Advertisements

Aiming For 1.5 C Part II: This is Your Home

In achieving any kind of real progress toward an important end, it’s necessary to set goals that are difficult to attain. To aim further than you think you can go. And that’s even more important for a climate crisis that will produce catastrophic outcomes if we don’t set some very serious renewable energy, emissions reduction, and sustainability goals.

(This is your home.)

Because the important end that we are now trying to attain involves saving the future. Future prosperity, future vitality, future generations of human beings and living creatures. In the end it’s about the future of your home. For each 0.1 C of additional warming will bring with it more risk. More potential for increased harm.

It doesn’t matter if you live in Miami or Bangladesh. In Norfolk or Washington DC. In London or LA. In Calgary or Quebec. Where you live is where climate change is happening now. And where you live is where the future catastrophic impacts from climate change will be felt if we don’t do the necessary work.

In saying this, I can also say with confidence that we have a pathway out of this crisis. We have the renewable energy technology available now that is capable of replacing fossil fuel burning — so long as it is deployed on a mass scale. We have the ability to make our energy systems more efficient. We have the ability to change the way we manage lands and farms. And we can do all this — getting to net zero carbon emissions — without the kind of (post-Maria Puerto Rico-like) austerity invoking collapse of the global economy that the mongers of fear, uncertainty and doubt falsely say is necessary.

But to do this, to prevent catastrophe — not harm, because we are already going to see harm — we have to set our goals high. We have to try to achieve what might not be possible. And that’s why we aim for 1.5 C. Because this is your home. And we will employ every tool in our kit in our fight to save it.

Hat tip to Dr. Michael E Mann

Advertisements

Why We Need to Shoot for 1.5 C Even Though We Might Miss — Part 1

Each day, as individuals and as a global civilization, we decide how difficult our future will be. We do this, ultimately, by deciding whether we will burn fossil fuels, and whether or not we will emit carbon into the Earth’s atmosphere. The most liveable climate change scenario is the one where we emit the least carbon, where we first switch carbon emitting energy systems with renewables, and where we then learn how to draw carbon down from the atmosphere. In scientific parlance, this best case response to climate change is described as the RCP 2.6 emissions pathway.

(Shooting for 1.5 C Warming — Risk and Necessity.)

What is RCP 2.6? How do we define it?

We do this in many ways. By one measure, it roughly equates to an average of 490 ppm CO2 equivalent greenhouse gasses in the atmosphere over the course of the 21st Century. By another, it equals an added average radiative forcing at the top of the atmosphere of 2.6 watts per meter squared. By another, it roughly equals 1.5 C warming by 2100.

In short, it’s the best case that we could rationally hope for. A much more liveable world. But it is also a long shot. A heavy lift. One that will require great courage, moral fiber, innovation, and effort if we are to have any hope of achieving it.

In order to have a shot at hitting RCP 2.6 we’ve got to, as a global civilization, achieve net zero carbon emissions by 2050. What this means is that U.S. carbon emissions need to be net zero by 2035. And the world needs to quickly follow suit. That’s not going to be easy. But I think it’s doable, if we work hard and honestly and if we are lucky.

Ultimately, it’s something that we can’t not try to do and still be a good people. For in undertaking the path to 1.5 C we commit to the greatest rescue operation in the history of the planet and of humankind. And that’s what part 2 of this post series is about.

Hat tip to Greg

How Greenland Melt Can Kick off A Warm “Ill Wind” Near Antarctica

Sixteen thousand years ago, Greenland melt set off a cascade of impacts to the world ocean and atmosphere that led to the dredging of carbon rich waters from deep below the Pacific surface. These waters then disgorged enough carbon into the atmosphere to ultimately raise CO2 levels by 40 parts per million.

(Related: Bad Climate Wind Rises.)

A recent report in Nature Communications found that:

“During this earlier period, known as Heinrich stadial 1, atmospheric CO2 increased by a total of ~40ppm, Antarctic surface atmospheric temperatures increased by around 5°C and Southern Ocean temperatures increased by 3°C.”

How did it all happen? According to the science, Greenland melt slowed down North Atlantic Deep Water formation. This, in turn, caused the North Atlantic to cool and the South Atlantic to warm. The resulting change in temperature then shoved the band of stormy weather called the Inter-Tropical-Convergence-Zone southward. Subsequently, the westerlies in the Southern Hemisphere were shifted poleward and strengthened. Stronger, more southward running winds around the southern pole dredged up carbon rich deep water near the pole and on into the Pacific. This carbon then transferred to the atmosphere.

It’s an interesting bit of science. But it has a good degree of relevance to the present day. That’s because Greenland is again melting greater volumes of water into the North Atlantic. The North Atlantic is again cooling. And the Southern Ocean winds are again being driven south as they strengthen.

(How Greenland melt pulled carbon from the Southern Ocean. A process that is being driven to repeat by present human-forced climate change. Image source: Nature Communications.)

According to lead author Dr. Laurie Menviel:

“With this in mind, the contraction and strengthening of westerly winds today could have significant implications for atmospheric CO2 concentrations and our future climate.”

This is a kind of feedback that results from the warming humans have caused that can result in more carbon being wrung from the ocean. And it’s a concern because it shortens the available time-frame in which to respond to the crisis that is climate change.

(Greenland melt, the North Atlantic cool pool, and strengthening, southward moving Southern Ocean winds. These dynamics set off a carbon feedback about 16,000 years ago. Similar dynamics are coming into play today due to human caused climate change. Image source: Earth Nullschool.)

To be clear, present rates of fossil fuel burning are dumping an amount of carbon into the atmosphere at a much higher rate than this identified Earth System response could ever match. But, as the study authors note, the Southern Ocean has already sequestered 10 percent of carbon emitted by humans. If that sequestration halts and then reverses, then the rate of atmospheric CO2 accumulation, even if emissions stay stable, will rise by about 0.2 to 0.4 ppm per year.

This report lends further urgency to global efforts by responsible institutions and individuals to reduce global carbon emissions and transition to clean energy. Bringing the more difficult outcomes of rising heat trapping gasses closer and closer to the present day.

Please read more here.

Hat tip to mlp in NC.

“Never Before Experienced” Rains Hammer Japan During Early July

“We’ve never experienced this kind of rain before. This is a situation of extreme danger.” — The Japan Meteorological Agency

*****

During recent days as much as 25 inches of rain has fallen over parts of Japan shattering previous all time precipitation records for parts of the island nation. The resulting floods have spurred a major emergency response by 54,000 personnel, taken the lives of more than 125 people, and forced more than 2.8 million to evacuate.

(Rising global surface temperatures increase atmospheric water vapor levels — providing liquid fuel that spikes the most powerful rainfall events to even greater extremes.)

On July 3, Typhoon Prapiroon swept over southwestern Japan bringing with it a spate of heavy rains. Over the following days, Prapiroon got caught up in stationary front even as a high pressure system to the east continued to circulate tropical moisture into the region. Beneath that eastern high, sea surface temperatures ranged between 2 and 3.5 degrees Celsius above normal. Meanwhile, warmer than normal ocean surfaces dominated a region east of the Philippines. These large, abnormally warm zones produced excess evaporation which helped to feed even more moisture into the region.

The result was a historic and devastating rain event for Japan. Isolated locations received more than 39 inches (1000 mm) of rain over a three day period. With one hour rainfall exceeding 3 inches in a number of locations. Motoyami received one day rains of 23 inches. With Mount Ontake seeing more than 25 inches over three days.

(Warmer than normal ocean surfaces, as shown in yellow and red in this sea surface temperature anomaly map, helped to fuel Japan’s recent extreme rainfall event. Image source: Earth Nullschool.)

Rising global temperatures increase overall atmospheric moisture loading by approximately 8 percent for each degree Celsius of global temperature increase. Water vapor provides fuel for storms both through enhancing convection and by engorging clouds with moisture. Recent scientific studies have found that climate change can greatly enhance the peak intensity of the most severe storms in this way. And the U.S. National Climate Assessment has identified a historical trend of increasing instances of heavy precipitation.

US EV Sales Likely Hit 26,000 in June

The big surge in electrical vehicle sales within the U.S., primarily driven by clean energy leader Tesla, continues.

According to reports from Inside EVs, total U.S. EV sales are likely to hit near 26,000 for the month of June. Such sales increases have primarily been driven by Tesla — which sold over 11,000 EVs in the U.S. for the month — representing nearly half (42 percent) of the entire U.S. market.

(Unpacking why EVs are so important to confronting climate change.)

Tesla’s dominance was spear headed by its Model 3 — which sold over 6,000 in June to the U.S. (and approximately 2,000 to Canada). Meanwhile, combined Model S and Model X sales were in excess of 5,000 in the U.S.

Other U.S. clean energy vehicle leaders for the month of June included Toyota Prius Prime (a plug in hybrid electrical vehicle), the Nissan Leaf, The Chevy Bolt and the Chevy Volt (plug in hybrid). In total, all of these four models combined represented less sales than Tesla — approximately  5,900 in total or about 55 percent of Tesla’s sales. Of these, only the Prius Prime cracked the 2,000 mark (see more here).

(U.S. EV sales are rapidly increasing in 2018. Image source: Inside EVs.)

Overall, it appears that U.S. EV sales are likely to hit near 400,000 on the back of Tesla’s rapid expansion in production rates. In addition, GM has recently acknowledged that it is unable to meet high demand for the Bolt in the U.S. and has stated that production lines are set to expand by 20 percent. Though this is unlikely to satiate rising EV demand, it will add to the widening trend of ramping clean energy sales here.

GM recently saw big Bolt sales gains in South Korea. And the company recently acknowledged that it is not doing enough to meet consumer’s clean energy needs in North America. Though a bump from 26,000 to approximately 31,000 Bolts sold from 2017 to 2018 is a drop in the bucked compared to the approx 100,000 or more new EVs Tesla will be adding by itself vs 2017 (100,000 total EVs in 2017 to approx 200,000 total in 2018).

(Tesla hits past 5,000 Model 3’s per week in late June and early July. Image source: Bloomberg.)

Looking ahead, Tesla appears set to sell well in excess of 10,000 Model 3s alone in the U.S. in July as weekly production rates surge. According to Bloomberg’s Model 3 Tracker (image above), the company has sky-rocketed weekly Model 3 production rates to above 5,000 during late June and early July. And while some wag is likely between the mid 2,000s to mid 5,000s as Tesla continues to work on its lines, the company is on a clear path for increased production — aiming at another surge to 6,000 per week by August.

Hurricane Beryl an Odd Outlier as Cat 5 Maria Tears Toward China

The 2018 Atlantic hurricane season has produced another record after a string of similar strange climate change related excursions during recent years. Meanwhile, at powerful Category 5 storm has formed in the Pacific.

(Mid Ocean Season starts early with Beryl; Pacific cat 5 Maria tracks toward China.)

Beryl, a minimal category 1 storm formed in the tropical convergence zone between Africa and the Caribbean on July 6. According to Brian McNoldy, Beryl is the furthest east-forming pre-August storm on record by a wide margin. With Dorothy being the previous record-holder for earliest storm to form in this region on July 24.

An August-Type Storm in July

The height of the Atlantic hurricane season is known as the Cape Verde Season. During this time, massive clusters of thunderstorms called tropical waves develop over Africa and head out into the tropical North Atlantic. There, they feed on warm sea surfaces and favorable atmospheric conditions — forming into tropical cyclones at a much higher rate than during the rest of the year.

Cape Verde storms typically begin forming in August. And though July does see an increase in tropical wave generation from Africa that can fuel storm formation in the Caribbean and just off the Windward and Leeward Islands in the North Atlantic, we don’t typically see mid ocean forming storms until August.

The odd thing about Beryl is it is acting a lot like an August Cape Verde storm — but a month earlier than is typical. Factors that possibly contributed to Beryl’s early formation include climate change driven warmer than normal sea surfaces in the region, strong clusters of thunderstorms developing over Africa and heading out into the Atlantic at a high rate, and a post-La Nina atmospheric influence that tends to increase the frequency of Atlantic storm formation.

Cat 5 Maria Heading Toward China

Moving over to the western Pacific, we find a very powerful category 5 storm — Maria — moving slowly toward China. Yesterday the storm achieved the highest intensity rating we give for hurricanes as maximum sustained winds surged to 161 mph. The storm has since backed off a bit to just stronger than 155 mph maximum winds. However, it is still a very dangerous system.

Like Beryl, Maria formed over warmer than normal sea surface temperatures — a climate change related factor that provides more fuel for storms. Maria is now tracking off to the north and west. It is expected to cross somewhat cooler waters before heading back into warmer than normal waters off Shanghai. It is thus likely that Maria will see fluctuations in strength as it approaches the China mainland over the coming week.

Overall, climate change’s influence on tropical cyclones is that a human-warmed climate is increasing the peak intensity of the most powerful storms. In addition, alterations in ocean heat and energy balance is moving the zones and changing the times during which storms form. We are thus seeing storms that form out of season and outside of typical climate zones. These shifts and these increases in peak intensity will continue so long as fossil fuel burning and related carbon emissions do not abate.

Temp Records Shattered Across Northern Hemisphere; 33 Lives Lost to Heat in Quebec

Over the past week, 21 all-time temperature records were shattered across the Northern Hemisphere. These records coincide with an extreme heatwave blanketing large parts of Europe, North America, Africa, the Middle East and Asia. A heatwave that has resulted in the tragic loss of 33 lives in Quebec.

(Global heatwave in context.)

According to news reports, major temperature records in this broad ranging swath of heat included a 105 F (40.5 C) reading in Denver, a scorching 122.4 F (50.2 C) temperature in Pakistan, a ridiculous 97.9 F (36.6 C) reading in Montreal, and a 91.8 F (33.2 C) reading in Motherwell Scotland of all places (see graphic here).

In Quebec, safety officials were inundated with 1,200 calls per day due to heat stress and heat injury. Emergency crews were at the ready with 3,400 house visits conducted each day. Despite the high state of readiness, 33 people so far are reported to have lost their lives — primarily middle aged to elderly males. High heat, high humidity, and lack of residential cooling all contributed to heat injuries and loss of life over this typically much cooler region.

In context, a total of 23 all time record high maximum and record high minimum temperatures have been produced as a result of the present heatwave during the past 7 days. This compares to zero all time record low maximum and zero record low minimum temperatures over the same time period. Daily and monthly record highs and record high minimum temperatures are outpacing record low temperatures on a global basis at a rate of 4-12 to 1.

Global warming due to fossil fuel burning has put us in a 115,000 year heatwave on a whole Earth system based context. So we can continue to expect record high temperatures to be breached at higher rates.

(Very high incidence of all time record hot temperatures over the past 7 days. Image source: NOAA.)

According to GFS model forecasts, extreme heat is expected to continue to impact of number of Northern Hemisphere regions over the coming days. Though the North American East may see a respite from the heat over the 1-5 day horizon, high temperatures are expected to continue to hammer western and central zones. Northeast Siberia is predicted to see extreme heat early on, which is then expected to shift west into Eastern Siberia and Scandinavia. Meanwhile, the Middle East, North Africa, and parts of Central Asia are predicted to continue to experience much hotter than normal summer temperatures.

 

 

Pawnee Fire Forces Another State of Emergency for Northern California

Human-forced climate change is driving severe events that local communities are having difficulty recovering from. The primary reason is that the tempo of these events is so high that it allows little time for recovery.

(Another series of intense wildfires, another state of emergency for California.)

This weekend, a large complex of fires erupted in the Lake County region of Northern California. By today, the fires had expanded to cover over 10,500 acres. The rapidly expanding fire has already destroyed more than 22 buildings while forcing 3,000 to flee. Meanwhile, Governor Jerry Brown had declared a state of emergency.

Hot and dry conditions fanned the blazes on Tuesday, increasing concerns that the fires would continue to rapidly spread. Temperatures in Fresno are expected to hit 100 degrees (F) today with readings in Redding likely to hit near the century mark. Meanwhile, a large zone from Death Valley to Vegas to Phoenix is predicted to see temperatures hit 108 to 114 (F) or above.

(Very hot conditions across California are presently elevating fire risk. Already, large blazes have burned numerous buildings and forced hundreds to flee. Image source: National Weather Service.)

These hot, windy conditions will continue to elevate fire hazards across the west — which is bad news for communities beleaguered by the ongoing spate.

During recent years, big swings between heavy precipitation events and hot, dry conditions have fueled larger, more intense wildfires across the U.S. West and particularly in Northern California. Human caused climate change drives these events by adding moisture to the atmosphere which favors heavier storms and by forcing temperatures higher. The result is that vegetation grows and blooms more rapidly during the wetter than normal periods and dries out faster during the hotter than normal periods — generating more dry fuel for wildfires.

 

 

 

How Arctic Sea Ice Loss Could Make the Hot Pacific Blob Permanent 

From the North Pacific to the tropics, loss of sea ice will result in a vastly heated Pacific Ocean in which events like the recent Hot Blob become far more common. Those were the conclusions of a new model study conducted by Wang, Deser, Sun and Tomas and recently published in Geophysical Research Letters.

(Understanding how sea ice loss in the Arctic can result in large-scale Pacific warming.)

An ocean heating event called the Blob resulted in mass loss of sea life during the period of 2013-2014. It was associated with a towering high pressure ridge in which the upper level winds ran far to the north and into the Arctic. Beneath the ridge, temperatures both at the land and ocean surface grew to be much warmer than normal.

Though viewed as a fluke by some, many began to draw connections between the powerful ridge feature, the related Pacific warming, and sea ice loss in the Arctic. Now, a new scientific study using climate models has produced some rather telling findings. First, the study found that Arctic sea ice loss results in large scale Pacific Ocean warming within just 10-20 years of widespread Arctic Ocean ice reductions. Second, the study models indicated that warming occurred first and strongest in the North Pacific, but then rapidly translated toward the Equator.

(Sea surface temperatures across the North Pacific were much warmer than normal during the hot Blob event of 2013-2014. A new model study finds that sea ice loss will make such extreme events common.)

The reason for this change in planetary and Pacific Ocean energy balance is scientifically described as a teleconnection. In very basic terms, loss of sea ice at the Arctic Ocean surface produces changes in local wind patterns that ripple through the global atmosphere. After a rather short period of time, wind patterns in the upper levels of the atmosphere and at the surface in the Pacific Ocean become involved.

Winds are often the vehicle by which energy is transferred throughout the atmosphere and at the surface. So a change in winds, from the top of the atmosphere to the bottom, can swiftly translate to a change in surface temperatures.

(A new model study shows radical changes in Pacific sea surface temperatures in response to Arctic Ocean sea ice loss.)

Looking at the study, it appears more likely now that the Northern Pacific Hot Blob of 2013-2014 was not a fluke, but instead an early knock-on effect of Arctic sea ice loss. A kind of event that will tend to become commonplace as the Arctic Ocean ice continues to melt. And that eventually, sooner rather than later, the heat build-up in the North Pacific will translate south to the Equator. First warming the Eastern Pacific in a more persistent El Nino type pattern and then spreading west (see image above).

As with the Blob, everything from the health of sea life to the intensity of extreme weather would be substantially impacted by such large scale changes. In other words, it looks like large scale losses of Arctic sea ice are enough to affect a broad and disruptive change in the global climate regime.

NASA: May Was 4th Hottest on Record

According to reports from NASA GISS, May of 2018 was the 4th hottest in the 138 year global temperature record. This new warmth came as the Equatorial Pacific began to retreat from a cooling La Nina state — which, all things being equal, would have resulted in somewhat cooler than average global temperatures.

(Analysis of global temperature trends based on recent NASA and NOAA reports.)

But all things are not equal. Greenhouse gasses in the range of 410 ppm CO2 and 493 ppm CO2e have created a historically unprecedented heat forcing within the Earth’s atmosphere. As a result, recent global temperatures have consistently exceeded 1 C above 1880s levels and have hit as high as 1.5 C above 1880s levels on a monthly basis and 1.2 C above those levels on an annual basis.

For this May, temperatures were about 0.82 C above NASA’s 20th Century baseline or about 1.04 C above 1880s levels. This was the fourth hottest May in the global climate record despite La Nina influences continuing to maintain hold over the global climate system.

(NASA global anomalies map shows distribution of warmer than normal [yellow to red] and cooler than normal [blue to purple] temperatures across the globe. Note that warmer than normal conditions dominated.)

Overall, the greatest above average temperatures were experienced in the regions of Scandinavia and Antarctica — from an anomaly perspective. Meanwhile, significant trough zones generated counter-trend cool temperatures near Eastern Canada, over the North Atlantic south of Greenland, and across Central Siberia. As we moved into June, some of these zones have shifted or moderated, with cooler air tending to shift closer to eastern Europe in Asia and toward the North Atlantic cool water zone (due to melting Greenland ice) from Eastern Canada.

Looking ahead, NOAA is forecasting a 65 percent chance for a return to El Nino conditions in the Equatorial Pacific by winter of 2018-2019. With atmospheric CO2 hitting near 410 ppm and overall greenhouse gas levels hitting near 493 ppm CO2e, this switch to the warm side of natural variability will again bring with it the risk of record hot global temperatures, should the NOAA forecast bear out. Though we should be clear that El Nino is merely a short term aspect of natural variability that is riding over the long term warming trend generated by human produced greenhouse gas emissions, particularly CO2 emissions from fossil fuel burning.

 

Arctic Sea Ice at 4th Lowest Extent on Record

Warmer than normal conditions, abnormal wide areas of open water, large wildfires burning near Arctic Ocean shores, and Arctic sea ice extents at 4th lowest on record. That’s the present reality of a human-warmed Arctic environment.

(An assessment of present Arctic conditions)

With Arctic temperatures hovering around 1.6 degrees Celsius above average and focusing on a rather hot zone near Central Siberia, Arctic sea ice on the Siberian side is experiencing widespread melt ponding. In addition, a large area of open water is expanding through the Laptev Sea due to warm southerly winds and much warmer than normal temperatures.

Overall, temperatures in this Central Siberian zone will range as high as 25 degrees Celsius (45 F) above average today. With some areas hitting has high as 85-90 (F). Near these much warmer than normal temperatures, a series of large wildfires are burning. Fires so far north are historically rare. But they have become more common as the Earth has warmed due to fossil fuel burning.

(Arctic temperatures are well above average for this time of year. These much warmer than normal temperatures are contributing to a number of impacts, including lower than normal sea ice extent.)

Present sea ice decline rates now put Arctic Ocean ice extent at 4th lowest on record. And the present trajectory for Arctic sea ice appears to be aiming toward approximately 4 million square kilometers come melt season end. However, with human-forced warming now resulting in ever-increasing global temperatures, downside risks remain. Particularly with so much heat moving about in the Arctic.

Accelerating Sea Level Rise is Being Driven by Rapidly Increasing Melt From Greenland and Antarctica

From 1993 to the present day, global sea level rise has accelerated by 50 percent. And the primary cause, according to recent research, is that land glaciers such as the massive ice sheets of Greenland and Antarctica are melting far faster than they have in the past.

(Assessment of factors involved in the presently increasing rate of global sea level rise.)

Antarctica, in particular, is melting much more rapidly — with melt rates tripling in just the last ten years.

The primary factors contributing to global sea level rise include thermally expanding oceans and the melting of ice on land. During the decade of 1993 to 2004, the World Meteorological Organization notes that oceans rose by 2.7 mm per year. During this time, land ice sheets amounted to 47 percent of that rise — or about 1.35 mm. The same report found that from 2004 to 2015, oceans rose by around 3.5 mm per year and that land ice contribution had risen to 55 percent (1.93 mm per year). Looking at sea level measurements from AVISO, we find that from March of 2008 to March of 2018, the average rate of sea level rise accelerated further to 4.3 mm per year.

The net takeaway is that the rate of global ocean rise has increased by more than 50 percent since the early 1990s and that this acceleration has been driven by increasing melt from large land glaciers like those in Greenland and Antarctica.

(Sea level rise contributors as reported by the World Meteorological Organization in its 2017 report on the state of the global climate.)

Over the coming years and decades, this rate of rise is likely to continue to accelerate — surpassing 5 mm per year sometime rather soon, and likely exceeding the 1 cm per year mark by the 2040s through the 2060s. Melt rates will likely increase substantially as we approach the 1.5 C and 2.0 C warming marks. However, the net heat pressure from fossil fuel emitted greenhouse gasses will also drive sea level rise rates. As a result, it is imperative that we work to cut fossil fuel emissions more rapidly and that we pursue a swift as possible transition to clean energy.

Climate Change Indicated in Forced Migration of 1.7 Million from Mekong Delta

Global sea level rise caused by fossil fuel burning is an issue that is creating worsening impacts to cities, nations, and civilization itself. And according to recent reports out of Vietnam, 1.7 million people have migrated from the low-lying Mekong Delta region over the past decade. Primary causes included climate change and poverty.

(Sea level rise now threatens all low-lying regions with increased flooding, loss of crops, and, in some cases, forced migration. Recent reports indicate that hundreds of thousands have already left the Mekong delta as a result.)

Rising oceans have forced Vietnam to erect a system of dykes of up to 4 meters in height in an increasingly complex system of coastal defense barriers. These barriers have saved lands from inundation as the ocean off the low-lying Mekong Delta continues to rise year-after-year. However, the dykes have not prevented salt water from moving further and further up the Mekong River. And during recent years, this salt water has inundated soils used for rice production.

Such salt water inundation has wiped out crops for many farmers. For example, in the Soc Trang region, the farmers of Thang Dong saw their crops completely wiped out during 2013 as salt water seeped into the soil and killed off food-producing plants. In low-lying near coastal regions, the story has been much the same for Mekong farmers. And with less reliable crops come increasing poverty.

(Salt water increases in soils as seas rise. The Mekong Delta is just one of many low-lying regions under threat by human caused climate change and its related sea level rise. Image source: Vietnam Times.)

When crop production is no longer tenable due to climate change impacts, many farming families have been forced to move on. A majority cite poverty as the root cause. But 14.5 percent are more aware — noting that climate change was what ultimately forced them to leave.

The Delta regions of the world are among the most agriculturally productive on Earth. But, as with Mekong, all such regions face ocean flooding and salt water invasion. As a result, a key aspect of global food production is under threat. A factor that has recently weighed in high average global food prices and an increase in the number of under-nourished people by 38 million last year.

 

Worrisome U.S. Wildfire Risks Leading into Summer of 2018

The trend of increasing large wildfires for the U.S. West due to climate change is clear as clear can be. And as we enter 2018, fire officials are concerned that we might experience another damaging summer and fall similar to 2017.

(Analysis of the present state of U.S. fire season.)

According to forecasters from the National Interagency Fire Center:

…warmer and drier-than-normal conditions have put large portions of the Western United States at above-average risk for significant wildfires between now and September.

This year’s wildfire season could rival last year’s, which was one of the most devastating on record, said Vicki Christiansen, interim chief of the U.S. Forest Service.

With drought conditions and warmer than normal temperatures prevailing across the U.S. West at present, a number of large wildfires are breaking out. The most significant now run through Colorado, New Mexico and California. In addition, four large fires are burning over Alaska where much warmer than normal temperatures have also settled in.

Last year was one of the most destructive fire seasons on record. 53 lives were lost, 12,300 homes were destroyed, and more than ten million acres burned. The situation this year, though not quite as intense as early 2017, has sparked concern. Presently 1.75 million acres have already burned from more than 24,000 fires — which makes the start of 2018 fire season the third worst of the past ten years.

(Severe western drought and above average temperatures are contributing to increased fire potential during June of 2018. Warmer temperatures and worsening droughts are also related to human-caused climate change. As a result, unless human caused warming is abated, fires will continue to grow larger and more intense. Image source: The National Weather Service.)

Climate change is identified as the primary factor increasing wildfire risk across the United States by the Union of Concerned Scientists. According to that scientific body, the incidence of large fires covering more than 1,000 acres has increased from 140 over the U.S. West during the 1980s to more than 250 after 2000. The same study found that fire season for the West had increased from five months to seven months, that temperatures were rising, and that mountain snows were melting earlier.

In the future, unless fossil fuel burning is rapidly reduced, the area of land burned in the U.S. West could increase by up to 650 percent. So wildfires are a substantial hazard related to climate change. And the present more severe season cannot be excluded from a trend that has been amplified by that change.

Odd and Dangerous Mekunu Bears Down on Oman

This year, two tropical cyclones have sprung up in the Western Arabian Sea. A region where, according to our understanding of climate, “storms do not form.” Well, the climate has clearly changed. Because a storm is raging there now. And for Oman today, these changes bring with them serious threats to life and property.

(Discussion of how climate change has altered tropical cyclone formation and intensity dynamics in the Western Arabian Sea during 2018.)

About five days ago, tropical storm Sagar formed east of Somalia in the Western Arabian Sea near the Gulf of Yemen. The storm was notable due to the fact that it was the furthest west a storm had ever formed in this region, according to records. The storm then dumped copious amounts of rainfall over Somalia — resulting in the loss of 34 lives.

Just a few days later, a second storm, Mekunu formed in about the same region. Tracking north, it is now threatening Oman with the potential to hit category 2 intensity. Unlike Sagar, Mekunu poses a triple threat due to expected very heavy rainfall, large waves, and storm surge.

(Mekunu rages south of Oman and Yemen after forming in the Western Arabian Sea. Image source: NASA.)

The region near Salalah Oman that the storm is barreling toward — typically receives just five inches of rainfall per year. But Mekunu could deliver two to five times that amount (or more) in just a few days. Moreover, the flat coastal plain is backed by mountainous terrain to the north. The higher land produces lift that will intensify expected rainfall. And current models predict that more than two feet of water (24 inches) could fall on up-sloping regions facing Mekunu’s advance. What’s notable is that these totals keep rising and that peak local totals for the storm in the NOAA NCEP model show some ridiculous amounts — up to 74 inches (see below).

Why are peaks in this model so high? First, sea surface temperatures are very extreme throughout the region. In the immediate vicinity of Mekunu, ocean surfaces range from 30 to 32 degrees Celsius. The waters are about 1 to 2 C above normal and are thus providing Mekunu with a lot more moisture than is typical. However, the larger environment that Mekunu is feeding off of also has much higher than typical moisture loads. For one, sea surfaces east of Somalia have spiked to as much as 5 C above average recently — pumping out great loads of evaporation. Further, moisture levels over the Arabian Peninsula are high due to moisture streaming in along a rather intense subtropical Jet Stream moving over the also much warmer than normal sea surfaces in the Med. The result is a much higher than normal rainfall potential.

(Mekunu presents a very severe rainfall risk for Oman in addition to a predicted strong storm surge and very high waves. Image source: NOAA NCEP.)

Such heavy rains would flush floods of water into lowlands already confronted with high waves and rising seas. According to a recent report by Bob Henson at Weather Underground, wave heights could reach 24 feet along the coast. The same report cites storm surge expert Dr Hal Needham who states:

The significant wave height leads me to think coastal flood potential is a real threat. At some point the water from waves crashing onshore does not have time to drain before the next wave hits. My gut feeling is that we could see a noticeable storm surge that is quite dynamic, with a lot of wave action and rapidly moving water. Expect wave heights to be tremendous.

(Much warmer than normal sea surface temperatures in the Mediterranean and Arabian Seas are helping cyclones to form in atypical regions even as they are lending fuel to their intensification. Image source: Earth Nullschool.)

Mekunu’s intensity is certainly quite high. And it is one of a recent spate of storms to impact the region. With research showing that the intensity of storms in the Arabian Sea has increased during the past 20 year period. However, the far western formation of Mekunu and Sagar add a new twist to the story. For it appears that the zone of storm formation is also shifting westward as sea surface temperatures rise and, apparently, Jet Stream changes have the potential to deliver higher levels of atmospheric moisture to the Arabian Peninsula. All of these factors feed both storm formation and intensity potentials.

Warm Oceans, Displaced Polar Air: Why the Eastern U.S. is Likely to See Very Severe Rainfall During May

During recent years, warm ocean surfaces have loaded up the atmosphere with increasing levels of moisture. This moisture, in turn, has fueled more powerful rain storm events across the globe. Meanwhile, climate change is generating regions of increased instability by placing much warmer than normal air masses in confrontation with cold air displaced from a warming Arctic Ocean region.

(How climate change is impacting severe weather potentials across the U.S. East Coast during May. Data provided by Earth Nullschool, Climate Reanalyzer, and the National Weather Service.)

During the coming days, this kind of pattern will generate the potential for severe rainfall events across the U.S. East Coast. NOAA is predicting that between 3-7 inches of rain is likely to fall over the next 5-7 days. But due to the unusual situation, locally extreme and unexpected events may occur.

This severe weather potential has been fed by a combination of factors. A warmer than normal Arctic Ocean has shoved cold polar air south over the Hudson Bay region. The resulting trough is generating stormy conditions and atmospheric instability over much of Eastern North America. To the south and east, much warmer than normal sea surfaces have loaded up the atmosphere with extremely high moisture levels.

(NOAA shows that heavy rainfall is likely to dominate large portions of the Eastern U.S. over the coming weeks. With a number of climate change related influences at play, the potential for outsized severe weather events exists. Image source: NOAA.)

It’s the kind of pattern — within a highly charged atmosphere — that is capable of producing serious instances of severe weather. Heavy rainfall, hail, lightning and tornadoes are all more likely. Factors associated with climate change contributing to the situation include — much warmer than normal ocean surfaces off the U.S. Eastern Seaboard and Gulf Coast, a much warmer than normal Arctic Ocean region for this time of year, displaced polar air near Hudson Bay, and warmer than normal temperatures over much of the U.S.

As Greenland melt comes more into play, and as temperatures continue to spike higher over the Arctic Ocean in coming years, we can expect to see similar patterns producing greater instability and more intense storms. Particularly for the land zones near the North Atlantic. And so what we are seeing now is a likely prelude of events to come as the Earth continues to warm coordinate with continued fossil fuel burning — with mitigating factors primarily involving reduced carbon emissions.

Global Sea Level Rise Accelerated to 4.6 mm Per Year After 2010

Human forced climate change through fossil fuel burning now presents a serious threat to the world’s coastal cities and island nations. Diverse regions of the world are now facing increased inundation at times of high tide and during storms. Unfortunately, this trend is only worsening. And depending on how much additional fossil fuel is burned, we could see between 2 to 10 feet or more of sea level rise this Century.

(Sea level rise analysis and update based on information provided by AVISO, Climate Reanalyzer, and the work of Dr. James Hansen.)

As the Earth has steadily warmed to 1.1 C above 1880s averages, the oceans of our world have risen. At first, the rate of rise was very mild — a mere 0.6 mm per year during the early 20th Century. However, as the rate of global warming increased and the oceans took in more heat, the middle 20th Century saw sea level rise increase to 1.4 mm per year. By the end of the 20th Century, the polar glaciers had begun to melt in earnest. And from 1990 to the present day, the rate of sea level rise has accelerated to 3.3 mm per year.

Due to more warm water invading the basal regions of glaciers and more ice bergs calving into the world ocean, the annual rate at which ocean levels increase continues to jump higher. And during recent years — from 2010 to 2018 — the world ocean has risen by nearly half a centimeter each year (4.6 mm).

Global Sea Level Rise 4.6 mm Per year

(Since 2010, the rate of sea level rise has again accelerated. And it appears that El Nino years have recently tended to produce strong upward swings in the annual rate of increase. This may be due to El Nino’s tendency to set up stronger cycles of energy transfer to the poles. NOAA presently indicates a 50 percent chance that a mild to moderate El Nino will emerge during the winter of 2018-2019. Will we see another sea level spike at that time should El Nino emerge? Image source: AVISO.)

Now both island nationals and coastal cities face the increasing danger of rising tides, of inundation, and of loss of lands and infrastructure. A rapid switch to renewable energy and away from fossil fuel burning is needed to save many regions. However, due to presently high greenhouse gas accumulation, it is likely that some zones will be lost over the coming decades.

Arctic Ocean Deep in the Grips of May Temperature Spike; Beastly Summer Melt Season on the Way?

The Arctic Ocean as it appeared from space on May 6, 2018. Image source: NASA Worldview.

The Arctic sea ice is presently at its second lowest extent ever recorded in most of the major monitors. However, May is shaping up to be far, far warmer than normal for the Arctic Ocean region. If such high temperatures over this typically-frozen part of our world continue for much longer than a couple of weeks at this key time of year, precipitous summer melt is sure to follow.

******

During recent years there has been much speculation about when the Arctic Ocean will start to experience ice-free summers as fossil fuel related industries pump higher and higher volumes of greenhouse gasses into the atmosphere. In the early-to-mid 2000s, scientific consensus was that melt would tend to be more gradual and ice-free summers would hold off until the final decades of the 21st Century when the world was around 3-4 C warmer than 19th Century averages.

But the Earth System is far more sensitive to temperature increases than the early forecasts expected. Major Arctic sea ice losses surprised the world during September of 2007 and subsequently in the same month of 2012. Now, it is obvious that a pattern of far more rapid sea ice melt has taken hold. And the scientific consensus appears to have settled on a more likely and much nearer date around the early 2030s — when the world will have warmed by about 1.6 degrees Celsius.

(An oddly warm pattern in which above freezing temperatures have come early to the High Arctic is setting up during May of 2018. Content Source: Climate Reanalyzer. Video source: Scribbler’s Youtube.)

However, when it comes to sea ice, nothing is certain at this time. Any single Arctic year in which temperatures spike — particularly during normal melt season — could result in the losses that we once expected to occur much later in time.

There are many factors that will ultimately determine when a summer ice free state occurs. Warm winters are a major one. And the past two years (2017 and 2018) have seen Arctic winters in which temperatures hit some ridiculous high extremes. But another major factor is the set-up to Arctic summer that takes place during the window months of May and June.

Neven, one of our best Arctic sea ice watchers (you can check his blog out here), notes:

May and June are very important for the rest of the melting season. Not only do we now see these warm air intrusions, but high pressure maintains its presence over parts of the Arctic as well (which means relatively cloudless skies -> insolation -> melt onset and melt pond formation -> preconditioning of the ice pack -> melting momentum that gets expressed during July and August, regardless of the weather)… We have to wait and see what happens, step by step, but this isn’t a good start for the ice.

If May and June are unusually warm, particularly over the Arctic Ocean, then the sea ice — which is already greatly weakened — is bound to face an extended period of above-freezing temperatures. If such a period stretches for 5 months from May through September rather than the typical 4 months (June to September), then we are more likely to see the Arctic Ocean briefly flip into an ice-free or near ice-free state for the first time in human history.

(The coming week is expected to feature between 1 and 10 C above average temperatures for locations across the Arctic Ocean. These are very strong warm departures during May. Last week saw similar extreme warm departures. And we are already starting to see sea ice losses pile up. Image source: Global and Regional Climate Anomalies.)

This year, May is shaping up to be much, much warmer than normal for the High Arctic. Already, a large May temperature spike has occurred (see right image below). A temperature spike which is predicted to continue for at least the next ten days.

Not to put too fine a point on it, but this severe warming trend might end up presenting a bit of a problem. The extended period of melt mentioned above may begin in force — setting off a chain of feedbacks that could tip the Arctic Ocean into a far less frozen or even an ice-free state (under absolute worst case scenarios) this year.

To be clear, this is not a forecast that such a condition is bound to occur during 2018. It is just an analysis of underlying trends and a statement that risks are higher if such trends as we now observe continue. Late May could flip to a cooler than normal regime. June could be cooler and cloudier than normal (as happened during 2016 and 2017). And if that happens again, we may be spared.

(Average Arctic temperatures for 2017 [left] and 2018 [right]. The red line depicts the yearly temperature trend. The green line depicts the Arctic climatological average for 1958-2002 [which was already warmer than normal]. Note the big temperature spike in the right hand graph. That’s where we are now. Image source: DMI. For further reference, see Zack Labe‘s composite temperature analysis for the 80 North region.)

However, we are already on a much higher ramp for spring temperatures in the northern polar region than during 2017. And though 2016 saw a slightly warmer than normal spring near the pole, the May 2018 spike already far exceeds anything we saw at that time. So much, in fact, that present temperatures for May 6 are comparable to those typically seen during early June from the 80 degree N Latitude line to the Pole.

This higher ramp and related record warmth is already accelerating melt. Sea ice losses over recent days have greatly picked up and we are getting closer to record low daily ranges. If melt accelerates to a point, the greatly expanded darker ocean surfaces will draw in more heat from the sun’s rays during June — potentially overcoming the impact of the increased early summer cloudiness we have seen during recent years. Such a scenario, if it continues to develop, would be a nightmare from the climate change perspective.

Worsening Prairie Fires: Exceptional Central Heat and Drought Spurs More Oklahoma Blazes

Today, as with many recent days, Oklahoma is experiencing hot, dry, critical fire hazard conditions. And over the past month, historically exceptional drought and hotter than normal weather have spurred a spate of very severe and seemingly unrelenting wildfires across the state.

(The Rhea Fire burned nearly 300,000 acres in Oklahoma during mid-April. This large fire is now 100 percent contained. But blazes continue to break out. Image source: Climate.gov.)

During mid-to-late April, the Rhea Fire scorched 286,000 acres destroying more than 50 homes and killing hundreds of cattle. At about the same time, the 34 Complex fire burned through 62,000 acres and forced many Oklahoma residents to evacuate. For reference, the massive Thomas Fire which burned hundreds of structures in California this past December was 240,000 acres in size.

Unfortunately, severe fire conditions continued through today with 500 acres going up in flames near Pawnee Oklahoma in just the past 24 hours. In total, about 350,000 acres have burned so far this year (an area half the size of Rhode Island), numerous structures have been destroyed and an estimated 2,000 cattle have likely been killed. With severe drought, heat, and extreme fire conditions expected to continue throughout at least the next month, there is little relief in sight.

 

(The U.S. Drought Monitor shows severe dry conditions expanding across the Central U.S. during early 2018. Long range forecasts show drought continuing or worsening over Central and Southwestern States over the coming months. Image source: Drought Monitor and NOAA.)

The causes of the present fire hazard are quite clear. Throughout fall, winter, and spring, the Central U.S. has experienced both hotter and drier than normal conditions. During recent weeks, drought in this region has become exceptional — the highest drought category provided by the National Drought Monitor. In addition, strong, warm south-to-north winds have tended to prevail over the region. These winds have rapidly fanned many recent Oklahoma fires to massive size.

Over the coming month, this drought is expected to dig in as temperatures warm. And, as a result, fire danger is expected to be quite high for a broad region of the U.S. South stretching from just west of the Mississippi all the way to California.

(Above normal wildfire potential is expected to remain in place for Oklahoma even as risks rise for neighboring states. Image source: NOAA.)

Though spring wildfires do occur across Oklahoma and parts of the plains states, the trend has been for an increasing large fire incidence. This trend, in turn, has been driven by human-caused climate change. For as the U.S. has warmed, the rate of evaporation from soils, vegetation and lakes has increased. This higher rate of moisture loss both intensifies drought and spikes fire risk.

Warming and worsening drought has been a particularly acute set of affairs for Central and Western states. The number of weeks when large fires are a risk has increased from 50 to 600 percent for most of these regions. In other words, if it seems like there are more large fires, it’s because there are. And what we see now are spring prairie fires that are far more intense than they were in the past.

Major Arctic Warming Event Predicted For the Coming Week

It’s been consistently, abnormally, warm in the Arctic for about as long as any of us can remember. But during recent years, the changes — caused by a massive and ongoing accumulation of heat-trapping gasses in the Earth’s atmosphere — appear to be speeding up.

(Far above normal temperatures are expected to invade the Arctic this week. The likely result will be an acceleration of sea ice melt and retreat. Image source: Global and Regional Climate Anomalies.)

This week, two major warm air invasions — one issuing from Siberia and another rising up through the Fram Strait and extending north of Greenland are expected to bring locally 10-20 C above normal temperatures and accelerate early season sea ice melt in an already reeling Arctic.

Consistent Warmth, Record Low Sea Ice

The farthest north region of our world has just come out of a winter during which sea ice extents consistently entered never before seen daily low ranges. With the advent of spring, sea ice measures have rebounded somewhat from winter record lows. However, according to Japan’s Polar Research Division, we are presently experiencing the second lowest daily sea ice extents since consistent measurements began. Meanwhile, Greenland during April saw an odd early bump in surface melt.

Overall, the pattern has been one of consistent abnormal warmth. And over the coming week, a number of warm air invasions will infringe upon the typically cold early May Arctic — testing new boundaries yet again.

(An ice-free Bering Sea, open water invading the Chukchi, and fractured sea ice over the Beaufort are notable features for melt season start during May of 2018. Image source: NASA.)

Much of the heating action this year has occurred over the Bering and Chukchi seas — which have never seen so much ice lost. Already sea ice is greatly reduced through these regions. Open water extends far into the Chukchi — onward and north of Barrow, Alaska. Still further into regions in which sea ice is typically rock-solid during this time of year, the Beaufort is experiencing its own late April break-up. But the areas that are expected to see the greatest warming over the coming days run closer to Siberia and the Atlantic.

Major Spring Warm Air Invasion

Today, a wedge of above-freezing air is invading the Laptev Sea north of Central Siberia. Strong southerly winds issuing from Central Asia are running north into the Arctic Ocean. They bring with them 10 to 20 C above average temperatures for this time of year — which is enough to push readings as high as 35 degrees F (2 C) over what during the 20th Century would have been a solid fringe of the polar ice cap.

Over the next 24 hours, this leading edge of warm air will spiral on toward the East Siberian Sea — bringing above freezing temperatures and liquid precipitation with it.

(5-Day forecast maximum temperatures show considerable warm air invasions proceeding throughout the Arctic. In many cases, temperatures near the North Pole will be warmer than regions far to the south. An impact of the warming world ocean on the Arctic environment. Image source: Climate Reanalyzer.)

But the main warming event for the Arctic this week will occur in the region of the Fram Strait east of Greenland. A strong low pressure system near Iceland is expected to drive wave after wave of much warmer than normal air north into the Arctic. This warm air thrust will bring with it temperatures in some places that exceed 20 C above average. Overall, Arctic Ocean basin temperatures are expected to average more than 2.3 C warmer than normal for the entire first week of May. Such high temperature departures are particularly notable for this time of year — as Arctic thermal variance tends to moderate during spring and summer.

The system will push above freezing temperatures deep into the Arctic — generating a repeat of the strange flip-flop that has become so common recently where temperatures near the North Pole are much warmer than readings further south. Warmer than freezing temperatures will also over-ride coastal portions of northeastern Greenland in yet another odd aspect of the event.

Warm storm effects including gale force winds and waves of 8-12 feet will provide added effect to above freezing temperatures in impacting the sea ice throughout the Fram Strait and northeast Greenland region. Increased insolation due to sunlight spreading over the region will also add to the overall potential for melt.

Advertisements
%d bloggers like this: