Advertisements

Gigantic Iceberg Disintegrates as Concern Grows Over Glacier Stability, Sea Level Rise

The stability of a key Antarctic glacier appears to have taken a turn for the worse as a large iceberg that broke off during September has swiftly shattered. Meanwhile, scientists are concerned that the rate of sea level rise could further accelerate in a world forced to rapidly warm by human fossil fuel burning.

(Iceberg drifting away from the Pine Island Glacier rapidly shatters. Image source: European Space Agency.)

This week, a large iceberg that recently calved from West Antarctica’s Pine Island Glacier rapidly and unexpectedly disintegrated as it drifted away from the frozen continent. The iceberg, which covers 103 square miles, was predicted to drift out into the Southern Ocean before breaking up. But just a little more than two months after calving in September, the massive chunk of ice is already falling apart.

The break-off and disintegration of this large berg has caused Pine Island Glacier’s ice front to significantly retreat. From 1947 up until about 2015, the glacier’s leading edge had remained relatively stable despite significant thinning as warmer water began to cut beneath it. But since 2015, this key West Antarctic glacier has begun to rapidly withdraw. And it now dumps 45 billion tons of ice into the world ocean each year.

(Glaciers like Pine Island balance on a geological razor’s edge. Because they sit on a reverse slope, it only takes a relatively moderate amount of ocean warming to precipitate a rapid collapse. These collapses have happened numerous times in the past when the Earth warmed. Now, human-forced climate change is driving a similar process that is threatening the world’s coastal cities. Image source: Antarctic Glaciers.)

The present rate of melt is enough to raise sea levels by around 1 millimeter per year. That’s not too alarming. But there’s concern that Pine Island Glacier will speed up, dump more ice into the ocean and lift seas by a faster and faster rate.

Pine Island Glacier and its sister glacier Thwaites together contain enough water to raise seas by around 3-7 feet. The glacier sits on a reverse slope that allows more water to flood inland, exposing higher and less stable ice cliffs as the glacier melts inland. If the glacier melts too far back and the ice cliffs grow too high, they could rapidly collapse — spilling a very large volume of ice into the ocean over a rather brief period of time. As a result, scientists are very concerned that Pine Island could swiftly destabilize and push the world’s oceans significantly higher during the coming years and decades.

No one is presently predicting an immediate catastrophe coming from the melt of glaciers like Pine Island. However, though seemingly stable and slow moving, glacial stability can change quite rapidly. Already, sea level rise due to melt from places like Greenland and Antarctica is threatening many low-lying communities and nations around the world. So the issue is one of present and growing crisis. And there is very real risk that the next few decades could see considerable further acceleration of Antarctica’s glaciers as a result of human-forced warming due to fossil fuel burning.

Dr Robert Larter, a marine geophysicist at British Antarctic Survey, who has researched Pine Island Glacier in his work with the Alfred Wegener Institute, recently noted to Phys.org:

“If the ice shelf continues to thin and the ice front continues to retreat, its buttressing effect on PIG will diminish, which is likely to lead to further dynamic thinning and retreat of the glacier. PIG already makes the largest contribution to  of any single Antarctic glacier and the fact that its bed increases in depth upstream for more than 200 km means there is the possibility of runway retreat that would result in an even bigger contribution to sea level.”

CREDITS:

Hat tip to Colorado Bob

Hat tip to Erik Friedrickson

Advertisements

54 Fahrenheit Above Average: Extreme Warming Event For Greenland, Baffin Bay Underway

At the mouth of Baffin Bay just off the West Coast of Greenland today hurricane force wind gusts are blowing in from the south.

This roaring invasion of warm air originates from the Central Atlantic along a latitude line south of the Azores. It climbs hundreds of miles north to where it is intensified between a grinding 975 mb low off Labrador and a massive 1042 mb high squatting over Central Greenland. Temperatures in this warm air mass range from near 50 degrees (F) over Southwestern Greenland to around 40 degrees (F) over the mouth of Baffin Bay. Or between 9 and 36 degrees (F) above normal for this time of year.

(Hurricane force wind gusts are driving a wedge of above freezing air into Baffin Bay and over Western Greenland at a time when these regions should be seeing well below freezing conditions. Image source: Earth Nullschool.)

This warm wind driven air mass is expected to move north over the next 24 to 48 hours. It will steadily blanket both glaciers and areas typically covered with sea ice. And as it does so, it will push temperatures above freezing for large sections of both Baffin Bay and Western Greenland with above 32 F readings progressing as far as the Petermann Glacier.

What this means is that temperatures will likely hit record ranges of up to 54 degrees Fahrenheit above average in some locations near the far northern extent of this expected warm air invasion. Overall, Greenland itself is expected to see 15 degree (F) above average readings for the entire island. This will generate brief surface melt conditions for parts of Greenland during late November.

(Large region of 20 to 30 C, or 36 to 54 F, above average temperatures is predicted to blanket Greenland and the Canadian Archipelago after moving north through Baffin Bay over the next two days. Image source: Global and Regional Climate Anomalies.)

Strong warm air invasions of the Arctic at this time of year are a signal coming from human-forced climate change. As the northern pole darkens with winter, a global warming related phenomena called polar amplification ramps up. In addition, during recent years, we’ve seen warm air slots tend to develop beneath strong ridging features in the upper level Jet Stream. This year, the warm air slots have tended to form over the Bering Sea along the Pacific side of the Arctic and progress northward into the Chukchi. This has resulted in a large zone of ice free waters for a typically frozen region between Alaska and Siberia as warm winds and storm force waves have continuously beat the ice back.

The present warm air invasion for Greenland may be a signal that a similar warm air slot is attempting to develop over Baffin Bay going forward. Or it may be a fluke in the overall pattern. Watch this space.

UPDATE 11/29/2017: As predicted, temperatures over the Petermann Glacier hit above freezing at around 2200 UTC yesterday. According to climate reanalysis, temperatures for the region are ranging between 50-54 F above average in present model estimates for 11/29. In other words, the warm air invasion progressed as expected and resulted in above freezing temperatures for brief periods across Western and Northern Greenland.

Overall temperatures for Greenland are presently 15.5 F (8.6 C) above average in the models while the Arctic as a whole is 9.9 F (5.5 C) above average.

Just One More Reason Why Fossil Fuels Suck Tailpipe — The Cost of Wind and Solar is Now Lower Than Pretty Much Everything Else

During October, in Australia, something rather strange and hopeful happened. Grid prices for electricity rose. Power customers, fed up with this, en masse decided to purchase 100 megawatts of rooftop solar in a single month.

How and why did this come to pass?

Conservative allies of fossil fuel based utilities are currently in control of the Australian federal government. And they have been working to provide captive grid-tied energy consumers for their political backers — polluting power system owners. Because these systems are more expensive than their renewable energy counterparts, the price of electricity went up.

The Australian public, who generally supports renewables and who likes to pay less for electricity, wouldn’t have any of it. They didn’t like being forced to purchase more expensive, polluting energy. So more than 15,000 of them decided to tell fossil fuel backers to go suck tailpipe and went on ahead and bought solar energy directly.

(Guess what? That green glass you see on the school in this image comes from hundreds of solar panels. Solar is versatile and increasingly inexpensive. You can put it on rooftops, building sides, car roofs, fuel station overheads, build it in traditional utility arrays, construct it on co-generating farms, or float it on reservoir surfaces. Image source: Inhabitat and EPFL.)

This choice, enabled by falling renewable energy prices, is one that people around the world will be more and more able to make as time moves forward. And it’s the case even in instances where national governments of western democracies are heavily influenced by fossil fuel special interests — as is presently the case in Australia. The primary reason is that when conservative governments support fossil fuels and nuclear over renewables, power prices to society rise.

The cost of both wind and solar energy are now less than every traditional power source even in more mature markets like the United States. In this major market, according to Lazard, the levelized price of nuclear is 14.8 cents per kWh, coal is 10.2 cents per kWh, gas is 6 cents per kWh, solar is 5 cents per kWh, and wind is 4.5 cents per kWh. That’s right. Renewables are about 1/3 the price of nuclear, half that of coal, and 10-20 percent less than gas in the U.S.

 

(The levelized cost of wind and solar energy keeps falling. This is making continued fossil fuel development an expensive and untenable prospect. Image source: Lazard.)

But in places like Australia and in the developing world, this price difference is even greater. In the developing world, there are less legacy fossil fuel power systems — which makes it a no-brainer just to go ahead and build less expensive renewables. And islands like Australia traditionally suffer from higher import costs for fossil fuels and clunky or inefficient fossil fuel energy system components.

Levelized cost is a way of measuring total life-cycle costs. It includes such costs as fuel, transmission and construction. Because renewables do not require fuel and because they are based on technologies that benefit from both advancement and economies of scale, they are able to continuously increase efficiency and reduce cost over time. Fossil fuel based power systems are mated to very inefficient combustion and to mining and extraction of fuels that grow more scarce over time. As such, the power systems they are based on tend to have difficulty reducing costs  and are subject to market shocks and scarcity of feedstocks.

These simple economic facts put the political backers of fossil fuels at a disadvantage on the issue of base economics. But these direct cost related factors don’t even begin to count in the terrible external costs of fossil fuels ranging from ramping damages due to climate change and direct health impacts by adding toxic particles to the air and water. As such, fossil fuels are both economically and morally untenable. But such simple and easy to understand facts haven’t stopped republicans like Trump in the U.S. and LNP members like Turnbull in Australia from trying to ram these harmful and expensive energy sources down the throat of an increasingly outraged public.

Sudden Severe Flood Leaves 14 Dead in Athens, Forecasts Show Up to 15+ Additional Inches on the Way for Greece

Extreme drought. Extreme floods.

Unfortunately, with human-caused climate change, these kinds of devastating events have become far more frequent. With the Earth warming by around 1.1 to 1.2 C above pre-industrial averages, there are now four times as many instances of extreme weather than there were as recently as the 1970s.

What this means is that anywhere around the world now, the hammer of severe weather and related damages is four times more likely to fall than in the past. That the tempo of such events is now greatly increased. All thanks to continued fossil fuel burning, atmospheric CO2 levels that will average around 407 ppm over the coming months, the heat that these greenhouse gasses are continuing to add to the Earth’s climate system, and a failure to transition swiftly enough to more sustainable practices and zero carbon energy sources to prevent ramping damages.

Major Rain Event Strikes Athens — With More Severe Weather in the Forecast

Today, the major blow appears to have fallen on Greece. To the west of this country, over the Mediterranean, a cut off low is creating instability throughout the region. An intense, thick, moist warm air flow is moving in from the south. This warm and very water dense air is then colliding with a colder air mass to the north. Upper level instability is feeding powerful convection erupting in the atmosphere above Greece. And this convection is producing some mountainous thunderheads.

Last night, torrential downpours dropped 2-15 inches of rain over the outskirts of Athens. A biblical flood of water ripped through the region — rocketing vehicles down roads, prompting more than 600 calls for water rescues, killing 14 people, and leaving streets flooded or buried in mud while depositing cars into trees or on the tops of dwellings.

The rains stretched over a broad area from Greece to the Turkish coast — spurring declarations of emergency throughout the area. As with many of the increasingly fierce new disasters, it will take weeks or more to get a final tally of the total damages. But this event is probably not over.

Unfortunately, the cut-off low is expected to continue to circulate near this already flooded region for the next 3-4 days. Forecasts call for additional rainfall totals of up to 15 inches as the low churns and continues to generate outsized convection over an already hard-hit area.

RELATED STATEMENTS AND INFORMATION:

 

Record Emissions: 41 Billion Tons of Heat-Trapping Carbon Dioxide Were Added to the Atmosphere This Year 

Over the past few years, something pretty amazing and hopeful happened. Global carbon emissions began to stabilize. This was caused, primarily, by stronger emissions reduction policies in China even as the rest of the world moved steadily away from coal burning and more and more toward adopting clean energy systems provided by the likes of wind, solar and electrical vehicles.

But during 2017, there appears to have been a return to rising emissions rates from both China and the rest of the world. As a result, a rather bad global climate situation is continuing to worsen.

China’s Swing Back to Coal and More Rapid Growth Result in Rising Emissions

As the major present emitter of carbon dioxide and a host to hundreds of hothouse gas spewing coal plants, any big move by China can also really move the global carbon emission total. We saw this in practice from 2013 to 2016 as China began to reign in rampant coal consumption and as global emissions levels subsequently responded.

(During recent years, global carbon emissions have plateaued. But during 2017, a new record high was reached on the back of a return to increased rates of coal burning in places like China. The peak year of fossil fuel burning and the year at which net negative carbon emissions occur are very important factors in determining future warming. And even the best case emissions scenarios will likely lead to 2 C or greater warming this Century. Impacts from 2 C warming will be very difficult to manage with a high likelihood that at least some widespread catastrophic impacts would occur. 3 C warming would be terrible — with very widespread harm and disruption. And it is unlikely that most nations would survive the impacts related to 4 to 6 C warming. Image source: University of East Anglia.)

This year, we see a bit of backsliding by this key energy and climate player due to a combined reduction in hydro based power supply and strong annual rates of economic growth.

Drought afflicting China has hit hydro-electrical power generation pretty hard. China presently possesses about 320 gigawatts of hydro power generation capacity. This is about 1/3 of its total coal generating capacity and compares to a relatively smaller wind and solar capacity of around 150 gigawatts. So any disruption to water flowing into hydro generators can have a big effect on coal use and related downstream carbon emissions.

China also rapidly added solar this year. But it was apparently not enough to offset the impact to hydro resources which increased demand for coal. In addition, China’s rapid projected growth rate of 6.8 percent in GDP also resulted in higher overall power demand — leading to more coal burning. Overall, China’s carbon emissions grew by 3.5 percent or around 350 million tons per year. This increase is well ahead of overall global carbon emissions growth in the range of 2 percent for 2017.

U.S. and E.U. Emissions Drop; India and Rest of World Sees Rise

Other factors included a slowing of U.S. carbon emissions reduction due to a degradation of helpful climate policies by the Trump Administration. Despite this deterioration, U.S. emissions fell by 0.4 percent or around 21 million tons per year. The European Union also saw continued if slow emissions reductions of around 7 million tons per year. Environmentalists have criticized mixed policies in places like Germany that continue to protect high-carbon coal burning. But the picture for the EU has, overall, been one of slow if steady progress. India-based emissions increased by a slower than expected rate of 50 million tons per year. Another somewhat disturbing feature in the new data shows that the rest of the world saw carbon emissions grow by 2.3 percent or about 305 million tons per year.

(Most energy and climate experts did not expect to see a potential peak in global carbon emissions until at least the early 2020s. However, 2013 to 2016’s plateau did provide a hopeful look at what was possible. In order to see an actual peak, the countries of the world will have to be far more aggressive about shutting down fossil fuel based energy sources and rapidly deploying renewables. Image source: The University of East Anglia.)

So even without the big bump in China’s emissions, the world, as a whole would have experienced some CO2 emissions growth. But this single country accounted for almost half of all carbon emissions growth around the world during 2017. And it is worth noting that even a relatively minor reduction in carbon emissions by China this year would have resulted in an extension of the global carbon emission plateau.

A Problem Caused by Fossil Fuel Burning

Where the problem of increasing carbon emissions is coming from is pretty obvious. According to reports, 41 billion tons of CO2 were emitted to the atmosphere during 2017 due to human activities. Of this amount, almost 90 percent came from fossil fuel burning — accounting for 36.8 billion tons of CO2 each year. This overall rate of emission is more than ten times faster than during the last hothouse extinction event to occur on Earth.

(Annual rates of atmospheric CO2 accumulation are now higher than 2 parts per million per year. The last time atmospheric CO2 levels were as high as they are now — around 407 parts per million — the oceans were between 25 and 75 feet higher than they are today. Image source: The University of East Anglia.)

The present increase is problematic in that it also makes it less likely that warming this Century will be limited to 1.5 or 2 C. The scientific community has often identified these as safer limits for warming. But we should be clear that no level of warming is entirely safe. That present warming in the range of 1.1 to 1.2 C above preindustrial levels is already causing harmful impacts like shifting climate zones, more instances of damaging, extreme weather, worsening wildfires, and ramping rates of sea level rise that are threatening islands and coastal cities. We should also be clear that present atmospheric greenhouse gas levels in the range of 407 ppm CO2 and 491 ppm CO2e imply a warming close to or above the 1.5 to 2 C threshold range by the end of this Century even if these levels were to merely remain stable.

An Increasingly Urgent Situation — But the Means of Lessening the Damage is at our Disposal

The urgency of the situation, therefore, cannot be understated. We are presently living in a time during which the safety of global civilization requires that we rapidly reduce to zero presently unprecedented annual levels of greenhouse gas emissions. And the first step to doing this is a swift as possible cessation of fossil fuel burning enabled by a transition to renewable energy.

It is worth noting that 2017’s rate of carbon emissions growth was less than the 3 percent annual rates experienced during the decade of the 2000s. Back then, less well developed renewable energy technology and very rapid economic growth in places like China resulted in far higher annual emissions gains than we see at present. So 2017’s gain may be a blip due to circumstances as combined wind, solar, and electrical vehicle advances begin to take hold of the larger energy and emissions trend. That said, challenges to rates of renewable energy adoption and related rates of carbon emissions reduction coming from right-wing governments like the Trump Administration should not be discounted. Failure to act by leaders in the U.S. and around the world or attempts to return to increasing rates of coal, oil, and gas burning are measures that will result in serious harm going forward.

We are thus at a moment of crisis when it comes to global emissions. We can continue to move forward on replacing fossil fuels with zero emitting energy sources. Or we can return to the very harmful increases in global carbon emissions of the past — at which point the damages we see from climate change will be rapidly enhanced.

RESOURCES:

World’s Carbon Emissions Spike by 2 Percent in 2017

The Global Carbon Budget

Warning Signs For Stabilizing CO2 Emissions

Denial’s Grim Fruits — Actual Puerto Rico Death Toll Probably Near 500; May Climb to Over a Thousand

Massive disruption which results in cascading failure of basic services such as food, water transport and power. That’s the primary catastrophic risk coming from human forced climate change. And we are now in the process of multiplying the potential for such extreme events by continuing to burn fossil fuels and to dump carbon into the atmosphere.

Maria’s recent landfall in Puerto Rico and resulting unprecedented disruption can be seen as a microcosm of the kind of damage that might ultimately be inflicted upon a whole region or nation. And the various failed responses by the Trump Administration and related denial-based attitudes within the Republican Party do little to inspire confidence in the ability of at least one major party to effectively respond to a rising danger it pretends does not exist at all.

Excess Death Toll

Weather forecasters are often quick to point out that the most dangerous direct impact from a major hurricane comes from either storm surge or flooding rains. However, for days, weeks, and, in the case of Puerto Rico, months following a disaster, the major cause of loss of life is disruption of food, water, power supplies and a related increased risk of exposure to infectious diseases.

Due to a sluggish and lackadaisical response to the worst storm to strike Puerto Rico in 85 years by the Trump Administration, it appears now that hundreds of lives have been lost. According to reports from the New York Times, 472 more people died during September of 2017 following Maria’s strike than during September of 2016. Such an abnormally high monthly death rate is an outlier in statistics that epidemiologists call an excess death toll. And the primary likely cause was damage to infrastructure, power, food and water by Maria followed by an inadequate emergency response effort.

Many of the 3.4 million people still living in Puerto Rico have been forced to go without reliable access to water, food, and power for 54 days now. Trump Administration failure to mobilize a major effort to respond to the largest power outage and infrastructure disruption in U.S. history has been coupled with the allowance of vulture capitalist firms like Whitefish to prey on Puerto Rico by charging excess fees for power restoration.

Digging into these glaring failures a bit more, it took more than two weeks for Trump to mobilize 5,000 troops to send to Puerto Rico to assist in aid efforts. And Maria was a disaster that required a force ten times this large to be pre-positioned and then sent in immediately following the disaster, according to emergency planners. Vulture firm Whitefish has been reportedly charging 4 to five times what it is paying power installers on an hourly basis. An obvious level of price gouging that has caused the firm’s contract to be canceled. But not before this company of two permanent employees bungled a power line repair that again resulted in much of Puerto Rico falling into darkness.

Incompetent Governance

Whitefish’s most recent failure resulted in total power availability for Puerto Rico again dropping below 20 percent last week. With PREPA stepping in after Whitefish dropped the ball, the line has been repaired. Yet 52 percent of Puerto Ricans are still without power.

(Climate Change amplifies hurricane impacts. What this means is that as the world warms, hurricanes produce more damage. If this is the case, then governments are going to have to step up and act responsibly to prevent loss of life. Republicans and the Trump Administration have done exactly the opposite in Puerto Rico. Images source: Climate Signals.)

Lack of power itself can be deadly. Such a loss results in a critical shortage for medical equipment necessary to save people’s lives even as it removes key infrastructures like street lights and communications. Incubators, defibrillators, respirators, pulse monitors and a hundred other life saving devices all go dark when the lights go out. Furthermore, lack of clean water and ready access to food increases instances of infection. And damage to roads prevents access by emergency personnel to people falling into harm’s way.

Vulture Capitalism + Climate Change Denial = Failed Responses and Profiteering in the Face of Rising Disasters

This is why Maria’s blow has now become so hurtful. Why the Trump Administration’s neglect is so glaring. And a thousand or more people may have perished as a result. The role of the U.S. Government as the first responder to major disasters was sidelined. The sacred trust to Citizens of the United States violated. But, outrageously, such a lackadaisical, laissez faire attitude is not simply limited to Trump. It is an unfortunately endemic feature of today’s republican party. A party that is now doing its best to cut taxes for the rich while cutting medical coverage for 13 million Americans.

A party that has also done far, far more than its fair share to deny and prevent responses to the human caused climate change from fossil fuel emissions that made Maria far, far worse. For the storm emerged from warmer than normal oceans that helped to pump up its peak intensity. It was one of many storms made worse by climate change — for studies now indicate that at least 63 percent of all extreme weather events have now been pumped up in a warming atmosphere or over a warming ocean. And with just 1.2 C worth of warming achieved, the worse is still to come.

With the republican party both causing these disasters to worsen and ensuring that their damaging impacts are amplified by delayed responses, irresponsible choices for firms contracted to bring infrastructure back up and running, and overall malfeasance, it’s pretty clear that only a numb-skull would vote for such mouth-breathers. But here we are.

Sleeping Ice Giants Stir — East Antarctica’s Totten Glacier Accelerates Toward Southern Ocean

“Up till now, we basically had a stationary [East Antarctic] ice sheet, and now it’s started to move,” — Catherine Walker, NASA post-doctoral fellow.

*****

East Antarctica. Home to most of the world’s remaining land ice. Scientists previously thought that this last bastion of somewhat stable ice in the world would only slowly succumb to the slings and arrows of human-caused climate change. That its ice giants would still sleep for some time — giving the world more time to stave off or avoid worsening rates of sea level rise. Unfortunately, new evidence reveals that this is not the case. That the best time to act on sea level rise was 20+ years ago, and that the second best time to act, in cutting fossil fuel based CO2 emissions, is now.

(Warm water upwelling near East Antarctica’s Totten Glacier threatens to accelerate global sea level rise. Image source: Texas Institute for Geophysics.)

Extreme warming now periodically besets this frozen land. Massive ice bergs are breaking off from West Antarctica, rainfall is now observed, at times, all around the frozen continent’s perimeter from west to east, and the vast Pine Island glacier is being undermined by warm water currents — causing it to crack up from the inside out.

Now, according to new research, one of East Antarctica’s largest glaciers — the Totten — is accelerating toward the Southern Ocean. It’s a situation that we warned about in an earlier post as an indicator of worsening risks of speeding sea level rise due to human caused climate change. Unfortunately, new studies by scientists have now confirmed that warm waters encroaching on Totten have already had an impact.

Researchers found that combined warm winds and encroaching warmer ocean currents had caused the glacier to speed up by 5 percent during the period of 2000 to 2006. This acceleration means that the vast glacier — home to enough ice to raise seas by 11-13 feet — is melting faster. It also means that the glacier is starting to succumb to the tremendous global heat forcing provided by human fossil fuel burning around the world. We should caution that this report covers a period from more than a decade ago. And since that time, human-forced global warming has considerably advanced.

(The Totten Glacier itself contains enough ice to raise seas by 11-13 feet, which is comparable to all of West Antarctica. Its glacial catchment, however, is larger. Image source:  Australian Antarctic Division.)

The primary cause of Totten’s melt acceleration is wind-diven warm ocean currents starting to encroach upon the glacier. These warm currents dive deep and then upwell near the glacier faces and along their weak underbellies. What the new research shows is that CO2-based warming from fossil fuel emissions is increasing the heat content of the waters even as it drives the strengthening of winds that bring these waters into more frequent direct contact with glaciers like Totten.

Chad Greene, one of the study’s lead authors recently noted to Scientific American:

“Upwelling is driven not purely by the broad-scale magnitude of wind, but by the gradient in wind—how strong the wind is at one latitude versus how strong it is at a different latitude. And CO2 in the atmosphere is modeled to increase the wind gradient around Antarctica, and then therefore increase upwelling around Antarctica.”

Glaciers are very difficult to move when sitting still. But once they get moving, it’s very difficult to stop what amounts to a moving mountain of ice. Forces now encroaching upon Antarctica are now conspiring to trigger the seaward movement of various gigantic glaciers. Once that happens, a certain amount of sea level rise gets locked in. This new research indicates that Greenland and West Antarctica aren’t the only systems that are capable of seeing glaciers released in this fashion. With the new research from Totten, East Antarctica is starting to come into play as well. And that means that multi-meter sea level rise this Century is not out of the question.

Links:

Wind Causes Totten Melt Acceleration

A Flood of Warm Waters the Size of 30 Amazon Rivers is Melting One of East Antarctica’s Largest Glaciers

East Antarctica’s Biggest Glacier Lost Ice

How Wind Might Nudge a Sleeping Giant in Antarctica

Hidden Channels Beneath Antarctica Could Cause Massive Melt

Hat tip to Colorado Bob

 

Half a World Away From Harvey, Global Warming Fueled Deluges Now Impact 42 Million People

Rising sea surface temperatures in South Asia led to more moisture in the atmosphere, providing this year’s monsoon with its ammunition for torrential rainfall. — The Pacific Standard

While flooding is common in the region, climate change has spurred dramatic weather patterns, greatly exacerbating the damage. As sea temperatures warm, moisture increases, a dynamic also at play in the record-setting rainfall in Texas. — Think Progress

******

With Harvey delivering its own hammer blow of worst-ever-seen rainfall to Texas, 42 million people are now impacted by record flooding half a world away. The one thing that links these two disparate disasters? Climate Change.

A Worsening Flood Disaster in South Asia

As Harvey was setting its sights on the Texas Coast this time last week, another major rainfall disaster was already ongoing. Thousands of miles away, South Asia was experiencing historic flooding that seven days ago had impacted 24 million people.

At the time, two tropical weather systems were developing over a very warm Pacific. They were angling in toward a considerably pumped up monsoonal moisture flow. And they appeared bound and determined to unleash yet more misery on an already suffering region.

As of Monday, the remnants of tropical cyclone Hato had entered the monsoonal flow and was unleashing its heavy rains upon Nepal. The most recent in a long chain of systems that just keeps looping more storms in over the region to disgorge they water loads on submerged lands.

By Wednesday, the number of people suffering from flooding in India, Bangladesh and Nepal had jumped by 18 million in just one week to more than 42 million. With 32 million impacted in India, 8.6 million in Bangladesh, and 1.7 million in Nepal. More tragically, 1,200 people have perished due to both landslides and floods as thousands of square miles have been submerged and whole regions have been crippled with roads, bridges, and airports washing out. Adding to this harsh toll are an estimated 3.5 million homes that have been damaged or destroyed in Bangladesh alone.

Worst impacts are likely to focus on Bangladesh which is down-stream of flooded regions in Nepal and India. As of last week, 1/3 of this low-lying country had been submerged by rising water. With intense rains persisting during recent days, this coverage is likely to have expanded.

Hundreds of thousands of people have now funneled into the country’s growing disaster shelters. A massive international aid effort is underway as food and water supplies are cut off and fears of disease are growing. The international Red Cross and Red Crescent and other relief agencies have deployed over 2,000 medical teams to the region. Meanwhile, calls for increased assistance are growing.

Warmer Oceans Fuel Tropical Climate Extremes

As with Harvey, this year’s South Asia floods have been fueled by much warmer than normal ocean surface temperatures. These warmer than normal ocean surfaces are evaporating copious amounts of moisture into the tropical atmosphere. This moisture, in turn, is intensifying the monsoonal rains.

(Very warm ocean surface temperatures related to global warming are contributing to catastrophic South Asian flooding in which 42 million people are now impacted. Image source: Earth Nullschool.)

In the Bay of Bengal, ocean surfaces have recently hit about 3 C above the three decade average. But ocean waters have been warming now for more than a Century following the initiation of widespread fossil fuel burning. So even the present baseline is above 20th Century temperature norms. At this point, such high levels of ocean heat are clearly having an impact on tropical weather.

In an interview with CNN, Reaz Ahmed, the director-general of Bangladesh’s Department of Disaster Management noted last week that:

“This is not normal. Floods this year were bigger and more intense than the previous years.”

Further exacerbating the situation is that fact that glaciers are melting and temperatures are rising in the Himalayas. This increases water flow into rivers during monsoon season even as glacial melt flow into rivers is reduced during the dry season. It’s kind of a flood-drought whammy in which the dry season is growing hotter and drier for places like India, but the wet season is conversely getting pushed toward worsening flood extremes.

Links:

The Pacific Standard

Think Progress

Earth Nullschool

Nepal, India, Bangladesh Floods Impact Millions

NASA Worldview

Hat tip to Colorado Bob

So Let’s Talk About the Science of How Climate Change Kicked Harvey into Higher Gear

Harvey is finally on the move.

After making a second landfall early Wednesday, the storm is passing slowly out of the East Texas region that has suffered so much first from Harvey’s initial lashing as a rapidly intensifying category 4 storm, and second from its long-lasting and unprecedented rainfall.

(Harvey rapidly intensifies into a category 4 monster just prior to landfall. This rapid intensification and other climate change related factors helped to make Harvey a more dangerous storm. Image source: NASA.)

At this point we can take a bit of a step back to look at the larger situation. Sure, impacts will probably continue and even worsen for some areas. And due to a historic pulse of water heading downstream, the hammered city of Houston is far from out of the woods.

But as with Sandy and so many other freakish strong storms in a present climate that has warmed by around 1.2 C above pre-industrial values, we would be remiss if we didn’t discuss the climate change related factors that gave Harvey more fuel, that helped it to rapidly intensify, that worsened its flooding — both from rains and from storm surge, and that may have helped to produce a still pocket in the upper level winds that allowed it to stick around for so long.

Warmer Ocean Surfaces Mean More Rapidly Intensifying Storms, Higher Peak Intensity of Worst Storms

Hurricanes like Harvey cannot readily form in cool waters below a range between 70 and 75 degrees Fahrenheit. Ideally, the storms require ocean surface temperatures warmer than 80 degrees (F). And the more heat that’s available at the ocean surface, the more energy that’s available for a storm when it does form.

This energy comes in the form of atmospheric lift. In other words, air rises off the water more vigorously as water temperature rises. This lifting energy is called convection. And the more that’s available, the more powerful storms can ultimately become.

(Sea surface temperatures were between 1 and 2 degrees Celsius above average as Harvey approached Texas. Human-forced climate change is causing the oceans to warm. This, in turn, provides more fuel for hurricanes like Harvey — helping them to rapidly intensify and pushing their peak strength higher. Image source: NOAA.)

According to Dr Michael Mann, Ocean surfaces in the Gulf of Mexico are fully 1 to 1.5 degrees Celsius warmer, on average, than they were just 30 years ago. This warming provides more energy for storms that do form. And this, in turn, raises the top potential intensity of storms.

Some scientists, like Dr. James Hansen, refer to this prevalence of worsening extremity as loading the climate dice. If, in the past, we were rolling with a die six with a 1 representing the lowest storm intensity and a 6 representing the highest, we’re now rolling with something like a die six +1. The result is that the strongest storms are stronger and the absolutely strongest storms have an ability to achieve previously unattainable strengths due to the fact that there’s a lot more energy there to kick them into a higher state.

Increased potential peak storm intensity as a climate change factor does not necessarily result in more tropical storms forming overall. That part of the science on hurricanes is highly uncertain. But that heat engine in the form of warmer surface waters is available for the storms that do form to tap. And that can make them a lot stronger and more damaging than they otherwise would have been.

(Loading the climate dice — changes in frequency of cold and warm temperatures also has an impact on heatwaves, droughts, wildfires, storm intensity, and heavy precipitation events. Image source: NASA.)

As Harvey approached land, it tapped the energy of this much warmer than normal ocean surface. And that energy caused the storm to rapidly strengthen — first from a minimal tropical storm to a Hurricane, and then from a minimal hurricane to a Category 4 monster. Meteorologists tend to call such periods of rapid intensification — bombification. This term comes from minimum pressures that rapidly drop in swiftly strengthening storms — seeming to bomb out. And due to warming, the science indicates that rapid strengthening is also more likely. With some models pointing toward a 10-20 fold increase in the frequency of rapidly intensifying storms by the end of this Century if human forced warming of ocean surfaces continues.

Warmer Atmosphere Means Heavier Rainfall

Related to a warming of the ocean surface (and land surfaces as well) is the basic scientific fact that such warming causes the amount of water vapor in the atmosphere to increase. In total, with each 1 degree Celsius of warming near the Earth’s surface, the atmosphere ends up holding about 6-7 percent more moisture. The properties of this warming-driven increase in atmospheric moisture are described by the scientifically proven Clausius–Clapeyron relation which defines, in meteorology, how atmospheric water vapor content is driven by various factors, including temperature.

If we dig just a little bit further into our understanding of how this scientific driver impacts the atmosphere in a warmer world, we find that not only does the moisture content of a warmer atmosphere increase, but both the rates of evaporation and precipitation increase.

 

(Global warming has brought with it a sharp increase in the number of record-breaking daily rainfall events. This is due to the fact that a warmer world holds more storm-fueling moisture in its atmosphere. This warmer, wetter atmosphere increased the peak potential rainfall from Harvey enabling it to smash records for rainfall rates and precipitation totals. Image source: Increased Record-Breaking Precipitation Events Under Global Warming.)

It is here that we return to the loaded climate dice mentioned above. If, as we find today, the Earth is about 1.2 degrees Celsius warmer than in the past, then the atmosphere holds more moisture. About 7-8 percent more. And since there’s more heat, evaporation is more intense where it does happen. This loads the climate dice for more intense droughts. But since what goes up in the form of evaporation results in a heavier load of moisture in the higher clouds and in the storms that do form, the rains that follow will also tend to be more intense. This loads the dice for more severe rainfall events. And we have a very clear scientific observation that the most extreme rainstorms are becoming much more intense overall (see above graphic).

For Harvey, this meant that more moisture was available to provide the record-setting rainfall amounts coming from that system. Peak rainfall totals from the storm are now at nearly 52 inches. This is the most rainfall ever to occur in Texas from a tropical system in our records. A measure that may also break the all-time U.S. record for rainfall from a tropical storm. And Harvey was enabled to produce such high rainfall amounts by a warmer atmosphere.

Harvey a Brown Ocean Cyclone?

Increasing rates of evaporation and precipitation had one obvious effect in Harvey — they increased the potential severity of rains coming from this kind of storm. But they also increase the ability of storms like Harvey to maintain strength or even intensify over land. If, for example, a storm like Harvey dumps a very heavy load of rainfall over land and if the evaporation from these recent rains has increased in a warming world, then storms like Harvey can tend to draw strength back from what amounts to a small ocean on land.

A recent NASA scientific paper on this issue describes a Brown Ocean effect. The 2013 NASA paper noted:

Before making landfall, tropical storms gather power from the warm waters of the ocean. Storms in the newly defined category derive their energy instead from the evaporation of abundant soil moisture – a phenomenon that Andersen and Shepherd call the “brown ocean.”

…The research also points to possible implications for storms’ response to climate change. “As dry areas get drier and wet areas get wetter, are you priming the soil to get more frequent inland tropical cyclone intensification?” asked Shepherd.

In essence, cyclones are better able to maintain strength or even re-intensify over wet areas of land in a warmer world due to increasing levels of evaporation and it was Harvey’s ability to maintain tropical storm strength over land for up to three days that helped to enable it to keep dropping such heavy volumes of rain.

Higher Seas Mean Worse Storm Surge Flooding

A warmer climate also brings with it the melt of continental glaciers and the thermal expansion of ocean waters. As glaciers flood into the world’s oceans, they rise. And since fossil fuel burning began at the start of the industrial age this related warming of the Earth and melting of glaciers has caused the oceans around the world to rise by more than 20 centimeters globally.

(Global warming increases the base ocean level which, in turn, worsens storm surge flooding. Harvey’s storm surge came in on this higher ramp. Image source: Sea Level Rise Science.)

Such higher seas alone are causing some coastal settlements to flood even on sunny days. But when storms like Harvey come roaring ashore, they do so on a higher overall launching pad. And this produces a multiplier effect for storm surge damages. A multiplier that would not have been there if the world hadn’t warmed.

Polar Warming Contributes to Blocking Patterns That Make Weather Stick Around in One Place Longer

Another climate change related factor that contributed to Harvey’s danger was its persist hovering over the same region. Harvey would not have been as damaging for Texas and the Gulf if it hadn’t hung over East Texas for more than five days. But here, again, we find that climate change related factors appear to be contributing to the increased lingering of various extreme weather producing systems.

To understand how, we need to look at the upper level atmospheric circulation pattern that moves weather systems from place-to-place. In other words — the Jet Stream. Climate change influences the Jet Stream by generating more warming at the poles than near the Equator. This in turn, according to the research of scientists like Dr Jennifer Francis, changes atmospheric slope. Warmer poles, in other words, create a taller atmosphere at the poles relative to the Equator.

(A high amplitude ridge-trough pattern helped to create a stagnant upper air slot in which Harvey stalled. This voiding of upper level steering currents enabled Harvey’s persistence. Some scientists are pointing toward increasing prevalence of these kinds of high amplitude ridges and troughs related to polar warming warming which is an upshot of global warming. Image source: Earth Nullschool.)

Since atmospheric slope and temperature differences between the poles and Equator drive the speed of the Jet Stream, warmer poles cause the Jet Stream to slow down and meander. This generates big ridges and deep troughs. It also appears to assist the generation of large blocking high pressure systems. And all of these features can tend to cause weather patterns to get stuck.

This year, a persistent trough in the Eastern U.S. has generated a consistent stormy pattern and aided in the firing of powerful thunderstorms that produced record rains over places like Kansas City, Missouri. In the West, a persistent ridge has produced record heat and very extreme wildfires while aiding the formation of a very intense flash drought in Montana and the Dakotas. Harvey got stuck in a stagnant pocket between these two relatively fixed weather patterns. A climate change related feature that may have increased the duration of Harvey and facilitated its record rains falling over such a long period.

Other Factors — Interaction With The Eastern Trough

Finally, we can state that Harvey’s interaction with the very deep eastern trough also helped to fuel it. The trough provided a moisture and instability kick to Harvey as it moved over Texas — helping to wring out tropical moisture over the Lone Star State. And if we accept the fact that polar warming contributed to the depth of this eastern trough by slowing down the Jet Stream, then its interaction with Harvey was also a climate change related factor.

Qualifying This Discussion

What can be said with certainty is that climate change did not cause the hurricane. That hurricanes do happen in a normal climate. But this is the same same thing as saying that home runs happen in both middle school and major league baseball. It’s all baseball, but the factors from one to the other have qualitatively changed in an obvious fashion. The same thing happens to weather in a warming world. And it is due to the changes in these underlying factors that we can say without a doubt that climate change made Harvey worse.

What we can also say is that our certainty of all these various climate change related factors involved varies. For example, we can say with very high certainty that global warming is worsening rainfall extremes and that sea level rise is worsening storm surges. We can say with a good level of confidence that the peak intensity of the worst storms is also increasing and that bombification is more likely. And we can say with moderate confidence that climate change is altering atmospheric circulation patterns (an issue that is still under considerable debate).

But the varying degrees of certainty with regards to these aspects do not change basic facts. Your climate is your weather averaged over 30 years. And if the world warms, both your climate and your weather change.

No El Nino, But July of 2017 was the Hottest on Record. So What the Hell is Going on?

According to NASA’s GISS global temperature monitoring service, July of 2017 was 0.83 C hotter than the NASA 20th Century baseline (1.05 C hotter than 1880s). That’s the hottest July ever recorded in the 137 year global climate record.

In the Pacific, ENSO conditions remain neutral. And since 2014-2016 featured one of the strongest El Ninos on record, you’d expect global temperatures to back off a bit from what should have been a big spike in the larger warming trend. So what happened?

(Top image shows July of 2017 global temperature anomalies compared to July of 2016 global temperature anomalies [bottom image]. July of 2016 was cooling into a weak La Nina relative to one of the strongest El Ninos on record. This year, ENSO neutral conditions prevail coordinate with rather strong polar amplification in the Southern Hemisphere as temperatures in the Southern Ocean off West Antarctica hit an 8 C warm temperature anomaly [!!]. Images provided by NASA GISS.)

During July of 2016, the world was backing away from a very strong El Nino and heading into the mild global temperature trough of a weak La Nina. Cooler conditions in the Equatorial Pacific were starting to put a bit of a damper on the extreme global temperature departures that, earlier in the year, hit as high as 1.55 C above 1880s averages during February.

The La Nina lag during July of 2016 was enough to pull global surface temperatures down to 1.04 C above 1880s averages. However, the added heat pumped out into the system by both fossil fuel produced greenhouse gasses and the shift to strong El Nino appears to have generated a step change in the global temperature regime. So despite a weak La Nina dominating during fall of 2016, global temperatures remained in a range of 1.06 to 1.21 C above 1880s averages during August through December.

2017 Still Trending Toward Second Hottest on Record

Moving into 2017, overall global temperatures have backed off from the extreme heat seen during 2016. But only a little.

Adding in the record hot July at 1.05 C above 1880s averages, we find that 2017, so far is 1.16 C hotter than 1880s overall for the first seven months. That’s just 0.05 C shy of the record global heat that appeared in 2016. Not really much of a back-off at all.

July’s own record wasn’t a very impressive warm departure from 2016 — beating it by just 0.01 C. But what it does reveal is that there is an extraordinary amount of heat roaming the surface airs and waters of our world. And since all that extra heat will tend to resist cooling into Northern Hemisphere winter as it transfers poleward, we can probably expect that relative temperature anomalies will again rise as we move away from Northern Hemisphere summer. With departures likely continuing to exceed 1.05 or even 1.1 C above 1880s for most months going forward.

Already, early GFS model runs indicate that August of 2017 will likely be warmer than July. And this month might even come close to challenging the 1.21 C above 1880s averages achieved during 2016. However, using GFS global averages as an indicator is not a perfect oracle. So we wait on the August numbers from GISS and NOAA a month from now for final confirmation.

Furthermore, we do have a relatively weak cool Kelvin wave rippling along beneath the Equatorial Pacific at this time. This wave should shift the ENSO pattern to the cool side of neutral by Northern Hemisphere fall. A pattern that should also tend to nudge overall global temperatures downward. Recent falls in the north, though, have tended to exhibit very extreme polar warming. And a similar trend this year would tend to offset any Pacific Equatorial cooling. Lastly, the cooler ENSO neutral pattern is likely to still be a warmer general forcing than the weak La Nina that appeared during late 2016. So there is at least some potential that some months during fall of 2017 will be warmer than those during fall of 2016.

Considering these trends, the best available predictive analysis from NASA shows that 2017 is likely to be about 1.1 C warmer than 1880s or the second hottest year on record globally overall. NASA’s Gavin Schmidt gives this range a 77 percent likelihood of bearing out. But note the error bar in Gavin Schmidt’s above tweet. In other words, the presently far more unstable climate appears to be quite capable of serving up some relatively nasty surprises.

Links:

NASA GISS

NOAA ENSO Forecast and Analysis

Global and Regional Climate Anomalies

Hat tip to Redsky

Hat tip to Joe Romm

Area Burned in Severe Northwest Territory Wildfires Doubles in Just One Day

In just one day, an area of land covering 1,860 square miles of the Northwest Territory has burned. That’s a zone 50 percent larger than the entire state of Rhode Island going up in smoke over just one 24 hour period. And as you can see from the GOES satellite animation below, the volume of smoke being produced by fires burning in a permafrost thaw region is quite extreme:

*****

Over the past week, the Arctic and sub-Arctic Northwest Territories (NWT) of Canada have been baking under an intense late-summer heatwave. At a time when NWT temperatures should be cooling down from July peaks, most days of the past seven have seen the mercury rise into the upper 80s and lower-to-middle 90s (Fahrenheit).

These 10-35 degree (F) above average temperatures sweltered coniferous forests, peat bogs and thawing permafrost. The high temperatures also unleashed Arctic and sub-Arctic thunderstorms. A new breed of weather for this typically cool zone. One that has been enabled by a human-forced warming of our world through fossil fuel burning — causing temperatures in the Arctic to warm twice as fast as the rest of the globe.

(Extreme heat in the range of 95 degrees F [35 C] blankets the Northwest Territories on August 11, 2017 — drying vegetation and promoting wildfire producing lightning strikes. Image source: Earth Nullschool.)

As lightning strikes rained down over forests and peatlands unprepared for such intense warmth and energy, large fires began to spark. These fires were not yet as visible from the satellite as their, at the time, larger British Columbia brethren (lower left in the image below). But they were in a far northern region that has a recent if rather anomalous history of rapid fire expansion. And already, wispy plumes of smoke were becoming visible even in the wider-angle satellite shots.

Up until August 7th, fires in the Northwest Territory region of Canada had been a bit moderate compared to recent years. In total, about 330,000 hectares had burned throughout 2017. This put the region slightly above the 25 year average for fires, but well behind the more intense rates of burning seen in recent years. As of yesterday (August 14th), this number had climbed to 442,000 acres — exceeding the 15 year average, but still behind the more intense 5 year average.

(Intense Northwest Territory Wildfires begin to spark on August 7th of 2017. These fires are visible near center frame. Note intense fires burning in British Columbia at lower left. For reference, bottom edge of frame is approx 1,200 miles. Image Source: NASA Worldview.)

At this time, however, the satellite imagery was starting to look quite ominous (see image below). Very large and intense rings of fire were starting to expand north of Uranium City. And these fires were casting vast thick and inky plumes of smoke up and over much of Northern Canada. Their visible size and intensity hinted that something pretty extreme was happening on the ground.

As the fires appeared to explode in size, the various wildfire monitors began to check in. In just one day, according to the most recent NWT Current Fire Situation Report, these massive fires more than doubled the total amount of land burned with 924,000 hectares now listed as consumed. This is roughly 3,565 square miles — or about the size of Delaware and Rhode Island combined. With an area fifty percent larger than the size of Rhode Island (1,860 square miles) being consumed in just one day.

(Very intense wildfires burning on August 14 rapidly expanded to consume a section of territory larger than Rhode Island in just one day. For reference, bottom edge of frame is approx. 1,000 miles. Image source: NASA Worldview.)

Meanwhile, land area burned for the Northwest Territory is now above the 5 year average. With these fires burning so intensely, and with hot conditions still on tap for next 48 hours, this already large burn area could continue to rapidly expand.

Much of this burning is occurring along a vast line of wildfires stretching for 200 miles south of Great Slave Lake. In other words, this is a fire line long enough to stretch the distance between Norfolk, Virginia and Myrtle Beach, South Carolina. And the very dense smoke plumes being emitted by these amazingly large fires are likely to ultimately encircle the globe.

(Two hundred mile line of fires south of Great Slave Lake has completely blocked out satellite visual of the lake from orbit. Image source: NASA Worldview.)

Rainfall and cooler conditions by Friday might tamp down these blazes. But the situation at this time appears to be quite severe. Thankfully, unlike the terrible fires that have consumed hundreds of homes and forced tens of thousands to evacuate in British Columbia this summer or the Fort McMurray Fire of 2016 which forced the emptying of an entire city, these massive Northwest Territory fires are presently burning in remote areas.

However, the rapid expansion, large size and vast smoke plumes of these fires bear a grim testament to the fact that the fire regime has vastly changed for the worse in the Arctic nation of Canada. A situation that will continue to dramatically intensify so long as fossil fuels keep being burned.

(UPDATED)

Links:

Earth Nullschool

NASA Worldview

Canadian Interagency Fire Center Situation Report

NWT Current Fire Situation Report

Hat tip to Shawn Redmond

Hat tip to Spike

Nature — Plants Belched 3 Billion Tons of Carbon into Atmosphere During Monster El Nino of 2014-2016

El Nino. This periodic warming of the Equatorial Pacific has long been known to trigger droughts, wildfires, and higher temperatures throughout the tropics. And, according to a new satellite data based report out of the scientific journal Nature, these very same El Nino feedbacks combined with record global heat to squeeze a massive volume of carbon out of the world’s tropical forests during 2014-2016. From the report:

The monster El Niño weather pattern of 2014–16 caused tropical forests to burp up 3 billion tonnes of carbon, according to a new analysis. That’s equivalent to nearly 20% of the emissions produced during the same period by burning fossil fuels and making cement.

Global Warming + El Nino Sparked Massive Fires, Droughts and Heatwaves in the Tropics During 2014-2016…

The monster El Nino of 2014 to 2016 created serious disruptions to the world’s weather and climate patterns. Emerging during a time when human-forced global warming was rapidly ramping up, this strong natural variability feature generated a severe heat spike in the tropical regions. With the heat near the Equator already at high tide due to human-caused warming, this very strong El Nino produced some of the most severe heatwaves, droughts and wildfires ever experienced during modern times in places like Brazil, Africa, and Southeast Asia.

(Massive Southeast Asia wildfires during a record warm El Nino like these in Borneo during September of 2015 helped to squeeze 3 billion tons of carbon out of tropical forests. A feedback feature related to El Nino and human-caused climate change. Image source: Earth Observatory.)

The Amazon Rainforest, according to a seperate study, experienced record-breaking heat and drought — with the area of drought stretching 20 percent further than during past El Nino years. Temperatures in the Amazon were 1.5 degrees Celsius warmer than during the extreme El Nino event of 1997-1998. Both signals that a climate change + El Nino interaction was amplifying the severity of impacts to this crucial tropical forest system.

In Africa and Southeast Asia, the heat was similarly intense — producing numerous 30-100 year or worse droughts, fires, and record high temperatures. Another signal that this harmful interaction was in full swing.

… This, in Turn, Generated a Major Release of Forest-Stored Carbon …

As the droughts and heatwaves were baking deep, and as the forests were stunting, burning, or exhaling more CO2, high overhead, one of Earth’s climate sentinel satellites — the Orbiting Carbon Observatory 2 — was dutifully taking measurements. And what it found was that all this extra tropical heat resulted in a severe loss of soil and vegetative carbon. That the heat and droughts were sparking forest fires, causing stress, and stunting forest growth. That these processes were dumping prodigious volumes of carbon back into the Earth’s atmosphere.

From the study:

Measurements taken by NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite, which measures the level of carbon dioxide in the atmosphere, suggest that El Niño boosted emissions in three ways. A combination of high temperatures and drought increased the number and severity of wildfires in southeast Asia, while drought stunted plant growth in the Amazon rainforest, reducing the amount of carbon it absorbed. And in Africa, a combination of warming temperatures and near-normal rainfall increased the rate at which forests exhaled CO2.

Overall, the Nature study notes that 3 billion tons of carbon were added to the atmosphere as a result of harm done to forests and soils during this particularly hot El Nino period.

… Which Helped to Spike Annual Rates of Atmospheric CO2 Accumulation

(Record rates of atmospheric CO2 accumulation during 2015 and 2016 correspond with large belches of carbon from tropical forests as a result of severe heat. Image source: NOAA ESRL.)

Elsewhere, this added burst of carbon did not go unnoticed. And measurements from NOAA’s Earth Systems Research Laboratory indicates that rates of atmospheric carbon accumulation sped up as El Nino and global warming based heat baked the tropical lands. During 2015, rates of atmospheric carbon accumulation accelerated to their fastest pace on record — growing at 3.03 parts per million per year. And in 2016, the second fastest rate of atmospheric CO2 accumulation on record was recorded — 2.98 parts per million per year. This compares to an average 2.2 parts per million annual accumulation that’s primarily driven by fossil fuel burning.

So what we have here is evidence that a heat and El Nino based carbon feedback occurred in the tropics during 2014-2016 and that this feedback resulted in a significant spike in the rate of atmospheric CO2 accumulation even as human based carbon emissions were leveling off (at record high ranges). With El Nino fading, that tropical carbon feedback should abate. But we shouldn’t allow ourselves to breathe too easy. For with Earth now in the range of 1 to 1.25 C warmer than preindustrial times, carbon stored in soil, forests, permafrost and oceans is now being placed under increasing heat related stress. And continuing to burn fossil fuels keeps adding to the heat gain that further increases the risk of a warmth-amplifying release from all of these stores.

Links:

Massive El Nino Sent Greenhouse Gas Emissions Soaring

Record Heat and Drought Seen in Amazon During 2015-2016 El Nino

NASA’s Earth Observatory

NOAA ESRL

Hat tip to mlparrish

Hat tip to Spike

India and China Building Solar Like Gangbusters, Electric Revolution Continues as GM Sells EV for $5,300 in China, Tesla Plans 700,000 Model 3s Per Year

If we’re going to halt destructive carbon emissions now hitting the atmosphere, then the world is going to have to swiftly stop burning oil, gas and coal. And the most effective and economic pathway for achieving this removal of harmful present and future atmospheric carbon emissions is a rapid renewable energy build-out to replace fossil fuel energy coupled by increases in energy efficiency.

(To halt and reverse climate change related damages, fossil fuel based greenhouse gas emissions into the atmosphere need to stop.)

This week, major advances in the present renewable energy build and introduction rate were reported. Chiefly, India and China are rapidly adding new solar panels to their grid, the monthly rate of global EV sales surpassed 100,000 in June, GM is offering a very inexpensive electrical vehicle in China, and Tesla has ramped up plans for Model 3 EV production from 500,000 vehicles per year to 700,000 vehicles per year.

India and China Solar Gangbusters

In the first half of 2017, India is reported to have built 4.8 gigawatts (GW) of new solar energy capacity. This construction has already exceeded all 2016 additions. The country is presently projected to build more than 10 GW of new solar energy capacity by year-end. Large solar additions are essential to India meeting its goal of having 100 GW of solar electrical generation available by 2022. It is also crucial for reducing carbon emissions from fossil fuel fired power plants (coal and gas).

(Total solar capacity in India could hit 30 GW by end 2018. India will need to add solar more rapidly if it is to achieve its goal of 100 GW by 2022. Image source: Clean Technica.)

Further east, China added 24.4 Gigawatts of new solar energy in just the first half of this year. This pushed China’s total solar energy generating capacity to a staggering 101 GW. It also puts China firmly in a position to surpass last year’s strong rate of solar growth of 34 GW. China’s previous goal was to achieve 105 GW of solar production by 2020. One it will hit three and a half years ahead of schedule. China now appears to be on track to overwhelm that goal by achieving between 190 and 230 GW of solar generation by decade’s end.

(China has already overwhelmed its 2020 target for added solar capacity. Recalculating based on present build rates finds that end 2020 solar generation levels are likely to hit between 190 and 230 GW for this global economic powerhouse. Image source: China National Energy Administration.)

Such strong solar growth numbers in traditional coal-burning regions provides some hope that carbon emissions growth rates in these countries will continue to level off or possibly start to fall in the near future. Adding in ambitious wind energy and electrical vehicle build-outs in these regions provides synergy to the larger trend. If an early carbon emissions plateau were to be achieved due to rapid renewable energy build-outs in China and India, it would be very helpful in reducing overall levels of global warming during the 21st Century.

GM’s $5,300 EV for the Chinese Market

Adding to the trend of growing movement toward an energy switch in Asia this week was GM’s introduction of a small, medium-range electrical vehicle for the Chinese auto market. GM is partnering with China’s Baojun to produce the E100. A small EV that’s about the size of the U.S. Smart Car. The E100 has about a 96 mile all-electric range, a 62 mph top speed, and goes for $14,000 dollars before China’s generous EV incentives. After incentives, a person in China can purchase the vehicle for $5,300. GM states that 5,000 buyers registered to purchase the first 200 E100s hitting the market last month, while a second batch of 500 vehicles will be made available soon.

100,000 Electrical Vehicle Sales Per Month by Mid 2017

Globally, electrical vehicle sales have ramped up to 100,000 per month during June of 2017. This growth is being driven primarily by increased sales volumes in China, India, Japan, Australia, Europe and the U.S. as more and more attractive EV models are becoming available and as governments seek to limit the sale of petroleum-burning vehicles in some regions.

(Projected growth rates for EV sales appear likely to surpass present projections through 2020. Image source: Cleantechnica.)

Meanwhile range, recharge rates, acceleration, and other capabilities for these vehicles continue to rapidly improve. This compares to fossil fuel vehicles which have been basically stuck in plateauing performance ranges for decades. 2017 will represent the first year when sales of all EV models globally surpass 1 million per year. With a possible doubling to tripling of EV production through 2020.

Telsa Aiming for 700,000 Per Year Model 3 Sales

2018 will likely see continued growth as new vehicles like the Model 3, the Chevy Bolt, and Toyota Prius Prime provide more competitive and attractive offerings. This past month, the Chevy Bolt logged more than 1,900 vehicles sold in the U.S. in one month. If GM continues to ramp production, marketing, and availability of this high-quality, long range electrical vehicle, the model could easily sell between 3,000 and 5,000 per month to the U.S. market. Another vehicle — the plug in electric hybrid Toyota Prius Prime — is also capable of achieving high sales rates in the range of 5,000 per month or more on the U.S. market due to a combined high quality and low price so long as production for this model also rapidly ramps up.

But the big outlier here is the Tesla Model 3. By end 2017, Tesla is aiming to ramp Model 3 production to 5,000 vehicles per week. It plans to hit more than 40,000 vehicles per month by end of 2018. And, according to Elon Musk’s recent announcement, will ultimately aim to achieve 700,000 Model 3 sales per year. If such a rapid ramp appears, the Model 3 along with other increasingly attractive EVs could hit close to 2 million per year annual combined sales in 2018 and surpass 3 million at some time between 2019 and 2020. This is well ahead of past projections of around 2.2 million EV sales per year by 2020. Representing yet another early opportunity to reduce massive global carbon emissions coming from oil, gas, and coal.

Links:

India Installs 4.8 GW of Solar During First Half of 2017

China’s New 190 GW Solar Guiding Opinion Wows

China Could Reach 230 GW Solar by end 2020

GM Should Bring Baojun E100 EV to USA

EV News for the Month

Joint Venture for Baojun E100

Model 3 Annual Demand Could Surpass 700,000

New Study Finds that Present CO2 Levels are Capable of Melting Large Portions of East and West Antarctica

If you’re a regular reader of this blog and its comments section, you’re probably more than a little worried about two bits of climate science in particular:

Our understanding of past climates (paleoclimate) and 5-6 C long term climate sensitivity.

And if you’re a frequent returner, you’ve probably figured out by now that the two go hand in glove.

******

Looking back to a period of time called the Pliocene climate epoch of 2.6 to 5.3 million years ago, we find that atmospheric carbon dioxide levels were somewhat lower than they are at present — ranging from 390 to 400 parts per million. We also find that global temperatures were between 2 to 3 degrees Celsius warmer than 1880s ranges, that glaciers in Antarctica and Greenland were significantly reduced, and that sea levels were about 25 meters (82 feet) higher than they are today.

(The Totten Glacier is one of many Antarctic land ice systems that are under threat of melt due to human-forced warming. A new paleoclimate study has recently found that levels of atmospheric greenhouse gasses that are below those presently in our atmosphere caused substantial Antarctic melt 4.23 million years ago. Image source: antarctica.gov.)

Given that atmospheric CO2 levels during 2017 will average around 407 parts per million, given that these levels are above those when sea levels were considerably higher than today, and given that these levels of heat trapping gasses are rapidly rising due to continued fossil fuel burning, both the present level of greenhouse gasses in the Earth’s atmosphere and our understanding of past climates should give us substantial cause for concern.

This past week, even more fuel was thrown onto the fire as a paleoclimate-based model study led by Nick Golledge has found that under 400 parts per million CO2 heat forcing during the Pliocene, substantial portions of Antarctica melted over a rather brief period of decades and centuries.

Notably, the model found that the West Antarctic Ice Sheet collapsed in just 100-300 years under the steady 400 ppm CO2 forcing at 4.23 million years ago. In addition, the Wilkes Basin section of Antarctica collapsed within 1-2 thousand years under a similar heat forcing. In total, the study found that Antarctica contributed to 8.6 meters of sea level rise at the time due to the loss of these large formations of land ice.

From the study:

We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points (emphasis added).

This study began the publication process in 2016 when year-end atmospheric CO2 averages hit around 405 parts per million. By end 2017, those averages will be in the range of 407 parts per million. Even more worrying is the fact that CO2 equivalent forcing from all the various greenhouse gasses that fossil fuel burning and related industrial activity has pumped into the atmosphere (methane, nitrogen oxides, CFCs and others) will, by end 2017 hit around 492 ppm.

As a result, though conditions in Antarctica are presently cooler than during 4.23 million years ago, the considerably higher atmospheric greenhouse gas loading implies that there’s quite a lot more warming in store for both Antarctica and the rest of the world. A warming that, even if atmospheric greenhouse gasses remain at present highly elevated levels and do not continue to rise, could bring about a substantially more significant and rapid melt than during the Pliocene.

Links:

Antarctic Climate and Ice Sheet Configuration During Early Pliocene Interglacial at 4.23 Ma

NOAA ESRL CO2 Trends

NOAA’s Greenhouse Gas Index

East Antarctic Ice Sheet More Vulnerable to Melting than We Thought

Pliocene Climate

antarctica.gov

Hat tip to Spike

100 Fossil Fuel Companies Responsible for 71 Percent of Carbon Emissions Since 1988 — And They’re Being Sued For it

According to research from the Carbon Disclosure Project, since 1988, 100 fossil fuel producers have been responsible for 635 billion tons of greenhouse gas emissions. This total represents 71 percent of human carbon emissions that have occurred over the past 29 years.

Companies involved in this massive carbon emission included such giants as ExxonMobil, Shell, BHP Billiton and Gazprom. The report also found that these 100 companies were responsible for fully 52 percent of all emissions since the industrial revolution began in 1751.

Report authors went on to point out that this relatively small group of companies is likely to have an outsized influence on responses to climate change — hopefully adding that positive action by such corporations could produce significant positive change. However, historically, such companies have tended to fight against global climate treaties, misinform the public on dangers related to human-caused climate change, and work to delay responses to climate change within their host nations. Due to this past bad-economic-actor behavior combined with rising climate change related damages, these corporations also are exposed to what may well be a historic and unprecedented corporate liability.

(If you were born in 2015, the estimate for your lifetime lost wealth from climate change, according to DEMOS, is between 581,000 and 764,000 dollars. With 100 companies responsible for 50 percent of that loss, it’s pretty obvious that liability will become a more and more serious impact as climate harms ramp up throughout the coming decades.)

A far-reaching liability that could well include various harms related to climate change coming from such diverse dangers as sea level rise, loss of water and food security, loss of habitability due to heat, and damage to valuable natural resources like forests, glaciers and reefs.

Already, a number of lawsuits are testing the legal waters in this regard. For example, in California this week, Imperial Beach, San Mateo and Marin counties are filing lawsuits to get some of the world’s largest fossil fuel producers to pay for sea level rise related damages. And if Imperial Beach and the two counties prevail, large corporations like Chevron, ExxonMobil, ConocoPhillips, BP and Royal Dutch Shell could be liable for billions of dollars in mitigation costs and punitive damages in coming decades even as direct damages from climate change ramp up.

According to the San Diego Union Tribune:

Attorneys for the plaintiffs said they modeled their legal tactics after past efforts to hold accountable cigarette businesses, makers of cancer-causing agents and gas and chemical companies that used methyl tertiary butyl ether (MTBE), a gasoline additive that has contaminated groundwater across the country.

And though not all liability related lawsuits against major tobacco and chemical companies were successful, those that stuck resulted in major awards even as the lawsuits themselves produced a very harmful public relations impact for the companies involved.

European Heat, Drought, Fires Bite Deep as 1 Million Impacted by Water Rationing in Rome

“This year was not bad, it was catastrophic. I can’t remember a year like this since 1992 when I was a little child,”Joaquin Antonio Pino, a cereal farmer in Sinlabajos, Avila.

“We will see a lot more surprises and fires burning in places that don’t have a fire history. We’ll see more fires and more intense fires in the Mediterranean and new fire situations in countries that don’t really expect it.” — Alexander Held, a senior expert at the European Forest Institute.

“Rome faces eight hours a day without running water after a halt was ordered on pumping water from a nearby lake.” — BBC.

(Europe — sweltering under heat and drought — is blanketed by triple the typical number of wildfires during July of 2017. Image date is July 17. Bottom edge of frame is approximately 2,500 miles. Image source: NASA Worldview.)

Water Rationing in Rome

According to reports from BBC, Reuters, and The Guardian, about 1 million residents of Rome are now facing 8 hour periods without water supplies. Across the country, lake levels are at record lows after the driest spring in 60 years followed by a series of severe European heatwaves that recent scientific research indicates was made substantially more likely by human-caused climate change due to fossil fuel burning. Drought-related reductions of water withdrawals from drying lakes are spurring these major curtailments of public water access.

Severe Crop Damage

As Romans face water rationing for the first time in modern memory, across southern Europe, farmers are reeling as olive and wheat crops are severely stressed by both drought and by temperatures that in some places have hit in excess of 40 degrees Celsius (105 F). The cost of Spanish wheat has risen more than 40 percent even as prices for Italian olives have spiked by 50 percent. Cereal crop production in both states have fallen to the lowest level in 20 years. Meanwhile, damage estimates to crops from the widespread heat and drought in Italy alone has risen to between 1 and 2.3 billion dollars.

Warming temperatures spreading northward into Europe from the Sahara as climates warm have generated widespread stress for farmers over recent years. These growers, increasingly sensitive to climate change-based stresses are, more and more often, questioning the viability of farming as a livelihood.  From Reuters:

Some see rising temperatures as a long-term trend, which threatens the viability of farming in the region.

“In this situation … you realize it’s almost impossible to keep going. You think OK, this year I will try to manage, but if the harvest is like this next year you won’t be able to cope any more,” said farmer Tocchi, who is also the local head of farmers’ group Confagricoltura.

Triple the ‘Normal’ Rate of Wildfire Burning

Heat and drought hitting water supplies and crops was also accompanied by a severe spate of wildfires raging across Italy, Croatia, Montenegro, France, Portugal, and Spain during recent weeks. Thousands have been evacuated as tens of thousands of acres burned and armies of firefighters battled blazes across numerous states. Tragically, 64 people were killed by one swiftly-moving Portugal fire during early July.

(Rates of wildfire burning were already heightened as warming intensified through Europe during 2008 through 2016. The 2017 spike, however, is triple even that already elevated level. Image source: EFFIS.)

Overall, the 677 fires igniting across Europe during 2017 is about triple that of an average year for Continent. An increased rate of burning that experts are also blaming on climate change as temperatures increase and fire seasons lengthen. From EuroNews:

Alexander Held, a senior expert at the European Forest Institute, backed Curt’s claim saying fires were starting earlier and burning for longer.

“We will see a lot more surprises and fires burning in places that don’t have a fire history,” Held told Euronews. “Spain burns, yes, but it’s not a surprise. We’ll see more fires and more intense fires in the Mediterranean and new fire situations in countries that don’t really expect it.”

Links:

NASA Worldview

BBC

Reuters

The Guardian

The Atlantic

EuroNews

Hat tip to Plaza Red

 

June of 2017 Was Third Hottest on Record for Globe

According to NOAA, June of 2017 was the third hottest such month in the global climate record since temperature tracking began in 1880. For NASA, June was also the third hottest on record with June of 2016 settling in at 1st hottest, and 2015 and 1998 tied as second hottest. Overall, global temperatures were about 0.91 degrees Celsius warmer than late 19th Century averages in the NASA record and about 1.02 degrees Celsius warmer than the same time period in the NOAA record.

(NASA’s land-ocean temperature graphic showed most of the world blanketed in much warmer than normal conditions. Image source: NASA.)

Around the globe, various climate extremes were quite visible as a result of such considerable warmth. Arctic sea ice extent was 6th lowest on record according to NSIDC while Arctic sea ice volume was the lowest ever recorded according to PIOMAS. NSIDC also found that Antarctic sea ice extent was the second lowest on record. Combined, global sea ice area was the lowest ever recorded.

Weather disasters included severe hydrological events likely influenced by increasing atmospheric water vapor content and evaporation rates due to climate change. These comprised Bangladesh’s devastating June floods and a still ongoing African drought spurring worsening hunger and increasing instances of mass migration. Meanwhile, seven maximum temperature records were broken with the highest temperature ever recorded in Asia during June occurring at Ahwaz in Iran on June 29 and an all-time national June heat record set in the United Arab Emirates on June 16th. Notably, no new all-time cold temperature records were set across the globe during June.

If present trends continue, 2017 is now on track to be the second hottest year in the global climate record. This despite a noted lack of El Nino in the Pacific following a very weak La Nina during late 2016 and running into early 2017. Though not as warm as 2016, it appears that 2017 will range about 1.1 C above late 19th Century values in the NASA record (according to analysis by Gavin Schmidt) along the current path.

This is a very warm range that is likely to keep pushing the climate system into gradually more extreme conditions. Atmospheric CO2, which is rapidly rising due to rampant fossil fuel burning, is likely to average around 407 ppm in 2017. As a result, global atmospheric heat forcing is on the rise with the trend likely to continue upward pending a major reduction in greenhouse gas emissions. Meteorologists, climate scientists, risk experts and climate journalists should therefore remain on heightened alert for dangerous trends related to global climate change.

(UPDATED)

Links:

NASA GISS

NOAA’s Center For Environmental Information

NSIDC

The Polar Science Center

Category 6

Record Heat Predicted for Fort McMurray Wednesday as Fire Danger Spikes

Just a little more than one year after freakish global warming-spurred wildfires forced a near complete evacuation of the tar sands production town of Fort McMurray, Alberta, record heat and extreme fire hazard are again settling in over this subarctic region.

(Subarctic sections of Alberta are expected to experience temperatures in the upper 80s and lower 90s [F] tomorrow. Such heat is expected to spike fire dangers throughout the region. Image source: Earth Nullschool.)

The weather forecast for Wednesday, May 31, 2017 tells a story of predicted extreme heat for a typically cool region of Northwest Canada. High temperatures for the day are expected to range from 86 to 90 F (30 to 32 C). That’s a hot day anywhere. But it’s particularly impressive for a region that shares a common climate with places like historically cold Alaska and Hudson Bay.

Average high temperatures for Fort McMurray in Alberta, Canada for this time of year typically top out at a rather cool 64 degrees Fahrenheit (18 C) — closer to the expected Wednesday morning low of 62 F (17 C). Wednesday’s forecast high, meanwhile, is quite considerably outside the normal range and exceeds 30 year averages by fully 22 to 26 degrees F. If such heat does emerge, it will tie or break the 2007 all-time record for May 31 of 86 F (30 C).  Such record heat is now predicted to occur after today’s expected, well above average, high of 80 F (26 C).

(A spike in fire hazard early this week coincides with predicted record temperatures across Alberta. Image source: Alberta Fire.)

Unseasonable warmth — which deepened over the weekend and is expected to peak by Wednesday — is presently resulting in spiking fire dangers for the region. According to the government of Alberta, fire risk for Fort McMurray is now listed as very high through Wednesday due to above average to near record high temperatures and low humidity. Fire hazard for a large swath of Northern Alberta is now also rated very-high-to-extreme.

It is worth noting that the overall fire situation for Canada to-date is presently much-improved from 2016. Last year, outlandish warmth combined with high winds and dry conditions to fuel an unusually large fire outbreak over Central and Northwestern Canada during early May. This year, wetter than normal conditions have suppressed fire activity over much of Canada over the same seasonal period. And we have some regions in British Columbia that are now experiencing evacuations due flooding rivers.

(Wildfires are flaring over British Columbia even as rapidly rising temperatures are causing large snow packs to melt far more swiftly than normal. Such heat and rapid melt is producing a dual threat of flood and fire at the same time. Image source: BC Wildfire Service.)

Rising fire risks coinciding with hot and dry conditions are coming at the same time that this year’s moisture-engorged snow packs are melting at far faster than normal rates. Large fires are thus breaking out in British Columbia and along the Alberta border as heat and dryness spread northward even as creek and lake levels in places like Okanagan, BC are facing the highest flood stages ever recorded.

Overall, despite 2017’s rainy spring weather, the tale is still one of unusual warmth. May temperatures have ranged from 2 to 6 degrees Celsius above average over Northern and Central Canada during 2017. Such departures are in keeping with the ongoing trend of rapid warming in the upper Latitudes of the Northern Hemisphere. A trend that has considerably worsened overall fire hazard by lengthening the fire season, by adding new fuels for fires, and by increasing the number of lightning strikes which help to provide ignition sources for wildfires. A warming that is directly caused by ongoing human fossil fuel burning and by related activities such as the tar sands extraction that continues unabated in Alberta.

(UPDATED)

Links:

Earth Nullschool

Fort McMurray Weather

Weather Underground: Fort McMurray Climate

Alberta Fire

BC Wildfire Service

Thousands Forced to Evacuate Fort McMurray Due to Wildfires

Wildfires, Rising Water Levels Hamper Okanagan

Earth Observatory

“Too Huge to Manage” — New Studies Highlight Danger in Failing to Rapidly Cut Carbon Emissions Now

“If we continue burning coal and oil the way we do today and regret our inaction later, the amounts of greenhouse gas we would need to take out of the atmosphere in order to stabilize the climate would be too huge to manage,” — Lena Boysen from the Potsdam Institute for Climate Impact Research (PIK) in Phys.org.

******

When it comes to dealing with global warming and human-forced climate change, the best options for response have always been rapid carbon emissions cuts and an equally rapid energy transition away from fossil fuel burning. And while swiftly transitioning energy systems away from fossil fuel burning, cutting carbon-based consumption, and aggressively increasing energy efficiency may all be seen as difficult or unsavory to the vocal and powerful special interests invested in continued burning of oil, gas, and coal, such cuts and transformations remain the safest path forward.

At issue is the fact that the two other chief climate change response ‘options’ are either inadequate on their own or, worse, can simply amount to so much reckless and harmful flailing about. Atmospheric geo-engineering and rapid removal of carbon from the Earth System — are either costly, difficult to scale to the level needed to remove carbon from the atmosphere fast enough to prevent serious harms under continuing fossil fuel burning, or, in the case of the solar radiation management version of geo-engineering, flat-out dangerous.

(New scientific studies highlight the fact that there is no substitute for a rapid halt to fossil fuel burning when it comes to preventing the worst impacts of human-caused climate change. Image source: The Sierra Club.)

Some of these basic facts were highlighted this week by a new study in the journal Science. The study — Rightsizing Carbon Dioxide Removal — found that under worst-case carbon emissions scenarios, there is practically not enough forested land area to grow the amount of switch grass and other biomass needed to recapture even half of the projected carbon emission. It also found that land mass dedicated to biomass production would need to equal roughly 1/3 of all forested lands under present emissions cuts goals under the Paris Climate Summit in order to prevent 2 C warming. A level of land use that would likely put global food security at risk.

Study Authors Katherine March and Christopher Field note that:

“The models generating possible trajectories of climate change mitigation bet on planetary-scale carbon removal in the second half of the century. For policymakers trying to limit the worst damages from climate change, that bet is reckless. This puts climate change mitigation, global food security and biodiversity protection on a collision course with no easy off-ramps.”

Only the most ambitious cuts to emissions combined with a moderate assist through considerable advances in atmospheric carbon capture provide a reasonable path to avoiding 2 C warming, according to the study.

A separate but similar study also published in May provides some confirmation to the Stanford study’s results. The co-author of that study, entitled The Limits to Global Warming Mitigation by Terrestrial Carbon Removal,Wolfgang Lucht from PIK notes in Phys.org:

“As scientists we are looking at all possible futures, not just the positive ones. What happens in the worst case, a widespread disruption and failure of mitigation policies? Would plants allow us to still stabilize climate in emergency mode? The answer is: no. There is no alternative for successful mitigation [cutting carbon emissions]. In that scenario plants can potentially play a limited, but important role, if managed well. [Emphasis Added]”

The issue is the fact that while methods like planting trees, changing the way we manage farmland, or even adding various carbon capturing biofuel plants and enhanced weathering materials to capture more carbon from the air is likely only capable of drawing down a fraction of the carbon we presently emit each year (and an even smaller fraction of carbon if emissions keep growing). At best, under practical considerations, we might be able to take down 1-3 billion tons of carbon every year compared to a present emission in excess of 10 billion tons and a BAU emission that could hit 20 billion tons of carbon per year or more.

 

(This graphic, produced by Greenpeace, provides a good illustration of basic carbon math. However, given the fact that warming will tend to push more carbon into the atmosphere from the Earth System and keep it there for a longer period, it’s likely that some assist by enhanced atmospheric carbon capture will be necessary even if carbon emissions are rapidly cut to zero. That said, atmospheric carbon capture at best provides an avenue for moderately enhancing atmospheric carbon draw-down. New studies warn that atmospheric carbon capture by itself and without coordinate rapid cuts to fossil fuel burning is not a practical solution. Image source: Greenpeace.)

Such levels of carbon capture, even if they were achieved in as short a time as two decades, would not be enough to prevent 2 C warming under anything but the most modest future emissions pathways. As a result, the primary climate change response strategy should continue to focus on increasing and rapidly scaling the size of planned emissions cuts. Meanwhile, atmospheric carbon capture is a good potential option as a follow-on to rapid emissions cuts to zero as soon as possible — providing a means eventually, over many decades, to possibly start to claw atmospheric greenhouse gases down from very dangerous and harmful levels. But such an option alone should not be viewed as something that will magically swoop in to save us from climate destruction if we continue to burn fossil fuels willy-nilly.

Chris Field — professor of biology & Earth System science and director of the Stanford Woods Institute for the Environment provides this urgent observation following his study’s publication:

“For any temperature limit, we’ve got a finite budget of how much heat-trapping gases we can put into the atmosphere. Relying on big future deployments of carbon removal technologies is like eating lots of dessert today, with great hopes for liposuction tomorrow.”

With the caveat being that eating lots of dessert today is likely to have far more limited and less disastrous consequences than continuing to burn oil, gas and coal.

Links:

Rightsizing Carbon Dioxide Removal

The Limits to Global Warming Mitigation by Terrestrial Carbon Removal

Assuming Easy Carbon Removal is High-Stakes Gamble

Planting Trees Cannot Replace Carbon Emissions Cuts

Record-Thin Sea Ice Faces Big Predicted Arctic Warm-up This Week

If you’re someone who tends to worry about Arctic sea ice losses, this coming week’s weather forecast looks like a bit of a doozy. And when you consider that the sea ice is both greatly weakened and thinned in a number of the major monitors, prospects don’t look very good, presently, for 2017’s summer melt season as whole.

Abnormal Warmth Over Greenland and Baffin and Hudson Bays

Over the next 48 hours, Baffin and Hudson Bays will experience the tail end of what an extreme warm-up that produced exceptional May surface melt over the Greenland Ice Sheet and then shifted westward.

(An extreme early May warming over Greenland this week produced considerable surface melt well outside the 2 standard deviation range. Today, the warmth has shifted west over Baffin and Hudson Bays. Later this week, a similar strong warm-up is predicted to impact the Pacific side of the Arctic Ocean. Image source: NSIDC.)

Temperatures for Hudson and Central and Southern Baffin, according to GFS model runs, will range above freezing over this time period — hitting as high as the low 40s (F) in Eastern sections of Hudson Bay. Over-ocean readings (which tend to moderate, but not, apparently, in this case) that will range from 5 to 15 degrees Celsius above average. These rather high surface temperatures will help to kick sea ice melt throughout these regions into higher gear.

Pacific Side of Arctic Ocean Predicted to Heat Up

Following the Baffin-Hudson warm-up, a large bulge of much warmer than normal air is predicted to extend northward from a broad region extending from Eastern Siberia through the Bering Sea and Alaska and on into Northwestern Canada. This bulge will, according to GFS model runs, by early next week inject periods of above freezing temperatures over a wide region of the Arctic Ocean that includes the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. And by this time next week, these same model runs project that 10-16 C above average temperatures will dominate a large region of the Central Arctic — forcing above-freezing temperatures over a broad cross-section of the North Pole zone by May 17.

(The Arctic is expected to experience nearly 2 C above average temperatures with some regions over the Arctic Ocean hitting 16 C [28 F] above average. These are considerable departures for May when temperatures in the Arctic tend to moderate. So much warmth is likely to have an impact on the already greatly thinned Arctic sea ice. Image source: Global and Regional Climate Anomalies.)

So much early season warmth is likely to further impact an already greatly weakened and thinned veil of sea ice covering the Arctic Ocean. A cooling cap that even more conservative scientists estimate could be completely removed during a summer as soon as the early 2030s. But in the worst case scenario, and when considering how thin the ice is now, a nearly ice free summer could happen as soon as this year. Few scientists really want to talk about that now — given the likely controversy that would result. But we shouldn’t entirely ignore that possibility for fear of backlash or criticism. Nor should we ignore how such an event would tend to further distort an already disrupted Northern Hemisphere atmospheric circulation.

Indicators Show Very Thin Ice

Over recent weeks, sea ice area and extent measures have recovered somewhat as temperatures over the Arctic Ocean have moderated a bit from very warm conditions during October through March. However, a number of indicators including PIOMAS’s sea ice volume measure show that despite this mild surface extent recovery, the ice is very weak and significantly thinned.

(PIOMAS sea ice volume measure shows a considerable record low departure through mid April of 2017. Image source: PIOMAS.)

It’s worth noting that a significant portion of the extent recovery over recent weeks can be attributed to strong winds blowing ice out of the Arctic Ocean and into the Barents Sea as well as out through the Fram Strait. Such conditions are not normally considered to be healthy ones for ice retention through summer as ice in the Barents and Fram tends to melt far more swiftly than ice secured in the Central Arctic. And the Fram itself is often considered to be a graveyard for sea ice.

As for PIOMAS, the most recent measurement through the middle of April found that sea ice volume had topped out at 20,600 cubic kilometers. This measure was fully 1,800 cubic kilometers below the previous record low set for the month. It’s a tremendous negative departure that, if valid, shows that the state of the sea ice as of this time was terribly unhealthy. A situation that prompted the typically conservative Neven over at the Arctic Ice Blog to state that it’s:

Not looking good. Not looking good at all… with a maximum that was almost 2000 km3 lower than the previous record reached in 2011, it’s obvious that anything is possible this coming melting season.

(According to the EASE NSIDC sea ice age monitor, the multi-year sea ice is now almost entirely removed from the Pacific side of the Arctic. Strong, persistent winds have continued to push a good portion of the frail remainder of this ice out toward the Fram Strait — a graveyard for sea ice. And a big warm-up predicted for this week will begin to test the greatly thinned ice over the Beaufort, Chukchi and East Siberian Seas. Image source: NSIDC and The Arctic Ice Blog.)

Moreover, Neven last week pointed out that according a separate measure (see image above), typically thicker multi-year ice is presently absent from the Beaufort Sea. And, to this point, it’s worth noting that the amazing above normal temperatures that plagued the Arctic cold season for multiple years now have resulted in vast losses among this most healthy subset of sea ice.

Such considerably thinned ice presents practically no barrier to the effects of warming. It can melt quite rapidly and it is far more subject to the physical forces of wind and waves. With strong southerly winds and a big warm-up now in the pipe, it appears that this considerably thinned ice will get its first test in mid-May. Potentially creating large sections of permanently open water very early in the melt season and very close to the ever-more vulnerable High Arctic.

Links:

NSIDC

PIOMAS

Climate Reanalyzer

Earth Nullschool

Hat tip to Neven and…

to the researchers over at The Arctic Ice Blog

 

Advertisements
%d bloggers like this: