implies that the top end indicator of all greenhouse gasses combined is about to move outside the Middle Miocene context soon.

Going back to the only slightly less scary CO2 figure, it appears likely that this primary greenhouse gas will top out at around 413 to 415 parts per million monthly average values during May of 2019. This indicator for annual peak values puts the present climate state increasingly out of the range of Pliocene past climates that many scientists are now researching as a corollary for present day climate impacts — at least on a greenhouse gas forcing basis.

March of 2019 was third hottest on record

It takes many decades and centuries for climates to balance out in response to a particular forcing. So present atmospheric warming driven by the greenhouse gasses mentioned above lag behind the initial global forcing. For this reason, on an annual basis, global temperatures are presently ranging between 1 and 1.2 degrees Celsius above 1880s averages as they continue to climb higher.

(The globe substantially heated up again during March — as seen in the above map provided by NASA. Image source: NASA GISS.)

These present departures roughly compare to temperatures during the Eemian climate epoch of about 120,000 years ago in which readings were 1 to 2 C warmer than 1880s averages. So we’re not yet in the Pliocene with regards to temperatures (2-3 C), but what we get long-term is probably the Miocene (3-4 C) if present greenhouse gas values remain stable. And we head for even more warming (4 C+) if we keep burning fossil fuels.

It’s in this rising temperature context that we are now experiencing more rapidly melting glaciers, ramping sea level rise, increasingly intense storms, wildfires and droughts, rising damage to corals, worsening heatwaves, more extinction pressure on plants and animals, and declining ocean health. It’s also worth pointing out that present temperatures are just a passing milestone on the way up if we keep burning fossil fuels and don’t learn how to pull down that excess atmospheric carbon.

(This graph of zonal temperature anomalies since 1880 is a visual representation of warming across the globe. These zones show various latitudes and their anomaly values vs mid 20th century averages over time. The long term warming trend is quite clear. Image source: NASA.)

According to NASA GISS, March of 2019 set its own benchmark as the third hottest such month on record. Temperatures for the month hit around 1.33 C above 1880s averages (1.11 C above NASA’s 20th Century baseline). This is pretty amazingly warm.

It was in this environment that the globe experienced a hyper-charged cyclone striking Africa, extensive damage due to flooding in the Central U.S., and recent very severe storms from the U.S. south through New England.

Arctic Sea Ice at Record Low for Recent Days

All this added heat has had its own impact on the Arctic where sea ice during recent days has plunged into new record low territory. According to information provided by the National Snow and Ice Data Center, Arctic sea ice yesterday measured just 13.518 million square kilometers. The lowest on record for today.

(Graph of Arctic sea ice measures for January through May of 2003 to present compared to the 1981 to 2010 average [gray line]. The orange line dipping below the pack is the measure for 2019. These are record lows for this time of year. Image source: NSIDC.)

That’s about 300,000 square kilometers below the previous record low set in 2017 and about 1.4 million square kilometers below the 1981 to 2010 average. A period in which major sea ice melt was already ongoing.

Sea ice melt doesn’t have a significant direct impact on sea level rise. You need land ice melt and ocean thermal expansion for that. But sea ice is a big ocean based heat reflector that helps to keep the Arctic environment stable and to prevent the world’s waters from sucking up an even greater amount of warming than they already do. That heat reflector is in decline and it’s one of the reasons why the Arctic is warming up at a faster rate than the rest of the globe.

(Early season sea ice melt is progressing through the Bering and Chukchi seas as overall Arctic sea ice extent hits record daily lows for this time of year. Image source: NASA Worldview.)

Major media appears to have recently had a bit of an epiphany about sea ice as recent reports from sources such as PBS note startling losses for the Bering region during 2019. It’s worth noting that individual seas tend to experience higher rates of ice variance. But the trend for the overall Arctic, which is the combination of all its incorporated seas, is one of consistent decadal sea ice decline.

Weak El Nino Means Uncertain Challenge to 2016 Record

While the world is heating up overall and experiencing many of the changes noted above, a shorter term variability feature of global temperature is the ENSO cycle. This periodic warming and cooling of Pacific Ocean surface waters relative to the globe sets down the rough markers of 3-5 year global temperature variability. During the Pacific cool phase, or La Nina, the global surface tends to cool off a bit. During the Pacific warm phase or El Nino, the global surface tends to warm.

This is not to be confused with total global heat gain — which is still occuring on a practically constant basis as oceans warm and glaciers melt in addition to atmospheric warming. It’s just a major factor in what we tend to see over the shorter term at the Earth’s surface.

(Present warmer than normal sea surface temperatures in the Equatorial Pacific indicate a weak El Nino. Image source: Earth Nullschool.)

For 2019, we are again tipping into the warmer side of this natural variability based trend. And combining that with the larger influence of human-forced warming, it appears that the dice are loaded for a challenge to the new record hot surface temperatures set in 2016.

But not so fast! 2019’s El Nino — or Pacific Ocean surface warming event — is, according to NOAA, likely to be rather weak. This compares to the Super El Nino event of 2016. So the swing toward warm side will tend to be relatively weaker. As a result, it’s less certain that 2019 will beat 2016 as hottest on record. And overall, it’s more likely that 2019 will place in the top 3 as 1st, 2nd or 3rd hottest (You may want to ask Dr Gavin Schmidt over at NASA GISS to see what he thinks. He’s been putting out some pretty accurate predictions over the past few years.).

So far, according to NASA GISS, December, January and February of climate year 2019 came in as 3rd hottest. With the weak El Nino ramping up, it does appear that March, April, May could heat up as well. We shall see!

Living in a rapidly warming world

Looking at all of these shorter term indicators, it’s easy to miss the bigger context. That being — we are living in a world in which atmospheric greenhouse gasses are rapidly increasing. These gasses, in turn, are causing the world to rapidly warm resulting in surprising changes and increasing damage. And it’s in this context that climate action on the part of individuals, businesses and governments becomes all the more necessary.

Jebi — Worst Typhoon in 25 Years is Third Major Disaster to Strike Japan

The worst Typhoon in 25 years to strike Japan has forced 2 million to evacuate, injured at least 300, killed 9, and inflicted massive damage on the island nation. Jebi is the third major disaster to impact Japan during the Summer of 2018 — all of which have been influenced by human-caused climate change.

Miserably Hot in Mid-Atlantic? There’s a Reason for That.

High heat index values continued across parts of the Mid Atlantic today with heat index (feels like temperatures) above 100 for many locations. A front, fortunately, is expected to bring some relief by this weekend.

NOAA — 70 Percent Chance of El Nino During NH Winter

An analysis of ENSO trends in which NOAA is indicating a 70 percent chance of El Nino this Winter. El Nino’s interaction with human-caused climate change is also discussed.

“Never Before Experienced” Rains Hammer Japan During Early July

“We’ve never experienced this kind of rain before. This is a situation of extreme danger.” — The Japan Meteorological Agency

*****

During recent days as much as 25 inches of rain has fallen over parts of Japan shattering previous all time precipitation records for parts of the island nation. The resulting floods have spurred a major emergency response by 54,000 personnel, taken the lives of more than 125 people, and forced more than 2.8 million to evacuate.

(Rising global surface temperatures increase atmospheric water vapor levels — providing liquid fuel that spikes the most powerful rainfall events to even greater extremes.)

On July 3, Typhoon Prapiroon swept over southwestern Japan bringing with it a spate of heavy rains. Over the following days, Prapiroon got caught up in stationary front even as a high pressure system to the east continued to circulate tropical moisture into the region. Beneath that eastern high, sea surface temperatures ranged between 2 and 3.5 degrees Celsius above normal. Meanwhile, warmer than normal ocean surfaces dominated a region east of the Philippines. These large, abnormally warm zones produced excess evaporation which helped to feed even more moisture into the region.

The result was a historic and devastating rain event for Japan. Isolated locations received more than 39 inches (1000 mm) of rain over a three day period. With one hour rainfall exceeding 3 inches in a number of locations. Motoyami received one day rains of 23 inches. With Mount Ontake seeing more than 25 inches over three days.

(Warmer than normal ocean surfaces, as shown in yellow and red in this sea surface temperature anomaly map, helped to fuel Japan’s recent extreme rainfall event. Image source: Earth Nullschool.)

Rising global temperatures increase overall atmospheric moisture loading by approximately 8 percent for each degree Celsius of global temperature increase. Water vapor provides fuel for storms both through enhancing convection and by engorging clouds with moisture. Recent scientific studies have found that climate change can greatly enhance the peak intensity of the most severe storms in this way. And the U.S. National Climate Assessment has identified a historical trend of increasing instances of heavy precipitation.

Pawnee Fire Forces Another State of Emergency for Northern California

Human-forced climate change is driving severe events that local communities are having difficulty recovering from. The primary reason is that the tempo of these events is so high that it allows little time for recovery.

(Another series of intense wildfires, another state of emergency for California.)

This weekend, a large complex of fires erupted in the Lake County region of Northern California. By today, the fires had expanded to cover over 10,500 acres. The rapidly expanding fire has already destroyed more than 22 buildings while forcing 3,000 to flee. Meanwhile, Governor Jerry Brown had declared a state of emergency.

Hot and dry conditions fanned the blazes on Tuesday, increasing concerns that the fires would continue to rapidly spread. Temperatures in Fresno are expected to hit 100 degrees (F) today with readings in Redding likely to hit near the century mark. Meanwhile, a large zone from Death Valley to Vegas to Phoenix is predicted to see temperatures hit 108 to 114 (F) or above.

(Very hot conditions across California are presently elevating fire risk. Already, large blazes have burned numerous buildings and forced hundreds to flee. Image source: National Weather Service.)

These hot, windy conditions will continue to elevate fire hazards across the west — which is bad news for communities beleaguered by the ongoing spate.

During recent years, big swings between heavy precipitation events and hot, dry conditions have fueled larger, more intense wildfires across the U.S. West and particularly in Northern California. Human caused climate change drives these events by adding moisture to the atmosphere which favors heavier storms and by forcing temperatures higher. The result is that vegetation grows and blooms more rapidly during the wetter than normal periods and dries out faster during the hotter than normal periods — generating more dry fuel for wildfires.

 

 

 

Southeast Texas Hammered by 15+ Inches of Rain

It doesn’t take a hurricane or tropical storm to dump massive amounts of rain on southeast Texas these days. Just a wave of tropical moisture from an ocean warmed by human-caused climate change.

(Not a hurricane, but southeast Texas may see 20 inches or more of rain this week.)

Over the past few days, a massive surge of moisture has flowed off the warmer than normal waters of the Gulf of Mexico. This moisture has interacted with a trough dipping down over the Central U.S. to produce prodigious amounts of rainfall. And ever since late Sunday powerful thunderstorms have been firing across the Texas coast.

As of this morning, according to reports from The National Weather Service, between 5 and 15 inches of rainfall had inundated a vast swath stretching from the Texas-Mexico border northward to a Houston area still recovering from Hurricane Harvey’s historic floods. These heavy rains, producing amounts typically seen from a substantial tropical cyclone, have generated major flooding and flash flood warnings across the region. As the waters rise, residents have become justifiably concerned about personal safety and damage to property.

NOAA forecasts indicate that storms expected to continue firing through Thursday, with between 2 and 7 inches of additional rainfall possible. It is worth noting that atmospheric moisture levels over the region are very high. So predicted rainfall totals may be exceeded.

(As of 7 AM, more than 15 inches of rain had fallen over parts of southeast Texas in association with a persistent upper level low and related severe thunderstorms. Heavy rains have continued to fall throughout the day and aren’t expected to abate until at least Thursday. Image source: The National Weather Service.)

During recent years, increased global temperatures have generated more extreme rainfall events for places like southeastern Texas. Warmer ocean surfaces — like those in the heating Gulf of Mexico — evaporate more moisture into the atmosphere. And this moisture generates more fuel for storms — greatly increasing the peak rainfall potential of the most intense storms.

Last year, southeast Texas faced inundation from a number of severe events. A sequence that was capped off by the record-shattering Hurricane Harvey — which tied Katrina as the costliest U.S. storm on record and dumped more than 60 inches of rainfall over parts of the state. Though the present storm event is not likely to reach Harvey levels of extremity, it is a stark reminder that we have entered a new climate and extreme weather regime. One that will continue to worsen so long as we keep burning fossil fuels and forcing global temperatures to rise.

Accelerating Sea Level Rise is Being Driven by Rapidly Increasing Melt From Greenland and Antarctica

From 1993 to the present day, global sea level rise has accelerated by 50 percent. And the primary cause, according to recent research, is that land glaciers such as the massive ice sheets of Greenland and Antarctica are melting far faster than they have in the past.

(Assessment of factors involved in the presently increasing rate of global sea level rise.)

Antarctica, in particular, is melting much more rapidly — with melt rates tripling in just the last ten years.

The primary factors contributing to global sea level rise include thermally expanding oceans and the melting of ice on land. During the decade of 1993 to 2004, the World Meteorological Organization notes that oceans rose by 2.7 mm per year. During this time, land ice sheets amounted to 47 percent of that rise — or about 1.35 mm. The same report found that from 2004 to 2015, oceans rose by around 3.5 mm per year and that land ice contribution had risen to 55 percent (1.93 mm per year). Looking at sea level measurements from AVISO, we find that from March of 2008 to March of 2018, the average rate of sea level rise accelerated further to 4.3 mm per year.

The net takeaway is that the rate of global ocean rise has increased by more than 50 percent since the early 1990s and that this acceleration has been driven by increasing melt from large land glaciers like those in Greenland and Antarctica.

(Sea level rise contributors as reported by the World Meteorological Organization in its 2017 report on the state of the global climate.)

Over the coming years and decades, this rate of rise is likely to continue to accelerate — surpassing 5 mm per year sometime rather soon, and likely exceeding the 1 cm per year mark by the 2040s through the 2060s. Melt rates will likely increase substantially as we approach the 1.5 C and 2.0 C warming marks. However, the net heat pressure from fossil fuel emitted greenhouse gasses will also drive sea level rise rates. As a result, it is imperative that we work to cut fossil fuel emissions more rapidly and that we pursue a swift as possible transition to clean energy.

May Arctic Warming Event Follow-up — Not So Bad as Predicted, But Worries Remain for Early June

There are many reasons why we monitor Arctic sea ice melt during summer. First, sea ice is a key climate indicator. Second, we are in a period of time where ice-free Arctic conditions are becoming more possible as global temperatures keep rising. And third, falling levels of Arctic sea ice have knock-on effects for a number of climate systems that we all rely on.

(Will we see a warmer than normal early June for the Arctic Ocean? If we do, it could seriously impact the Arctic Ocean’s remaining and thinning sea ice.)

Last week, we pointed out that GFS models were predicting a very warm spike to around 3.5 C above average temperatures for the Arctic come late May. Thankfully, due to the model running a bit hot, such extreme readings did not emerge. However, temperatures over the Arctic Ocean remained about 0.85 C above average overall for the past 7 day period.

Consistent, though somewhat mild, warmer than normal temperatures for this time of year over the Arctic during 2018 are still somewhat worrisome. Recent very warm winter years have experienced ‘saving grace periods’ during May and June in which temperatures near the pole returned to near average or slightly below average.

(Above freezing or near freezing temperatures predicted for most of the Arctic Ocean on June 4, 2018 in the GFS model. Sea ice tends to start melting at around -2 C due to the salt content in surrounding ocean waters. During recent years, the Arctic sea ice has been far weaker and thinner than historic norms. Image source: Earth Nullschool.)

This is not the case for 2018 so far. Temperatures have tended to remain warmer than average for the Arctic Ocean and near the pole throughout May. Moreover, short range forecasts indicate that the critical time period of early June could see continued above average temperatures — providing a potential kick for sea ice losses come late season.

Overall, GFS model runs indicate that temperatures will remain in a range between 0.5 and 1.3 degrees Celsius above average for the Arctic over the next five days. These above normal temperatures pose increased risk for sea ice losses during the crucial June window. June weather tends to greatly influence late season sea ice totals. A warmer than normal June will produce higher numbers of melt ponds and greater impetus for melt to continue with force through July, August, and September. Cooler and often cloudier Junes have tended to protect late season sea ice from hitting new all time record lows.

(Weekly averages for the Arctic Ocean during early June are expected to range near 1 C warmer than normal — extending what has already been a warmer than normal May. Image source: Global and Regional Climate Anomalies.)

2018, so far, has seen a warmer than normal May for the Arctic Ocean. And so we see ice getting swept back behind traditional lines in the Chukchi Sea, in the Beaufort Sea, and in the region north of Svalbard. Peripheral areas like Baffin Bay, Hudson Bay, and the south Kara Sea have seen slower ice melt due to their co-location with trough zones. But it is Central Arctic melt that we should be more concerned about. So we’ll be closely monitoring this region as May runs into early June.

 

Potential Historic Arctic Warming Scenario in the GFS Model Forecast for Late May

For years, Arctic watchers have been concerned that if May and June ran much warmer than average following an equally severe winter, we could see substantial sea ice losses, severe Arctic fires, and related knock-on global weather effects. This May, temperatures over the Arctic Ocean have run much warmer than average. And in the GFS model forecast, we see a prediction for a historic Arctic temperature spike during late May.

(Discussion of a potentially historic Arctic warming event for late May of 2018. Information for this analysis provided by Climate Reanalyzer, Global and Regional Climate Anomalies, and DMI.)

According to GFS model analysis, temperatures for the entire Arctic region could spike to as high as 3.5 degrees Celsius above average from Saturday, May 26 through Tuesday, May 29th. So much warming, if it does occur, would shatter temperature records around the Arctic and accelerate the summer melt season by 2-4 weeks. It would also elevate Arctic fire potentials while likely increasing upstream severe weather risks to include higher potentials for droughts, heatwaves and severe rainfall events (as we have seen recently across the Eastern U.S.).

The model run indicates three ridge zones feeding much warmer than normal air into the Arctic. The zones hover over Eastern Siberia, Western North America, and Central Europe through the North Atlantic and Barents Sea — pushing wave after wave of warmth into the Arctic Ocean region.

(Three ridges transferring heat into the Arctic are feeding the potential for a major polar temperature spike over the next ten days. Image source: Climate Reanalyzer.)

Over the coming days, this three-pronged flood of warm air could push temperatures over the Arctic Ocean to 2-10 C above average temperatures while Western North America, Eastern Siberia, and the Scandinavian countries could see the mercury climb to 5 to 20 degrees Celsius above average. This translates to 70 to 80 degree (Fahrenheit) temperatures for Eastern Siberia above the Arctic Circle, mid 70s to mid 80s for near Arctic Circle Alaska, and temperatures in the 70s to 80s for Scandinavia. For the Arctic Ocean, it means above freezing temperatures for most zones. Zones that are likely to see more rapid sea ice melt as a result.

Upstream effects include the potential continuation and emergence of fixed severe weather patterns. Extreme heat will tend to intensify for Western North America, while a pattern that favors severe rainfall is likely to remain in place for the Eastern U.S. Meanwhile, South-Central Asia through the Middle East are likely to see very extreme daytime high temperatures. Fire risks will tend to rise from Alberta to the Northwest Territory into Alaska and on through Central and Western Siberia as much warmer than normal temperatures take hold and Arctic lightning storms proliferate.

(Forecast Northern Hemisphere temperature anomaly patterns hint at a hot or unstable late spring pattern for many regions as the pole inters record warm territory. Image source: Climate Reanalyzer.)

It’s worth noting that should such an event occur during late May, it would represent yet another major and historic temperature departure for an Arctic zone that has thus far seen severe winter warming and related loss of sea ice. The concern is that eventually such heating would result in ice free conditions during summer — although when is a subject of some debate.

To this point, it is also worth noting that we should take the present GFS forecast with a bit of a grain of salt. Such amazingly warm temperatures are still 6-10 days away. Forecasts beyond the 3 day are notably fickle. And this particular model has run a bit hot of late. However, it is worth noting that the model has been correct in predicting a much warmer than normal May. And that we have already experienced one historic temperature spike during early May. So a pattern that demonstrates the potential for such extreme warming has clearly taken hold.

 

Globe Just Experienced its Third Hottest April on Record

According to reports from NASA GISS, the world just experienced its third hottest April on record. Topping out at 0.86 degrees Celsius above NASA’s 20th Century baseline, April of 2018 edged out 2010 as third in the record books despite the ongoing natural variability based cooling influence of La Nina.

(Analysis of present global temperature anomalies with information provided by NASA, NOAA and Earth Nullschool.)

The warmest regions of the world included large sections of the lower Arctic — encompassing Eastern Siberia, the East Siberian Sea, and the Chukchi Sea. In addition, Central Europe experienced much warmer than normal conditions. Notable cool pools included North-Central North America, the High Arctic, and the Weddell Sea region of Antarctica.

A seasonal reinforcement of the Jet Stream helped to keep cold air sequestered in the High Arctic during April. However, this sequestration appears to be weaker compared to recent April-through-June periods as record warm spikes returned to the High Arctic during early May. The result of strong south-to-north heat transfer through various ridge zones in the Jet Stream.

(Third warmest April on record despite La Nina. Image source: NASA.)

La Nina remained the prominent natural variability related feature during April. And the cooling influence of La Nina has tamped global temperatures down a bit following the recent record hot year of 2016. Overall, it appears that global temperatures are on track to average between 1.04 C and 1.08 C above 1880s averages during 2018. These rather high excessions are, of course, caused by atmospheric greenhouse gasses peaking in the range of 410 ppm CO2 (around 491 ppm CO2e) during April, May and June. Representing the greatest concentration of heat trapping gasses on Earth in about 15 million years.

With La Nina fading, its cooling influence is likely to become less acute and global temperatures may again begin to ramp higher by mid to late 2018. NOAA has indicated a 50 percent chance for El Nino formation during late 2018. If 2018-2019 does see an El Nino emerge, global temperatures will likely again exceed the 1.15 C threshold and potentially challenge 1.2 C.

(A warm Kelvin Wave crossing beneath the Equatorial Pacific brings with it the potential for El Nino formation during 2018-2019. If El Nino does form, and with atmospheric greenhouse gas concentrations so high, it is likely that we would see temperatures comparable to the record global warmth of 2016 re-emerge. Image source: NOAA.)

However, it is unlikely that the weaker predicted El Nino, if it does emerge, will force temperatures considerably higher than levels achieved during the strong El Nino of 2016. For that, we will likely have to wait until the early 2020s. But with carbon emissions continuing near record high ranges, temperatures are bound to rise — with the 1.5 C threshold likely to be breached by the late 2020s or early 2030s.

Warm Oceans, Displaced Polar Air: Why the Eastern U.S. is Likely to See Very Severe Rainfall During May

During recent years, warm ocean surfaces have loaded up the atmosphere with increasing levels of moisture. This moisture, in turn, has fueled more powerful rain storm events across the globe. Meanwhile, climate change is generating regions of increased instability by placing much warmer than normal air masses in confrontation with cold air displaced from a warming Arctic Ocean region.

(How climate change is impacting severe weather potentials across the U.S. East Coast during May. Data provided by Earth Nullschool, Climate Reanalyzer, and the National Weather Service.)

During the coming days, this kind of pattern will generate the potential for severe rainfall events across the U.S. East Coast. NOAA is predicting that between 3-7 inches of rain is likely to fall over the next 5-7 days. But due to the unusual situation, locally extreme and unexpected events may occur.

This severe weather potential has been fed by a combination of factors. A warmer than normal Arctic Ocean has shoved cold polar air south over the Hudson Bay region. The resulting trough is generating stormy conditions and atmospheric instability over much of Eastern North America. To the south and east, much warmer than normal sea surfaces have loaded up the atmosphere with extremely high moisture levels.

(NOAA shows that heavy rainfall is likely to dominate large portions of the Eastern U.S. over the coming weeks. With a number of climate change related influences at play, the potential for outsized severe weather events exists. Image source: NOAA.)

It’s the kind of pattern — within a highly charged atmosphere — that is capable of producing serious instances of severe weather. Heavy rainfall, hail, lightning and tornadoes are all more likely. Factors associated with climate change contributing to the situation include — much warmer than normal ocean surfaces off the U.S. Eastern Seaboard and Gulf Coast, a much warmer than normal Arctic Ocean region for this time of year, displaced polar air near Hudson Bay, and warmer than normal temperatures over much of the U.S.

As Greenland melt comes more into play, and as temperatures continue to spike higher over the Arctic Ocean in coming years, we can expect to see similar patterns producing greater instability and more intense storms. Particularly for the land zones near the North Atlantic. And so what we are seeing now is a likely prelude of events to come as the Earth continues to warm coordinate with continued fossil fuel burning — with mitigating factors primarily involving reduced carbon emissions.

Global Sea Level Rise Accelerated to 4.6 mm Per Year After 2010

Human forced climate change through fossil fuel burning now presents a serious threat to the world’s coastal cities and island nations. Diverse regions of the world are now facing increased inundation at times of high tide and during storms. Unfortunately, this trend is only worsening. And depending on how much additional fossil fuel is burned, we could see between 2 to 10 feet or more of sea level rise this Century.

(Sea level rise analysis and update based on information provided by AVISO, Climate Reanalyzer, and the work of Dr. James Hansen.)

As the Earth has steadily warmed to 1.1 C above 1880s averages, the oceans of our world have risen. At first, the rate of rise was very mild — a mere 0.6 mm per year during the early 20th Century. However, as the rate of global warming increased and the oceans took in more heat, the middle 20th Century saw sea level rise increase to 1.4 mm per year. By the end of the 20th Century, the polar glaciers had begun to melt in earnest. And from 1990 to the present day, the rate of sea level rise has accelerated to 3.3 mm per year.

Due to more warm water invading the basal regions of glaciers and more ice bergs calving into the world ocean, the annual rate at which ocean levels increase continues to jump higher. And during recent years — from 2010 to 2018 — the world ocean has risen by nearly half a centimeter each year (4.6 mm).

Global Sea Level Rise 4.6 mm Per year

(Since 2010, the rate of sea level rise has again accelerated. And it appears that El Nino years have recently tended to produce strong upward swings in the annual rate of increase. This may be due to El Nino’s tendency to set up stronger cycles of energy transfer to the poles. NOAA presently indicates a 50 percent chance that a mild to moderate El Nino will emerge during the winter of 2018-2019. Will we see another sea level spike at that time should El Nino emerge? Image source: AVISO.)

Now both island nationals and coastal cities face the increasing danger of rising tides, of inundation, and of loss of lands and infrastructure. A rapid switch to renewable energy and away from fossil fuel burning is needed to save many regions. However, due to presently high greenhouse gas accumulation, it is likely that some zones will be lost over the coming decades.

Arctic Ocean Deep in the Grips of May Temperature Spike; Beastly Summer Melt Season on the Way?

The Arctic Ocean as it appeared from space on May 6, 2018. Image source: NASA Worldview.

The Arctic sea ice is presently at its second lowest extent ever recorded in most of the major monitors. However, May is shaping up to be far, far warmer than normal for the Arctic Ocean region. If such high temperatures over this typically-frozen part of our world continue for much longer than a couple of weeks at this key time of year, precipitous summer melt is sure to follow.

******

During recent years there has been much speculation about when the Arctic Ocean will start to experience ice-free summers as fossil fuel related industries pump higher and higher volumes of greenhouse gasses into the atmosphere. In the early-to-mid 2000s, scientific consensus was that melt would tend to be more gradual and ice-free summers would hold off until the final decades of the 21st Century when the world was around 3-4 C warmer than 19th Century averages.

But the Earth System is far more sensitive to temperature increases than the early forecasts expected. Major Arctic sea ice losses surprised the world during September of 2007 and subsequently in the same month of 2012. Now, it is obvious that a pattern of far more rapid sea ice melt has taken hold. And the scientific consensus appears to have settled on a more likely and much nearer date around the early 2030s — when the world will have warmed by about 1.6 degrees Celsius.

(An oddly warm pattern in which above freezing temperatures have come early to the High Arctic is setting up during May of 2018. Content Source: Climate Reanalyzer. Video source: Scribbler’s Youtube.)

However, when it comes to sea ice, nothing is certain at this time. Any single Arctic year in which temperatures spike — particularly during normal melt season — could result in the losses that we once expected to occur much later in time.

There are many factors that will ultimately determine when a summer ice free state occurs. Warm winters are a major one. And the past two years (2017 and 2018) have seen Arctic winters in which temperatures hit some ridiculous high extremes. But another major factor is the set-up to Arctic summer that takes place during the window months of May and June.

Neven, one of our best Arctic sea ice watchers (you can check his blog out here), notes:

May and June are very important for the rest of the melting season. Not only do we now see these warm air intrusions, but high pressure maintains its presence over parts of the Arctic as well (which means relatively cloudless skies -> insolation -> melt onset and melt pond formation -> preconditioning of the ice pack -> melting momentum that gets expressed during July and August, regardless of the weather)… We have to wait and see what happens, step by step, but this isn’t a good start for the ice.

If May and June are unusually warm, particularly over the Arctic Ocean, then the sea ice — which is already greatly weakened — is bound to face an extended period of above-freezing temperatures. If such a period stretches for 5 months from May through September rather than the typical 4 months (June to September), then we are more likely to see the Arctic Ocean briefly flip into an ice-free or near ice-free state for the first time in human history.

(The coming week is expected to feature between 1 and 10 C above average temperatures for locations across the Arctic Ocean. These are very strong warm departures during May. Last week saw similar extreme warm departures. And we are already starting to see sea ice losses pile up. Image source: Global and Regional Climate Anomalies.)

This year, May is shaping up to be much, much warmer than normal for the High Arctic. Already, a large May temperature spike has occurred (see right image below). A temperature spike which is predicted to continue for at least the next ten days.

Not to put too fine a point on it, but this severe warming trend might end up presenting a bit of a problem. The extended period of melt mentioned above may begin in force — setting off a chain of feedbacks that could tip the Arctic Ocean into a far less frozen or even an ice-free state (under absolute worst case scenarios) this year.

To be clear, this is not a forecast that such a condition is bound to occur during 2018. It is just an analysis of underlying trends and a statement that risks are higher if such trends as we now observe continue. Late May could flip to a cooler than normal regime. June could be cooler and cloudier than normal (as happened during 2016 and 2017). And if that happens again, we may be spared.

(Average Arctic temperatures for 2017 [left] and 2018 [right]. The red line depicts the yearly temperature trend. The green line depicts the Arctic climatological average for 1958-2002 [which was already warmer than normal]. Note the big temperature spike in the right hand graph. That’s where we are now. Image source: DMI. For further reference, see Zack Labe‘s composite temperature analysis for the 80 North region.)

However, we are already on a much higher ramp for spring temperatures in the northern polar region than during 2017. And though 2016 saw a slightly warmer than normal spring near the pole, the May 2018 spike already far exceeds anything we saw at that time. So much, in fact, that present temperatures for May 6 are comparable to those typically seen during early June from the 80 degree N Latitude line to the Pole.

This higher ramp and related record warmth is already accelerating melt. Sea ice losses over recent days have greatly picked up and we are getting closer to record low daily ranges. If melt accelerates to a point, the greatly expanded darker ocean surfaces will draw in more heat from the sun’s rays during June — potentially overcoming the impact of the increased early summer cloudiness we have seen during recent years. Such a scenario, if it continues to develop, would be a nightmare from the climate change perspective.

Major Arctic Warming Event Predicted For the Coming Week

It’s been consistently, abnormally, warm in the Arctic for about as long as any of us can remember. But during recent years, the changes — caused by a massive and ongoing accumulation of heat-trapping gasses in the Earth’s atmosphere — appear to be speeding up.

(Far above normal temperatures are expected to invade the Arctic this week. The likely result will be an acceleration of sea ice melt and retreat. Image source: Global and Regional Climate Anomalies.)

This week, two major warm air invasions — one issuing from Siberia and another rising up through the Fram Strait and extending north of Greenland are expected to bring locally 10-20 C above normal temperatures and accelerate early season sea ice melt in an already reeling Arctic.

Consistent Warmth, Record Low Sea Ice

The farthest north region of our world has just come out of a winter during which sea ice extents consistently entered never before seen daily low ranges. With the advent of spring, sea ice measures have rebounded somewhat from winter record lows. However, according to Japan’s Polar Research Division, we are presently experiencing the second lowest daily sea ice extents since consistent measurements began. Meanwhile, Greenland during April saw an odd early bump in surface melt.

Overall, the pattern has been one of consistent abnormal warmth. And over the coming week, a number of warm air invasions will infringe upon the typically cold early May Arctic — testing new boundaries yet again.

(An ice-free Bering Sea, open water invading the Chukchi, and fractured sea ice over the Beaufort are notable features for melt season start during May of 2018. Image source: NASA.)

Much of the heating action this year has occurred over the Bering and Chukchi seas — which have never seen so much ice lost. Already sea ice is greatly reduced through these regions. Open water extends far into the Chukchi — onward and north of Barrow, Alaska. Still further into regions in which sea ice is typically rock-solid during this time of year, the Beaufort is experiencing its own late April break-up. But the areas that are expected to see the greatest warming over the coming days run closer to Siberia and the Atlantic.

Major Spring Warm Air Invasion

Today, a wedge of above-freezing air is invading the Laptev Sea north of Central Siberia. Strong southerly winds issuing from Central Asia are running north into the Arctic Ocean. They bring with them 10 to 20 C above average temperatures for this time of year — which is enough to push readings as high as 35 degrees F (2 C) over what during the 20th Century would have been a solid fringe of the polar ice cap.

Over the next 24 hours, this leading edge of warm air will spiral on toward the East Siberian Sea — bringing above freezing temperatures and liquid precipitation with it.

(5-Day forecast maximum temperatures show considerable warm air invasions proceeding throughout the Arctic. In many cases, temperatures near the North Pole will be warmer than regions far to the south. An impact of the warming world ocean on the Arctic environment. Image source: Climate Reanalyzer.)

But the main warming event for the Arctic this week will occur in the region of the Fram Strait east of Greenland. A strong low pressure system near Iceland is expected to drive wave after wave of much warmer than normal air north into the Arctic. This warm air thrust will bring with it temperatures in some places that exceed 20 C above average. Overall, Arctic Ocean basin temperatures are expected to average more than 2.3 C warmer than normal for the entire first week of May. Such high temperature departures are particularly notable for this time of year — as Arctic thermal variance tends to moderate during spring and summer.

The system will push above freezing temperatures deep into the Arctic — generating a repeat of the strange flip-flop that has become so common recently where temperatures near the North Pole are much warmer than readings further south. Warmer than freezing temperatures will also over-ride coastal portions of northeastern Greenland in yet another odd aspect of the event.

Warm storm effects including gale force winds and waves of 8-12 feet will provide added effect to above freezing temperatures in impacting the sea ice throughout the Fram Strait and northeast Greenland region. Increased insolation due to sunlight spreading over the region will also add to the overall potential for melt.

Tesla’s EV Lead Expands as Production Hits 13,000 to 17,000 in April

In the present day, two forces are helping to drive the potential for a rapid and much-needed transition to clean energy. On the one hand, we have countries like China and states like California providing clean energy leadership and incentive. And on the other hand, we have clean energy innovators like Tesla who continue to stretch the bounds of what’s possible.

This month, Tesla proved naysayers wrong by consistently producing more than 2,000 all electric Model 3 vehicles per week. During late March, Tesla produced 2070 Model 3s in one week. The next week they produced 2100. And the following week they produced 2250. During the third week of March they probably produced around 1,000 as the line shut down for improvements for 3-5 days. However, it’s likely that the final week will show in excess of 2,200 as the production line again expanded.

(Tesla EV production rates saw a big jump in Q1 as Model 3 began to hit a stride. However, Q2 2018 results will likely more than double that of Q4 of 2017 with Model 3 likely averaging over 2,000 per week. Image source: Statista and Tesla. )

Assuming that average weekly Model S and X production rates of around 1,000 (each) continued throughout the month, it appears that Tesla achieved a total rate of 4,000 BEVs produced each week. In sum, that adds up to a yearly rate of 200,000 per year.

Such a rate would make Tesla the present fastest-rate producer of EVs in the world. It would outstrip BYD and BIAC. It would leave BMW, Volkswagen, and Nissan in the dust.

Since Tesla rates of production can vary from week to week and month to month, the estimate I’ve given ranges from 13,000 to 17,000 EVs produced for April. Implied in this number is a one-month rate for the Model 3 that approaches all of Q1 production.

(CO2 emissions per 100 kilometers driven is greatly reduced when EVs are mated to grids with high clean energy penetration — like the one in Ontario. And it is for this reason that mass replacement of ICE vehicles with EVs is a key climate solution. Image source: Plug’n Drive.)

By May, it is likely that we will see 1 week rates for Model 3 exceed 3,000 as Tesla adds a third shift and continues to refine its line. Average total EV production for the month could exceed 20,000 if this ramp is achieved. By June, Tesla is aiming for a peak Model 3 production above 5,000 per week — which would imply a total EV production rate of 7,000 per week.

What all these numbers mean, and what few are reporting, is it appears that Tesla is achieving a break-away rate of electrical vehicle manufacturing. One that other automakers will have major difficulty catching up with. Such large volumes of EVs will displace a significant amount of carbon emitting ICE demand. Fossil fuel luxury and sport vehicles by BMW, Toyota, VW, Volvo, GM and many others will increasingly be replaced by this flood of high quality electrical vehicles. And a signal will be sent to the markets that higher margin ICE sales are taking a serious hit.

(Tesla Model 3 production rates significantly accelerated during early Q2 of 2018. Image source: Bloomberg Model 3 Tracker.)

If Tesla’s ramp continues, it will easily be selling 300,000 to 350,000 EVs per year by 2019 — which is considerably more than Volvo’s annual U.S. sales. This high volume will force other automakers to respond in kind. But since none will likely be able to produce in comparable volume and quality until at least 2020, Tesla is developing a major head start.

CO2 is Regularly Exceeding 410 Parts Per Million for First Time in Human History

During May of 2018, average monthly CO2 values will likely range between 411 and 412 parts per million. A new record for a heat-trapping gas that is causing serious damage to both the Earth’s environment and human civilizations.

(Atmospheric CO2 accumulation since 2007 as depicted by this animation of Mauna Loa Observatory CO2 measurements by Robbie Andrew, of the CICERO Center for International Climate Research.)

There’s one word that best describes this — trouble. And in the most simple terms it means that more unprecedented severe weather, ocean health impacts, and sea level rise is on the way.

Exceeding the 410 PPM Threshold

Last year, atmospheric CO2 levels peaked at around 409.7 parts per million during May of 2018. Hitting just shy of the 410 ppm threshold which will be consistently exceeded this year during the annual peak.

This peak comes during April and May following Northern Hemisphere winter due to seasonal loss of tree leaf photosynthesis that converts a large volume of CO2 into oxygen during summer and fall. As trees return to bloom across the large northern land masses, CO2 concentrations periodically drop.

However, due to human fossil fuel burning, the natural CO2 cycle has, since the 18th Century been significantly thrown out of balance. And as a result, the atmospheric concentrations of this key heat trapping gas rapidly ramped higher and are now in a range not seen in 15-17 million years.

(The CO2 measure at the Mauna Loa Observatory shows a hockey stick like spike in CO2 following a relatively stable period of glaciation and deglaciation over the last 800,000 years. Image source: The Keeling Curve.)

As you can see in the image above, the present period has shown an unprecedented and dangerous rate of atmospheric CO2 increase. One that has no corollary in the past 800,000 years. One that is probably unique in its velocity.

High Levels of Heat Trapping Gases Pose Serious Consequences

Such a great accumulation of heat trapping gases results in serious consequences. Present atmospheric CO2 concentrations, if maintained over multiple Centuries are likely enough to warm the Earth by more than 3 degrees Celsius (significantly more than present warming in the range of 1 to 1.2 C). And such high levels of heat trapping gases — ranging above 410 parts per million — are likely enough to melt significant portions of the world’s ice sheets over Century to multi-Century time scales. During the last climate epoch when atmospheric CO2 exceeded 410 parts per million, the Middle Miocene, sea levels were 100 to 170 feet higher than they are today.

(Atmospheric CO2 levels are now the highest since the Middle Miocene of 15 to 17 million years ago. Image source: Skeptical Science.)

Sea level is not the only system influenced by high atmospheric CO2 levels. And everything from storms to drought intensity, to ocean health, to growing seasons, to typical seasonality, to coral bleaching, and including the Earth’s net ability to support life will ultimately be impacted.

Fossil Fuel Burning is the Primary Cause, Renewable Energy the Primary Solution

As mentioned above, record CO2 emissions brought on by fossil fuel burning is driving the unprecedented atmospheric accumulation we see today. During recent years, very rapid rates of annual accumulation near 3 parts per million (ppm) were achieved as a strong El Nino rippled through the Pacific and reduced the ocean’s ability to draw down carbon. The La Nina years of 2017 and 2018 are seeing these rates of accumulation dip back to near 2 ppm or slightly less as ocean drawdowns have periodically recovered. But more El Nino years are on the way and atmospheric CO2 levels will keep rising so long as mass fossil fuel extraction and burning continues.

(CO2 annual growth rates have proceeded in lock step with increasing rates of fossil fuel burning on decadal time scales. Shorter term fluctuations are driven by the ENSO cycle and large volcanic eruptions. Image source: NOAA ESRL.)

The advance of renewable energy and the reduced use of coal has enabled the world to achieve a slower rate of atmospheric CO2 release growth that appears to be reaching a plateau near 11-12 billion tons of carbon per year. This is still an insane rate of release. However, if the world resolves itself, it can begin to rapidly reduce this severely harmful annual belching of greenhouse gasses. Emergent clean energy technologies like wind, solar, battery storage, and electrical vehicles are providing this hope for response. However, rates of adoption will need to be quite rapid if serious and ever-ramping climate harms are to be avoided. Presently high atmospheric CO2 levels exceeding 410 ppm this year represent a serious hazard. One that we fail to fully address at our peril.

Notes:

  1. Human emissions of heat trapping gases is not limited to CO2. Methane and other greenhouse gasses produced by industry have resulted in a net CO2 equivalent forcing near 491 parts per million (CO2e). Though CO2 gain is the primary driver of human forced warming, these other gases have an accumulative impact.
  2. I have used the Middle Miocene as a corollary in this analysis due to the fact that present CO2 levels at 410 parts per million and CO2e levels at 491 parts per million (end 2017) generate a rough boundary for both the top and bottom ranges for this climate epoch. It is worth noting that the human forcing is probably more dangerous than that which occurred during the Middle Miocene due to the velocity at which heat trapping gases are accumulating.
%d bloggers like this: