Big Auto Freaks Out as Tesla Model 3 Deliveries for Q1 Track Toward 8,000 to 10,000

The major automakers are increasingly in a bind. They’re faced with a choice — keep investing in dirty energy vehicles that pollute the air, the water and wreck the climate, jump feet first into the EV revolution, or play both sides. And it’s this dichotomy that’s producing some rather freaky behavior.

(GM has often talked big about its EVs like the Volt and the Bolt. But its policy positions are contradictory to a rapid clean energy vehicle ramp.)

We’ve heard a lot of talk from some major automakers about how many electrical vehicles they’ll be producing in one year, two years, three years or more. And even as these companies have been beating the drum about ‘Tesla killers,’ how they have enough capital to own the EV revolution, some of them keep lobbying for dirty energy vehicles by attacking U.S. fuel efficiency standards.

It’s an inherent contradiction between communication and dedicated action. One that has generated a degree of legitimate distrust in the notion that some big auto manufacturers will follow up on their clean energy promises. Whether the talk is little more than a PR campaign aimed at tamping down public loyalty to those like Tesla who operate under a 100 percent clean energy business model. At the very least, it shows that auto industry focus is starting to fragment between traditionals (which include many backward-looking CEOs) who still support harmful legacy combustion engine production while hiding behind token ‘compliance cars,’ and the progressive-minded within the industry who want to rapidly jump into the EV market and compete.

(Not a compliance car. Nissan and a handful of like-minded major auto manufacturers produce and market seriously competitive EVs. Others appear to be dithering and dissembling.)

As uncertainty over auto industry intent expands due to various contradictory behaviors, here in the U.S., Tesla has been consistently ramping its production of 100 percent clean energy vehicles. And this has generated an equally predictable gnashing of teeth from the usual suspects in the financial media.

During the fourth quarter of 2017, Tesla’s factories pumped out a record number of electrical vehicles. In total, it delivered 29,870 zero tailpipe emissions cars. These included 15,200 Model S, 13,120 Model X, and 1,550 of the new Model 3s. This was the highest production quarter for Tesla and it was enough to propel its total sales for the year to over 101,000.

(Tesla Model 3 is one of the major spear-heads of a clean energy revolution. And it’s helping to goad other western automakers into a larger and expanding EV market. Image source: Tesla.)

Q1 of 2018, however, is likely to see even more. Present delivery estimates for Model S and X alone range from 22,000 to 30,000. Meanwhile the Model 3 is likely to have expanded deliveries more than fivefold to between 8,000 and 10,000. So a total of 30,000 to 40,000 Teslas will likely have hit the road by the time March elapses.

This is particularly significant when one considers that the first quarter is typically a lower selling point for most automakers even as sales have tended to peak for Tesla during Q4. During Q1 of 2017, Tesla sold 25,418 EVs. A number that will likely grow by 20 to 60 percent during 2018.

Moreover, recent reports indicate that Model 3 production is surging.

On March 19th, it was found that Tesla had ordered a large new batch of VINS. As a result, the total Tesla Model 3 VIN count had jumped to nearly 16,000. An indicator that Tesla Model 3 production — which has ranged between 700 and 900 per week since January is also likely expanding.

So it seems that the Tesla production bottle necks are starting to clear and that its ramp is jumping yet again. What this represents is a major call on the traditional auto-manufacturers. The time has come to ante up the EVs, or get out of the way for new clean energy leaders. Bluff time is over.


Atmospheric River Pummels West Coast as East is Slammed by Yet Another Nor’Easter

Today the alerts were sounding in California. Areas recently denuded by extreme wildfires such as Santa Barbara are threatened by debris flows as rainfall amounts of 1-6 inches (up to ten inches locally) are predicted. Meanwhile, the U.S. East Coast braces for the fourth strong nor’easter in three weeks.

Welcome to your weather screwed up by human-caused climate change.

Atmospheric River Brings Landslide Risk to California

Warmer than normal ocean surfaces in the range of 0.5 to 2.5 C hotter than average are bleeding off an excessive volume of moisture across the Northeastern Pacific today. These elevated moisture levels are, in turn, forming into a train of rain-bearing systems aimed fire-hose like at California. This atmospheric river is expected to produce storm after storm after storm. Systems that are predicted to dump between 1 and locally 10 inches of rain over sections of Southwestern California and parts of the Sierra Nevada Range over the next few days.

(An atmospheric river takes aim at California. Image source: MIMIC-TWP.)

These heavier than normal rains are expected to fall over regions hard hit by last summer’s unusually intense wildfires. These fires were both larger and burned hotter than is typical. And, as a result, they have denuded entire regions of trees that previously anchored the soil. Now, with such heavy rains approaching, California is again facing a serious risk of landslides and debris flows.

Fourth Nor’Easter in Three Weeks

As flood and debris flow alerts pop across California, the fourth strong nor’easter to form in three weeks is gathering off the U.S. East Coast. Like the atmospheric river presently taking aim at the West Coast, the nor’easter is gathering over waters that are much warmer than normal — ranging as warm as 9 C above climatological averages in parts of the Gulf Stream off Maine. And it’s also gathering energy from an upper level pattern that has been in place since a major polar warming event rocked the Arctic during February.

(Extremely warm sea surfaces off the U.S. East Coast and in the Gulf of Mexico are providing an extra intensity boost to nor’easters forming across the region. Storms that according to recent science were made two to four times more likely by climate change associated polar warming events. Image source: Earth Nullschool.)

Yesterday, the building storm sparked severe weather across Alabama, Missippi and Georgia — producing large hail, tornadoes and heavy rains. Today, the system is flinging frozen precipitation across the I 95 corridor even as it prepares the batter the East Coast with yet one more bout of gale force winds and heavy seas.

Conditions in Context — The Increasing influence of Climate Change on U.S. Severe Weather

High sea surface temperatures, high atmospheric moisture levels, and a polar-warming linked procession of nor’easters striking the U.S. East Coast are signature influences of human-caused climate change. And each is playing a role, to one degree or another, in the pair of major weather events that are presently developing or underway across the U.S. To wit, the increasingly frequent large fires across the Western U.S. have deforested many hillsides in California and led to the increased risk of debris flows following heavy precipitation events in parts of the state.



The Great Totten Glacier is Floating on More Warming Water Than We Thought

It’s well known now that massive glaciers in Greenland and Antarctica are contributing to an accelerating global sea level rise. And while we first thought Greenland was primarily at risk of producing ocean-lifting melt this Century, we have now learned that both West and East Antarctica are becoming involved.

(A massive glacier the size of France is floating on more of a warming ocean than previously thought. Taking into account past reports of thinning along the glacier’s underside, and this is a rather concerning finding. Image source: Australian Antarctic Division.)

How much and how soon and under how much warming pressure is still a matter of some debate in the sciences. But the situation is now looking a bit worse for the Totten Glacier — an enormous sea-fronting slab of ice as big as France that if it melted in total would, by itself, raise sea levels by about 10-13 feet globally.

Previously thought to be more resilient to melt as a result of human-caused climate change and related fossil fuel burning, the Totten was once considered to be stable. However, over recent years, concerns were raised first when plumes of warm water were identified approaching the glacier’s base and later when it was confirmed that Totten was melting from below. Concerns that were heightened by new research identifying how winds associated with climate change were driving warmer waters closer and closer to the huge ice slab.

(Winds heated by climate change drove warmer waters toward Totten and accelerated the glacier during recent years. Video source: Science News.)

After follow-on expeditions to Totten, scientists (over the past two years) discovered that the glacier’s floating underside was losing about 10 meters of thickness annually even as its seaward motion was speeding up. Now, new research has found that more of the Totten Glacier is floating upon this warming flood of ocean water than previously thought. According to Professor Paul Winberry, from Central Washington University, who spent the austral summer of 2018 with a Tasmania-funded team of scientists taking measurements of Totten:

“A hammer-generated seismic wave was used to ‘see’ through a couple of kilometres of ice. In some locations we thought were grounded, we detected the ocean below indicating that the glacier is in fact floating (emphasis added).”

Beneath Totten lies a large ridge upon which most of the glacier is grounded as it flows toward the sea. But penetrating this ridge are numerous gateways that, if melted through, provide sea water access to the glacier’s interior. And recent studies have found that a number of these gateways have been thawed open, allowing warming ocean waters access to sections of the glacier that are hundreds of miles inland.

(Warm water invasion pathways have opened along Totten’s previous grounding line. These openings have allowed water to flood far inland beneath the glacier. The result is a less stable, more rapidly moving ice sheet. Image source: Jamin Greenbaum/University of Texas-Austin.)

This warm water breakthrough has contributed to Totten’s seaward movement. And the new study was aimed at discovering the extent of the inland water melt flood. According to lead researcher Dr Galton-Fenzi:

“These precise measurements of Totten Glacier are vital to monitoring changes and understanding them in the context of natural variations and the research is an important step in assessing the potential impact on sea-level under various future scenarios.”

The fact that the extent of inland flooding along Totten’s underside runs further than previously thought is a concern in light of recent findings that the glacier is losing a considerable amount of underbelly ice each year. In addition, the fact that we haven’t yet pinpointed the grounding line should add another note of worry. How much we should worry is unclear at this time. But the fact is that the scientific signs coming in from Totten continue to indicate that the glacier is suffering warming impacts that pose risks to its historic stability.

From Rimac’s Electric Hypercars to Volkswagen’s Big EV Spend, Everyone’s Racing to Catch up with Tesla

In a world where human-caused climate change is increasingly damaging and harmful, a global race to produce electric, zero tailpipe emissions vehicles is a positive development. And just such a global race appears to be in the offing.


We’ve heard a lot recently about how traditional automakers are spending boatloads of cash on electrical vehicles. Every week, we see new concept cars and planned production vehicles floated to the public in an apparent effort to show competitiveness in a key emerging industry. And the vaunted term that appears to be the sought-after standard is ‘better than Tesla.’ Ironically, this is a tacit admission that Tesla is presently the first horse in what appears to be a ramping race in mass electrical vehicle production.

Rimac’s Concept Two vs the Tesla Roadster 2.0

A recent example of this trend came in the form of the electric start-up Rimac’s Concept Two. Fresh off a 30 million euro fundraising round, Rimac is planning to produce a clean electric hypercar that’s capable of edging out Tesla’s Roadster 2.0 in a number of performance parameters. To be clear, the Roadster 2.0 is a revolution in automotive engineering — leaving former ICE hypercars in the dust in practically every performance specification that matters. But typical to the presently irresistable lure to compete with (or to appear to compete with) Tesla, Rimac attempts a one-up.

(Rimac’s Concept Two is another all electric hypercar that leaves fossil fuel based vehicles in the dust. But can it outsell Tesla’s Roadster 2.0? Image source: Commons.)

Concept Two boasts a stupendous 1,914 horsepower. And its 1425 kWh battery pack can push the car from 0-60 in 1.85 seconds while achieving a top speed of 258 miles per hour. This acceleration and speed edges out Tesla’s Roadster 2.0. But only just.

Of course a big underlying question here — is how many will Rimac build and for how much of an asking price? Rimac produced another electric hyper car (with far less compelling capabilities) — the Concept One during 2013 to 2014. Eight were ultimately built. In contrast, the Roadster 2.0 is a hypercar that’s starting at around 200,000 dollars (which is rather inexpensive for a car that can blow the likes of Lamborghini out of the water) and will likely produce hundreds to thousands.

Can Legacy Diesel Volkswagen Catch Tesla by Spending Big?

Another automaker that’s trying to catch up to Tesla is Volkwagen. Globally, the world’s largest automaker, the company appears to be setting aside 50 percent of its slated investment capital in an effort to produce a massive line of electrical vehicles. Its stated goal is to have an electric version of every model and to sell 5 million EVs annually by 2025. And the company is apparently willing to spend 60 billion dollars to achieve it.

Volkswagen is also investing in not one but 16 battery production facilities. And it states that it will be producing one new hybrid, plug in hybrid, or all electrical vehicle per month by next year. These are major goals. One that is in stark contrast to the present reality in which Volkswagen currently produces just one all-electric mass market vehicle — the E-Golf. And that, admittedly capable, attractive and well-priced, EV is selling at rather lower rates than Nissan’s popular Leaf EV.

(Volkswagen’s E-Golf is presently its only all-electric model. But the company plans a big surge into the EV market over the next couple of years. Image source: Volkswagen.)

In other words, despite big investments and big stated plans, Volkswagen is presently just barely on the EV leader board, if that. This puts the company at a pole position in the EV race far behind Tesla in 2018. And major investments and innovations will be required for it to catch up.

We’ve heard big EV promises from other traditional automakers before. And those like Volvo and Ford appear to have struggled with legacy issues in their stated attempts to put EVs on a fast track. One such issue that could hamper Volkswagen is the fact that it invested heavy sums in diesel vehicle technology during the 70s and 80s. As a result, the carmaker will have to overcome a decent amount of institutional inertia to jump into an EV leadership position. Pollution and emissions scandals plaguing the company have helped to spur its EV drive. But a history of profit-making selling polluting cars may inject a degree of cynicism into the company’s leadership. So self-sabotage is something to look out for here.

If Volkswagen manages a major internal transformation and if its engineers are capable of producing market EVs with mass appeal, then it could take a huge share of the emerging EV market and surge to match Tesla sales during 2019-2021 while possibly surpassing it by 2022-2023. Perhaps. But there’s a lot of hurdles for Volkswagen to overcome before gets there, all promises and talking aside.

Why are So Many Powerful Nor’Easters Striking New England?

A major nor’easter is pummeling states from New York through Maine today with heavy snow, near hurricane force winds, and high surf. The storm is expected to dump 1-2 feet of snow over this region even as it pounds coastlines that have already been raked by two other major storms during the past two weeks.

It would be relatively unusual to see one storm of such intensity striking this region during any given March. But as the third in a two-week-long parade of extreme events, the presently intense storm pattern is starting to look more than a little outlandish.

So what the heck is going on? In a couple handfuls of words — influences related to human-caused climate change are spiking East Coast storm intensity while setting in place a general pattern that causes these storms to repeatedly fire.

(Over the past 11 days, three major nor’easters have struck the U.S. East Coast. Why have these storms been both so strong and such a persistent feature? Image source: RAMMB/CIRA. H/T to Chris Dolce.)

The Most Recent of Three Powerful Nor’Easters

Presently, the most recent strong storm has an intensity of 970 mb and features winds gusting to hurricane force just off-shore with gusts of up to 69 mph along the coast. Pressures are expected to drop into the upper 960s — making it about as powerful as the system that produced major flooding in parts of New England on March 2nd.

For reference, storm intensity measured by pressure in the range of 970 mb is about as strong as a category 2 hurricane. This is a rough comparison as hurricanes tend to be more intensely concentrated even as nor’easters tend to have broader if more diffuse impacts. But it’s a marker for the high level of atmospheric energy the system is now pumping out and how potentially damaging it could ultimately become.

The storm is thus strong enough to produce record and historic impacts. This is notable enough by itself. But the fact that we have had three systems of similar strength in just 11 days over what is practically the same region is concerning.

(Global warming fuels increased convection as lands waters pump out more heat and moisture. At times, this can result in some unexpected instances of atmospheric pyrotechnics.)

Specifically, on March 7 a 989 mb system raked the same region with gale force winds and instances of intense thundersnow (see above tweet by NOAA). And on March 2nd, a sprawling storm that dipped to around 975 mb generated massive waves and significant coastal flooding.

Atmospheric Train Wreck

Looking for causes, we need to go all the way back to February. At that time, a big polar warming event was taking place. In the upper levels of the atmosphere over the pole, the stratosphere was warming up. But at the same time, surface temperatures at the pole were rising to above freezing. In some locations near Northern Greenland, readings were pushing as high as 63 F above average.

High amplitude Jet Stream waves were eating away at the typically faster polar circulation patterns even as they were helping to inject much warmer than normal air into the Arctic and pull its resident cold air out. Eventually, all this heat running into the various layers of the Arctic atmosphere drove the polar vortex to collapse. This, in turn, resulted in cold Arctic air being ejected south and west into Europe. This massive jet stream dip, in eddy-like fashion produced a large, countervailing high pressure ridge over Greenland.

(A deep trough that has consistently lingered over the U.S. East Coast and helped to spawn storm after powerful storm, was initially generated by a very intense polar warming event linked to human-caused climate change. Image source: Earth Nullschool.)

The rippling upper level jumble of winds backed all the way to the U.S. East Coast — forming a deep and persistent trough. The trough funneled numerous disturbances slowly through the region. And it was both the trough’s persistence and depth that enabled strong storms to form repeatedly even as they set off such long-lasting and intense impacts (see Dr Jennifer Francis’s related work on how polar amplification impacts the Jet Stream here).

Much Warmer than Normal Ocean Waters

Though polar amplification — which is another term for how global warming spurs the poles to heat up faster than the rest of the world — helped to generate the upper level features in the atmosphere that would consistently generate storms running across the U.S. East Coast, widespread warmer than normal ocean waters helped to give these storms more fuel.

In the Gulf of Mexico, sea surface temperatures have consistently ranged between 0.5 and 3 C above normal since February. These warm ocean waters contributed to severe floods over the Ohio River Valley at that time by pumping record levels of atmospheric moisture into the storms running south.

(Much warmer than normal sea surface temperatures dominate throughout the Gulf of Mexico and just off the U.S. East Coast. These warmer than normal waters — warmed by climate change — are providing fuel for the powerful nor’easters of recent weeks. Image source: Earth Nullschool.)

As the Jet Stream dip became more oriented toward the East Coast during March, storms that would ultimately blow up over the Atlantic at first got a big plug of moisture from the extra evaporation flowing off that warmer than normal Gulf. But it was over the Atlantic Ocean that the storms would really start to fire. There, ocean temperatures were ranging between 0.5 and as high as 9 C above normal over parts of the Gulf Stream.

Such very warm sea surfaces provide a lot of fuel in the form of moisture and related convection. And, in particular, we saw some rather amazing instances of convective lift during the recent March 2nd and 7th storms as they tapped that incredible Atlantic Ocean heat and moisture.

Conditions in Context

So to sum up, an extreme polar warming event driven in large part by human-caused climate change set up conditions that generated a persistent trough over the U.S. East Coast. This trough was both deep and long-lasting. As low pressure systems moved into the trough zone, they were able to tap abnormal levels of heat and moisture rising off of the Gulf of Mexico and Atlantic Ocean near the coast in order to bloom to abnormally powerful intensity. Both of these factors — Arctic warming and warmer than normal sea surface temperatures — would not have been as acute or intense without the extra push to the climate system that human forced warming provides. As a result, we are seeing a very strong climate change related signal in the present severe storm pattern.


Intensifying Drought Shifts Toward Central U.S.

Last week saw a major increase in drought intensity in the Central U.S. as flash wildfires sparked across Oklahoma. Meanwhile, longer term drought trends remained strong even as the U.S. West Coast saw breaks in the dryness in the form of late winter precipitation.

(Drought expanded across the Central U.S. last week as precipitation deficits there increased. Image source: Drought Monitor.)

A return to severe to exceptional drought across the Western and Central U.S. was one of the hallmarks of the overall warm winter of 2017-2018. Historic drought, which had been suppressed by substantial rains during 2016-2017, appears to have returned — with threat of worsening conditions through spring, summer and fall.

In the Central U.S., the dry pattern reinforced this week which added to already serious conditions. During mid-week, Oklahoma saw the eruption of seven large brush fires as a result of both drought and strong winds sweeping across the plains states. Dry springs can result in fires for this region. However, the recent intensification of droughts brought on by human-caused climate change is spiking fire hazards from the Central U.S. through the West Coast and beyond.

(California snow pack totals remain well below average despite a recent increase in the number of storms affecting the state. Image source: CDEC.)

In California, snow packs are still running well below average, despite a recent wave of storms sweeping through the region. But it’s worth noting that though still much diminished from typical snow depth totals, the present range is now higher than the driest years — 2014-2015 and 1976-1977. So the situation isn’t looking quite so bad as it was a few weeks ago.

In addition, the blocking ridge that had dominated the West for much of the winter has mostly collapsed — allowing more rain and snow-bearing storms to cycle through. Some relatively intense precipitation is expected to fall over central and northern parts of the state later this this week. However, with widespread drought reasserting and with warmer than normal temperatures likely this spring, the increasingly drought-prone state is far from out of the woods.

(Temperatures have tended to remain above average across most of the U.S. this winter even as abnormally dry conditions impacted the Southwest. Image source: NOAA.)

Under human-caused climate change increasingly warm temperatures result in higher rates of evaporation from lakes and soils. This increases drought intensity for many locations around the world. In keeping with this longer-term trend, the winter of 2018 can still be characterized as both warmer and drier than normal for most of the U.S. But the overall drought pattern has shifted more toward the Central U.S. and away from the West Coast with the approach of spring.


Polar Anomaly Flip in an Abnormally Warm World: Arctic to Cool as Antarctica Heats Up

Interesting and concerning climate-change influenced weather in the global forecast for the next ten days.

As the Arctic is projected to cool down, it will open a brief window for sea ice to grow above its present track toward a record low maximum. However, any new edge ice will likely be weak and thin relative to past years. Meanwhile, sections of western Antarctica are predicted to see above freezing temperatures over the next week. And all of these various swings are occurring in a world that is considerably warmer than normal.

Global Context

Today, as with practically every day since I began tracking global weather and climate back in 2012, the world’s temperature averages are warmer than normal. An odd and increasingly harmful warmth that is driven by atmospheric CO2 levels ranging above 405 ppm (490 ppm CO2e). High heat-trapping gas levels that are, in turn, primarily the result of human fossil fuel burning.

(Despite an building cool-down relative to typical temperatures in the Arctic, the globe remains much warmer than average. The most intense hot spots for today hover over Canada, Southern Europe, North Africa, the Middle East, India through China, and Parts of Antarctica. Image source: Climate Reanalyzer.)

The world, overall today, is about 0.7 C warmer than the 1979 to 2000 average. Compared to 1880s, that’s about 1.2 C warmer than a typical late 19th Century day. This warming is considerable. A long term average that is in a range comparable to the Eemian of about 120,000 years ago. In other words, the world we live in today is the hottest its been in more than a thousand centuries.

Looking at the various climate zones, we find that every major region except the Arctic is warmer than average. This is happening as Northern Hemisphere Winter transitions to Spring and as the polar jet stream appears to be reasserting itself a bit after a major polar vortex collapse event during February. A new integral cold air vortex is gathering over Northwest Siberia — which is allowing cooler conditions to again reassert in the Arctic.

Opportunity for Late Season Sea Ice Regrowth

Over the next week, temperatures in the High Arctic are expected to plummet. And for the first time since practically the start of Winter, readings over the Arctic Ocean zone are expected to range below average.

As noted above, the cold pole appears to be asserting in the region of Northwest Siberia. But cold air pushing out into the Barents, North Bering, North Baffin, and Irkutsk regions will afford some opportunity for a sea ice rebound.

This cold air retrenchment is expected to be juxtaposed by significant warming through Northern Canada, Alaska, the Southern Bering, Southern Baffin Bay, Southern Greenland and in a zone just north of Svalbard. This warm pole will likely help retard any sea ice bounce coming from cooler air asserting on the Siberian side — constraining ice growth in a number of edge zones and possibly asserting some counter-cooling melt. We may even see a polynya open up in the Beaufort as temperatures over Alberta rise to above freezing and warm winds drive northward.

As a result of this warm-cold dipole, and the related warmth in certain key ice edge zones, it remains uncertain whether sea ice will bounce enough to overcome an otherwise strongly asserted trend toward a record low Arctic sea ice maximum for 2018. But if such a bounce back were to happen, the opportunity for it to occur will be during this week or next.

Extreme Antarctic Warming

As the Arctic is predicted to cool down this week, the Antarctic is expected to heat up. By late this week through next weekend, a powerful plume of warm air is expected to drive above freezing temperatures across Marie Byrd Land and the Ross Ice Shelf in West Antarctica. As with recent Northern Hemisphere Events, a high amplitude wave in the Jet Stream will drive much warmer than typical temperatures far into what should be a frigid polar zone.

(A major warm-up predicted for sections of West Antarctica will likely produce surface melt as temperatures rise to above freezing. Image source: Climate Reanalyzer.)

This warming event is predicted to be rather intense and last for 2-3 days, with temperatures rising to 25-30 degrees Celsius above average in certain zones.

Such a warm-up would push surface temperatures in some locations to 2-4 C or warmer (up to 40 degrees F) and would likely produce periods of surface melt. These kinds of melt events have been a more frequent occurrence for Antarctica recently. They’re a part of the larger trend of ice mass loss both at the surface and on the underside of sea facing ice sheets as the local ocean has warmed. A primary driver of a noted acceleration in the rate of global sea level rise.

Looking on into next week, a subsequent warming in East Antarctica is expected to push temperatures for the whole Continent into a range approximately 3.5 C above average. This event, however, is not expected to drive significant above freezing temperatures inland, though some coastal areas may see brief departures into these ranges.

Delving Further into Uncharted Territory: Arctic Sea Ice Greatly Weakened at Start of Spring 2018

The story of Arctic sea ice is one of short term complexity overlying an inexorable long term trend of decline. It has thus been difficult for sea ice monitors to forecast seasonal ice growth and retreat, despite a larger and significant warming of the Arctic.

(New ice has formed north of Greenland following a massive polar warming event last week. This ice is thin and faces the warm up of spring and summer with uncertainty. Sitting over a region that is typically filled with thick ice, it could provide a back-door for melt into the Central Arctic come summer. As usual, weather will play a key role in this year’s melt, despite the undeniable longer term trend of loss. Image source: NASA.)

Undeterred by these facts, a number of key factors stand out in 2018 — following a winter in which the Arctic has suffered considerable warming and related impacts to the ice.

Lowest Sea Ice Extent; Warmest Freeze Season

Today, Arctic sea ice extent is at its lowest levels on record. Volume, is at the second lowest levels ever measured. And this year’s freeze season (October through February of 2017-2018) was the warmest ever recorded (see link below). Taken at face value, these are pretty stark statistics. But they don’t tell the whole story. Not by a long shot.

The Arctic is warming up twice as fast as the rest of the world. It has been doing so since around 2000 when Polar Amplification — the science-based expectation that the poles will warm faster than the globe as greenhouse gas levels rise — really began to kick in. So the present warm peak in the Arctic is on top of a record spate of accelerated warming. In the graphs it looks like a rocket ship taking off.

We should be clear that most of this warming has occurred during winter time. It’s warmth that has softened the ice, thinned it. Produced a big push toward thaw. But like a cup of water with a single cube of melting ice in it will resist surface temperatures above freezing, this thinning and melting has yet to have have a significant impact on summer-time temperatures in the high Arctic. That thinning skein of ice is still doing its duty keeping the Arctic summer close to freezing. But it’s a realistic question to ask — how much longer can it? What happens when the majority of the summer ice is gone?

Such radical warming has also had a number of environmental effects. It is pushing fisheries that rely on cold water northward. It is stressing key species like the Wright Whale, the Polar Bear, and the Puffin. It is causing the permafrost to thaw, which produces a number of environmental feedbacks. Not the least of which includes land subsidence, the release of mercury into the Arctic environment and global ocean, and the slow but rising expulsion of greenhouse gasses long locked away.

Multiyear Ice Has Pulled Away From Shore

The thicker ice floes of yore are now mostly a bare memory. A recollection of past cold blasted away by fossil fuel burning and inexorable thaw. This year, an LNG tanker crossed the thinning ice during winter time. Bearing with it a great load of climate change quickening gas destined to be burned in some nation still entangled by a heat-producing web of gas plants, coal mines, and diesel and gasoline cars.

The thick, multiyear ice is reduced to a phantom of its former girth and extent. It has drawn back, pulling away from shore. Increasingly sequestered to more and more remote regions. And on the run from the ocean swells, warmer storms, and increasing instances of liquid rain that fall across an Arctic that is facing violent transition.

Increasingly, it huddles closer to Greenland and the Canadian Archipelago. But as we can see in the image at the top of this post, even this region is no longer a reliable sanctuary.

Cold Pole Shift in Forecast — Canada/Alaska Predicted to See Abnormal Warmth

As late winter transitions into early spring, we enter the less certain time of melt and thaw season. During recent years, as warming bloomed in the lower latitudes, the Jet Stream which had slowed and meandered more during winter due to polar warming, snapped back into place. This seasonal flattening and speeding up of the upper level winds tended to harden and deepen the cold pole at the north of our world. Reducing relative temperature variance above normal averages even as melt season advanced.

This created a kind of Dr. Jekyll and Mr. Hyde relationship between winter and summer in which high Arctic winter temps seemed outrageously warmer than normal even as summer snapped back to more typical Arctic averages in the furthest north locations.

(As we enter spring and summer, high Arctic temperatures tend to regress back toward the mean following winter warming. This is largely due to the inertial cooling influence of ocean ice which will tend to keep temperatures closer to the freezing line even as net energy gain is ongoing. Loss of ice would result in the removal of this insulating effect and likely push summer anomalies for the region into the +1 to +5 C range. Image source: Zachary Labe. Data Source: DMI.)

But all is not well. The loss of winter climate norms have done their damage. And the summers, on balance, saw the edge ice retreat a bit further. Saw the boundaries of Arctic cold pull a bit tighter and saw the open, warmer, sunlight-capturing waters advance ever northward.

We don’t know if this return to more normal temperatures for the high Arctic during summer will save the ice from new record lows this year during melt season. But we can track how thaw season is predicted to advance against a greatly weakened Arctic sea ice pack. And this year, the cold pole appears to be expected to shift over the land mass of western Siberia during early March.

(A warm North America, cool west Siberia dipole appears to be developing during early March in the forecast models. If this trend reinforces, it could leave large areas of ice open to early thaw from the Alaskan and Canadian maritime to the Central Arctic. Note that residual energy transfer along ocean zones remains in play in this forecast. Image source: Climate Reanalyzer.)

Meanwhile, on the North American side, abnormal warmth is predicted to advance through Alaska, Western Canada, and the Hudson Bay region.

If this trending location of warm and cool extremes reinforces and holds through melt season start, we can expect the front of melt advance to begin on the North American side as the region near the Kara and Laptev seas resist melt advance longer. Meanwhile, latent warmth over the Bering Sea and Svalbard appear to be set to hold back late season refreeze in these two key zones.

How this weather dynamic plays out will determine if melt season 2018 begins on a record low ramp and how resilient the ice will be to the seasonal thaw that is on the way. We are presently in a situation where a record low start is possible even as reasonable concerns about a potential rapid summer melt progression are presently heightened.

East Coast Still Experiencing Heavy Seas as Another Storm Looms

Large swells and high tides continued to batter the U.S. East Coast today as a storm that is predicted to become yet another nor’easter began to gather over the Central U.S.

A broad low pressure system that slammed the mid-Atlantic and Northeastern U.S. this weekend with flooding, massive waves, and wind gusts of up to 93 mph was still hurling rough seas and storm tides at the U.S. East Coast on Monday. Such widely-varied locations as coastal Florida and New Jersey were experiencing high water, beach erosion, raging surf and minor coastal flooding. Officials were warning people to stay off the beach and away from riled seas as crews rushed to clear debris.

The storm gained extreme intensity that was likely peaked by a number of climate change related factors including warmer than normal sea surface temperatures, a blocking high over Greenland that was likely impacted by a recent polar warming event, and higher sea levels resulting increasingly severe tidal flooding during the storm’s peak.

(A massive low pressure system that knocked out power to hundreds of thousands and flooded the Northeast coastline this weekend still churned off the U.S. East Coast on Monday — lashing shores with rough surf and minor flooding. Image source: Earth Nullschool.)

Inland, nearly a quarter million people were still without power from Virginia through Maine — down from a high of around two million at the weekend storm’s peak. However, utilities are saying that it may take days to fully restore power to some locations. As repair crews were scrambling, another major storm was starting to gather over the Great Plains — with a high pressure system across Florida drawing very moist air from over a much warmer than normal Gulf of Mexico and into the developing storm’s circulation.

Over the next 24 hours, the new storm is projected to track eastward — crossing to the Ohio River Valley region by late Tuesday. On Wednesday, the low will transition energy into a developing storm off Virginia and the Outer Banks. This low is then expected to rapidly intensify as it moves northward — developing strong onshore winds with gusts of 45-65 mph crossing coastal Delaware, New Jersey, Long Island, Connecticut, Rhode Island and Massachusetts by late Wednesday and into early Thursday.

(Models show another powerful low pressure system battering the Northeast Coast with 45-65 mph winds by early Thursday. Image source: Tropical Tidbits.)

The storm is also predicted to bring heavy coastal rains and up to 1-2 feet of snow across parts of the Northeast.

Presently, the storm is not expected to be as strong as the massive system that slammed the Northeast and Mid-Atlantic this weekend. However, gale force to storm force gusts are presently predicted, and forecast storm strength has been trending toward higher intensity in recent model runs.

In addition, climate change related factors like a warmer than normal Gulf of Mexico, much warmer than normal sea surface temperatures in the Gulf Stream, higher sea levels, and a large blocking high over Greenland are contributing to this most recent storm’s expected intensity. With hundreds of thousands still recovering from this weekend’s historic storm, and with so many factors now in play that could serve to further spike a new storm’s intensity above those presently expected, this is a developing situation that bears watching.

U.S. Northeast Battered by Second ‘Once in a Generation’ Storm This Year

A major nor’easter is lashing the Eastern U.S. today. Reports of moderate to severe tidal flooding are racking up as hurricane force gusts are pushing mounds of water inland and raking the coastline with tremendously powerful waves.

This storm blew up to extreme intensity over the night-time and early morning hours on Friday as two low pressure cells converged off the U.S. coast. By afternoon, the storm had bombed out to 970 mb and was still intensifying.

A broad region across the northeast from D.C. to Maine are now experiencing wind gusts of 50 to 80 mph or more with local power outages and downed lines reported over a broad region. The gusts are so strong and widespread that diverse locations all throughout the Northeast are seeing instances of toppled trees, damage to structures and falling limbs. In Chambersburg, PA, the raging gusts tipped over a school bus.

On the coast, extremely strong winds for a nor’easter and conditions more akin to a hurricane are driving directly in to shore from Chatham and Nantucket northward. As a result, weather authorities are predicting a historic coastal flood event for metropolitan areas like Boston. There, record high tides may be exceeded as winds there are now blowing at a vicious 80 mph.

(A broadening storm is lashing most of the Northeastern U.S. with gale and hurricane force winds even as a places like Boston face massive waves and record storm surge flooding. Image source: Earth Nullschool.)

But what is, perhaps, more concerning is the fact that this storm is still gathering strength. And due to a blocking high over Greenland, the storm — dubbed Riley — is likely to only slowly move off-shore. So its impacts will tend to persist for multiple high tide cycles even as its circulation broadens and it generates an east-to-west fetch of gale to hurricane force winds stretching over a 400 to 600 mile region of ocean and driving directly toward the Northeast and East Coasts.

This will enable a long-lasting storm surge that will generate serious flooding for hundreds of miles of coastline. And on top of that surge, towering waves will relentlessly batter the coast throughout Friday and Saturday. Already the flooding has become quite severe for a number of locations. But the situation is likely to get worse before it gets better. With the worst impacts expected at high tide late tonight.

Scenes like these bring back recollections of Sandy. And like Sandy, the present cyclone has been influenced in a number of ways by human-caused climate change.

The storm’s historic intensity was first fed by a large plume of moisture issuing off a much warmer than normal Gulf of Mexico. Instability, driven by a deep diving trough, formed a low sweeping over the north-central U.S. that then tapped this high volume of moisture. The latent heat in the moisture enabled stronger than normal convection which helped to spike the storm’s early intensity.

(Extremely warm sea surface temperatures both in the Gulf of Mexico and off the U.S. East Coast are helping to fuel the present storm’s record intensity. This is just one of the climate change associated factors contributing to the present storm. Image source: Earth Nullschool.)

Off shore, the Gulf Stream waters are also far warmer than normal. Ranging as high as 9 degrees Celsius above average, this abnormal heat helped to fuel a second plume of moisture and instability. And as these two areas of storminess merged, they rapidly bombed out to high intensity even as their area of storm wind circulation broadened.

To the north, a recent (climate change driven) polar warming event has generated a kind of train wreck in the upper level winds that typically hurry storm systems along. As a result of this train wreck, a blocking high over Greenland is preventing this heat-amplified storm from tracking eastward. Over the next 48 hours, this block will allow a massive pile of water and towering waves to relentlessly hammer the Northeastern and Eastern Coasts of the U.S.

(Large waves and long fetch which is predicted to be generated by this storm on Saturday could produce serious and wide-ranging impacts all up and down the Eastern Seaboard from Hatteras to Portland and points northward. Image source: Earth Nullschool.)

Presently, this storm is expected to produce the second 1 in 100 year flood event that the Boston area has seen in the past year. Under typical climate variability, the likelihood of seeing back-to-back events of this kind would be 1 in 10,000. However, due to the influences of human-caused climate change, the potential for extreme weather events like the one we are presently enduring are greatly enhanced.


This Week’s Climate and Clean Energy Brief: Amazon on the Brink, Tesla Competitors Emerge, Civilization Collapse Report, Trump Trashed on Environment, Utilities Partner with EVs

There was quite a lot that we missed in the climate and clean energy world this week. So, in an effort to catch up, we’re going to provide you with a handful of the major highlights. But before we continue, I’d like to also mention that a major and potentially weather event with climate change related influences is now starting to slam the U.S. Northeast with high winds, waves and heavy surf.

We’re compiling a report for later this afternoon on yet one more extreme weather event in a long procession. So watch this space.

The Amazon Rainforest is on the brink of collapseFor a number of years now, we’ve been covering the dual impacts of human-caused climate change and deforestation on the Amazon Rainforest. One of our expert commenters, Umbrios, is a Brazil native and regularly provides updates in the threads below. So those who’ve followed along here have known for a while now that the Amazon is in serious trouble.

Rising temperatures are increasing instances of wildfires within the typically wet forest. Meanwhile, encroaching farms and settlements have cut and burned through the lush jungle, invading it with roads and threatening to choke off what is one of the great ecological treasures of our world.

(A combination of slash and burn deforestation, droughts, rising temperatures and wildfires are pushing the Amazon Rainforest to the brink. A new study finds that human encroachment and climate change are on the verge of transforming half of the Amazon into less productive grasslands. Image source: The Union of Concerned Scientists.)

The concern is that the Amazon, which is under increasing threat like so many other key environments around the world, reaches a tipping point where much of it is transformed into less productive and less helpful Savannah. Where that point rests on the temporal and spatial scale has long been a subject of debate. But a new study finds that it’s much closer than many had feared.

In total, about 17 percent of the Amazon has been deforested. And what the study found was that, due to continued rising temperatures associated with human caused climate change, only another 3 percent deforestation would be enough to transform fully half of the Amazon into Savannah. In this case, global warming is acting in concert with local clear-cutting to provide a dual threat to this great forest that is home to 14 million species and is one of the largest remaining carbon sinks on the planet.

Tesla competitors emergeOn the sustainability side of our ongoing story of tragedy, hope and crisis, we find that a number of automakers are emerging to challenge Tesla’s all-renewable business model. Unfortunately, so far, most automakers are confronting Tesla with single model designs rather than a full transformation of business strategies. But what is encouraging is the rising quality of EVs entering the production fleet.

A good example is this week’s announcement by Jaguar that its I-PACE EV can out accelerate some versions of the Tesla Model X. I-PACE is an EV sporting a 90 KW battery pack and a 240 mile range. It’s priced between 87,000 and 102,000 dollars (US) and it has a stated acceleration of 4.5 seconds from 0-60 mph. This makes it a peer or a near peer to the Tesla Model X which starts at 85,000 dollars, has an all electric range of between 257 and 289 miles, and can accelerate from 0-60 in 4.9 to 2.9 seconds (P100D).

(Jaguar promotes smaller, long-range, high performance, high-price I-PACE electric vehicle as competitor to the Tesla Model X. But is Jaguar really serious about transformational EV production? Or is it just trying to slow Tesla’s all-renewable Juggernaut down? Image source: Jaguar.)

The I-PACE is, however, smaller than the X. Weighing less, it likely relies on this lower mass to match Model X acceleration and range due to Tesla’s superior battery energy density. But what is clear is that Jaguar is trying to compete with Tesla on turf that the all-electric automaker has long dominated.

Jaguar claims that the I-PACE is part of a transformational strategy. But a single EV entry is hardly tranformational compared to Tesla’s larger EV-only production chain and design path. So the question for renewable energy supporters is — does this Janguar really help to speed the clean energy transition, or is it just another rock a primarily fossil fuel based motor company is throwing into the road to delay Tesla? Time, and the number of EVs Jaguar produces (both as models and as single model production) will tell.

Scientists are concerned about the risk of civilization collapse due to climate change and how harmful political ideologies are making matters worse. So my background is one of emerging threats. I worked in the U.S. military, as a member of the U.S. Navy’s DOD force protection group, and as Editor for Emerging Threats at Jane’s Information Group. And it has long been my goal here to analyze climate change impacts in the frame of a systemic threat that increases civilization collapse pressure.

In the military context, climate change is often described as a Threat Multiplier. Rising global temperatures and associated sea level rise, growing season disruption, and increasingly severe weather events can severely damage infrastructure or tear at the fabric of societies — generating conditions of mass desperation the world over. Those focused both on humanitarian relief efforts, often a military mission, and on combating rising instances of extremism (which are often fueled by economic desperation or inability to access shelter, food, and water) are now very concerned about the impact of climate change disruptions on global stability.

(Illustration of instances where climate change has multiplied instability. Note that effects range well outside the regions indicated in the above graphic. Image source: Climate Change as a Problem of National and International Security.)

Unfortunately, these disruptions do not always occur far from home. And no nation has a viable defense against harms associated with climate change. Over the past year, the U.S. has seen some of the most damaging extreme weather events in its history. And most of these have been scientifically linked to climate change. One instance — Maria’s strike to Puerto Rico — resulted in a systemic collapse that has yet to be fully repaired. Part of this failure is due to the severe nature of the climate change enhanced storm. But another aspect of the U.S.’s failure to support Puerto Rico was the fact that the Republican Party was held in the grips of the harmful ideology of climate change denial, jingoism, and anti-government thinking.

This ideology, which has captured so much of the political state of play of one of the world’s greatest nations, cripples responses to the growing existential threat of climate change. It denies both mitigation in the form of renewable energy funding even as it denies the necessary level of support in response to the disasters that climate change produces in ever-greater numbers and on increasingly destructive scales.

The new climate change collapse threat study discussed above is being conducted to examine the societal risks of climate change in light of political capture by harmful ideologies that fail to recognize realities on the ground as they emerge. We’ll be following it here with interest.

Trump trashed on terrible, disjointed, reckless environmental policies. Pretty much every thinking, rational person in the free world has now been woke to the fact that Trump cares little for the safety and security of the American people and sees the office of the Presidency primarily as a means to advance the personal interests of himself, his family, and his close associates. Never before has an Administration acted in so corrupt a fashion or courted so many nefarious entities in a brazen effort at self-promotion, damn all public consequences.

“Over and over again, the Trump administration has put the profits of multinational polluters over the health and well-being of everyday Americans,” — Eric Schneiderman, New York’s attorney general.

One of Trump’s first harmful and self-serving actions was raise Scott Pruitt to head of the Environmental Protection Agency. An unprecedented assault of critical safety-related protections of the American citizenry soon followed. An assault led by policies promoted, through Pruitt, not just by his allies in the coal, oil, and gas industry; but by practically every harmful polluting industry.

(The Center For Biological Diversity has filed 57 lawsuits against the Trump Administration. And it just just one of many agencies leveling an all out response to Trump’s assault on the environment.)

The Trump Administration has tried to enable the dumping of dental mercury into water systems, to allow the use of a substance harmful to child brain development, to enable the environmental release of such dangerous toxins as lead, to let gas companies leak poisonous and climate change enhancing methane plumes into the local environment, to allow trucks and automobiles that spew smog, to halt the protection of key species like bumblebees, and to roll back the Clean Power Plan, the Clean Air Act, and the Clean Water Act.

Such harmful and irresponsible actions have resulted in the Administration being hit by scores of court cases. Rick Sniedermann, the New York Attorney General, alone has produced 50 environmental lawsuits aimed at preventing the roll-back of key protections. And in many instances, the Administration’s pro-polluter policies are suffering serious losses in court.

Utilities partner with EV manufacturers. There’s an amazing clean energy synergy that’s yet to be fully leveraged. It’s a case where wind, solar, other clean energy sources, EVs and EV batteries are capable both of reducing emissions and of creating valuable new energy markets. PG&E apparently recognizes this opportunity and is more than willing to partner with automakers to incentivize it.

BMW and PG&E are offering a 10,000 dollar rebate for the BMW i3 to utility customers. The offer is beneficial to those purchasing an EV because it can reduce the cost of a 44,000 dollar EV to 24,000 after all state, federal, and utility/automaker rebates.

(PG&E power mix shows potential for substantial greenhouse gas emissions reductions for EV owners who purchase electricity from the utility vs those who own a gasoline or diesel-burning vehicle. At some point, PG&E may well considering changing its name to Pacific Electric. As the gas portion is increasingly less relevant to its energy portfolio. Image source: PG&E.)

The utility benefits due to increased electricity demand coming from the EV user. And BMW benefits from the marketing provided by PG&E which helps it to clear old models from its inventory and pave the way for more advanced electrical cars.

It’s also worth noting that PG&E generates more than 70 percent of its electricity from non-carbon-emitting sources and it has a goal for continuing to expand its clean energy allotment. So EV owners who are PG&E customers are engaged in substantially reducing their transportation based carbon emissions over time.

Tesla Model 3 Leads Record U.S. EV Sales in February of 2018; But Renewable Energy Transition Needs to Accelerate

At 1.1 to 1.2  C warmer than late 19th Century averages, the signs and effects of a worsening climate disruption due to fossil fuel burning abound. This level of warming and related harms, however, is mild compared to what we will face if we continue to burn those fossil fuels and dump carbon into the atmosphere. And that’s why, as it becomes clear to the U.S. and to the global community that climate harms are upon us, we need to urgently redouble our efforts to transition to clean energy based economic systems.

In February, a key aspect of the clean energy revolution continued to make strides. It appears that battery-based electrical vehicles sold around 15,000 units to the U.S. market for the month. This is a major achievement, representing about 20 percent growth following February of 2017’s 60 percent growth. It also represents the 29th consecutive month in which EV sales grew relative to past months.

Plug in scorecard

(Preliminary reports from Inside EVs estimates that 14,180 electrical vehicles sold to the U.S. market during February. Unaccounted for models will likely push this number to between 15,000 and 16,000.)

The top seller, according to Inside EVs, was again the Tesla Model 3. Logging an estimated 2,485 sales, the Model 3 rate grew by 600 vehicles over January’s estimated 1,875 sales. This represents about 621 vehicles sold per week at present — which is still below the 800+ per week estimated production mark. But Tesla continues to make strides. And it is doing so in a way that is dominating the present U.S. EV market.

It does appear that Tesla will be challenged in hitting its goal of 2,500 vehicles produced per week by the end of March, however. And this may leave space for some competitors. That said, Tesla still retains a number of key advantages including — charging infrastructure, top quality and top performance vehicles, extraordinary demand for its products, and what appears to be best in class battery technology. The company is also the only major manufacturer dedicated solely to EV production — which makes this Tesla’s market to lose.

(The Tesla Model 3 dominated U.S. EV sales during the month of February. If production continues to ramp, other automakers are going to have difficulty coming close to this new market leader. Image source: Tesla.)

Toyota Prius Prime and Chevy Bolt rounded out the top 3 sellers — bouncing back from lower January sales. Prime gained by 554 cars sold to hit 2,050 while Bolt jumped by 247 to hit 1,424. Toyota appears to be somewhat more aggressively selling its plug-hybrid. GM, on the other hand, has received some amazing reviews for the Bolt so the relatively lower sales for this high-quality, long-range EV has caused some to question GM’s dedication to EV sales in general.

Tesla Model X and Model S sales also grew from January with the S seeing 1,125 sold and the X hitting 875. Tesla tends to push hard for end of quarter sales, so March should be a banner month. But the relative strength of S and X sales are notable considering the fact that some analysts predicted the Model might cannibalize S sales. This seems to be less the case.

Nissan was a notable factor in February sales as new Leafs going to customers surged from 150 in January to 895 in February. We expect that Nissan will be a major EV market player this year. Nissan has an aggressive sales strategy and the new 151 mile range Leaf is one of the best-priced EVs on the market with a base of slightly less than 30,000 dollars. The new Leaf also includes a number of desirable features such as increased acceleration, more horsepower, base level autonomy and a few more comfort and luxury perks. If there’s a car and a car maker that’s capable of challenging Model 3’s ramp during single months, it’s the Leaf. But they’ll have to do it soon even with Tesla experiencing some ramping difficulties.

EVs are a critical aspect of solving the present problem of massive human carbon emissions hitting around 11 billion tons per year. The ground transportation sector emits about 1/3 of the world’s carbon and EVs, using present energy systems, can reduce that number by half. Furthermore, mating EVs with wind and solar — both in production and on the road (as Tesla is doing — see image above), increases wells to wheels carbon emissions reductions. Ultimately this synergy can achieve a 100 percent or near 100 percent removal of the carbon problem.

But given the fact that climate harms are on the rise, we don’t have any time to lose. That’s why we all need to pitch in and encourage a more rapid ramp for the clean energy systems like wind, solar, EVs and battery storage that provide such a helpful mitigation to the crisis that is building.


Warmed, Wet and Blocked: Another Storm Taking Aim at the Flooded Central U.S. is Expected to Transition into a Stalled Nor’Easter

The Ohio River Valley is now reeling from the worst flooding event of the past 20 years. Yet one more major event fueled by disruptions to the Earth’s atmosphere facilitated by human-caused climate change. But with another serious plume of moisture issuing from the warmer than normal waters of the Gulf of Mexico, more heavy rains are heading toward a storm-battered Central U.S.

(One more big moisture plume arises from a warmer than normal Gulf of Mexico. It will help to fuel a major storm system that is expected to impact a large swath of the U.S. for most of this week. Image source: Earth Nullschool.)

The set-up is similar to previous events of the past two weeks. A strong high pressure system over the Northeast is pulling a heavy load of moisture from a much warmer than normal Gulf of Mexico. Sea surface temperatures there, according to Earth Nullschool reanalysis, range from less than 1 C warmer than normal in the southern Gulf to as much as 5 C warmer than normal in the northern Gulf. Last week, these warmer than normal sea surfaces helped to fuel record atmospheric moisture levels along with historically heavy rains.

This week’s atmospheric moisture pulse will be picked up by a trough sweeping into the Central U.S. over the next couple of days. There, it will help to pump up a series of heavy storms that are predicted to dump another 3-7 inches of rain over the Mississippi River Valley this week. Note that this is on top of the 5-15 inches of rain that has already been dumped over the region during the last two weeks.

(NOAA composite radar imagery shows observed precipitation totals for the U.S. during the past 14 days. Note that another batch of heavy rains is headed directly for the region that has already been hit the hardest.)

Persistent extreme weather patterns of this kind are an aspect of human-forced climate change in that polar warming can result in Jet Stream blocking patterns that cause weather systems to stick around or repeat for long periods of time. This is particularly the case with the storm system now developing in the Central U.S. For as the storm strengthens and moves slowly eastward, it is expected to deepen into a powerful coastal low. This low is predicted to then rake the Northeast U.S. coast with 60 mph winds, heavy rain, high surf and coastal flooding.

As the storm’s eastward passage is blocked by the same weather system that so recently warmed the far north to such extreme winter temperatures, it is expected to linger off the U.S. East Coast even as it intensifies. Due to this predicted stall, the Northeast U.S. is facing the potential of multiple storm tides in which wind-driven water piles up — exacerbating coastal flooding.

(Very strong northeasterly winds are expected to rake the coasts of Maine and Massachusetts by March 2 according to GFS model forecasts. Image source: Earth Nullschool.)

Though the shape of the present storm is still a bit unclear, it is likely to both further exacerbate already severe flooding over the Central U.S. even as it generates some serious coastal flooding potentials for the Northeast by the end of this week. What is also clear is that a warming polar environment is contributing to these upstream severe weather events by increasing their persistence even as warming ocean surfaces are helping to feed them with larger moisture loads which generates higher potential storm and rainfall intensity.

A Hole in Winter’s Heart: Temperatures Rise to Above Freezing at the North Pole in February

“Weather is not Climate.”

But when a warm air influx carves a wide-ranging above-freezing hole into the heart of what should typically be ice-solid Arctic winter, then maybe it’s time to start re-evaluating the gist of the statement.

(Today, on Sunday February 25, 2018 at 0900 UTC — temperatures rose to above freezing at the North Pole. This event, which is probably unprecedented or, at the very least, an extreme instance in the polar record, is an exemplar — or a good example — of the kinds of wrenching weather changes we can expect as a result of human-caused climate change. Image source: Earth Nullschool. Data source: Global Forecast System Model.)

Weather and climate are inexorably married one to the other. Though weather is often variable and tied to locality, climate is broader-ranging and roughly characterized as average weather over 30 years. When climate changes, it ultimately changes average weather. It thus changes the rules in which weather occurs. So you can end up with weather events that are typically not common or have never been seen before — like category six hurricanes, much more heavy rainfall events, historic and unprecedented droughts, and above freezing temperatures at the North Pole during February even as Arctic air is driven south over Europe.

In the context of climate change, what we’re talking about is average global weather across the span of multiple decades. In some locations, this ongoing climate change has resulted in very little perceptible weather change. In other locations, and this is more and more-so the case, the changes to weather are both disruptive and profound.

We could say that they are, as Dr. Sarah Myhre noted in our little climate and weather chat yesterday, exemplars — or good examples of alterations that are characteristic of human-caused climate change.


Since late January, we’ve been tracking the potential for just such an exemplar extreme weather event — temperatures rising to above freezing at the North Pole during February.

The persistent weather patterns necessary for such an event were already well in play. At the surface, warm air was continuously running northward just east of Greenland — born pole-ward by powerful storms and frontal systems. At the upper levels of the atmosphere, a huge plug of warm air was developing. One that invaded the stratospheric levels of the atmosphere by the week of February 4-11. This plug, in synergy with surface warming, tore apart the heart of cold at the roof of our world that we call the Polar Vortex.


(Daily mean temperatures for the entire region of the Arctic above the 80 degree north latitude line rocketed upward to new records over recent weeks. Most recent temperatures are comparable to those typically seen during late May. Image source: Zachary Labe, Arctic Temperatures.)

Nodes of cold air from the remnant Polar Vortex spiraled south — bearing with them regional packets of Arctic air and setting off extreme cold weather in the middle latitudes. Meanwhile, the polar zone just kept warming up into ranges that were increasingly uncharacteristic of Arctic winter.

An extreme wave in the Jet Stream was developing and elongating over the North Atlantic, delivering more and more warm air northward.

By February 21st, the wave had extended into a knife-like extension east of Greenland and through the Barents Sea. Beneath this abnormal Jet Stream wave, which was starting to look more and more like a trans-polar river (of a kind predicted by Dr. Jennifer Francis as a result of human-caused Polar Amplification), was an intensifying thrust of outlandishly warm surface air.

(Jet stream wave originating near Spain extends northward past the North Pole on Sunday, January 25, 2018. Image source: Earth Nullschool.)

Over the past 72 hours, gale force warm, southerly winds gathered in the Atlantic, then blasted north.

At this point, we were starting to see some seriously outlandish temperatures in the higher latitude regions. Cape Morris Jesup, which is the furthest north location on Greenland, by Friday the 23rd experienced 6 C or 43 F temperatures on the shores of what should be a frozen solid Arctic Ocean just 400 miles from the North Pole.

The average high temperature in Cape Morris Jesup is -20 degrees Fahrenheit during February — making Friday’s reading a whopping 63 degrees F warmer than average. For reference, a similar departure for Washington, DC would produce a 105 degree day in February.

But it wasn’t just Cape Morris Jesup that was experiencing July-like conditions for the Arctic during February. For the expanding front of that ridiculously warm winter air by Sunday had expanded into a plume stretching tens of thousands of square miles and including a vast zone of temperatures spiking from 45 to 54+ degrees F above normal.

(The zone of pink-to-white in the above anomaly map shows temperatures ranging from 45 to 54 F [25 to 30 C] above average directly over a broad Arctic region centering on the North Pole. To this weather and climate observer, it looks like a hole in the heart of winter. Also note the region of cold air pushed south over Europe and the present above average [1981-2010] global reading. Image source: Climate Reanalyzer.)

And at the center of the warm air pulse was today’s earlier reading of 1.1 C or 34 F at the North Pole (see image at top of post). What would typically be a summer-time temperature for this furthest north location of our world happening during February. A highlight warm point in the midst of a vast plug of far warmer than normal air. A hole in the heart of winter.

We’ll wait for confirmation from experts like Chris Burt, Bob Henson, and Dr. Jeff Masters at Weather Underground, but it appears that this particular warming event — the highlight of an ongoing polar warming of the past few weeks — is without precedent in the Arctic during February. It is also an exemplar — a good example — of the kind of weather we can expect to frequent the Arctic more and more often as the global crisis that is human-forced climate change deepens and as its primary cause — fossil fuel burning — continues.

(Please also see Neven’s related excellent expert analysis of this unprecedented polar warming event at the Arctic Sea Ice Blog here. More to follow on impacts to sea ice in a developing post.)

Climate Change Driven Record Atmospheric Moisture Produces Major Flooding in Central U.S.

Ten inches. That’s how much rain has fallen over parts of the Central U.S. over the past week. Five-to-ten inches more. That’s how much additional rain could again fall across the same region during the next seven days according to NOAA’s forecast (see below image).

(The Central U.S. is already experiencing severe flooding. But record atmospheric moisture levels driven by extreme ocean warming is setting up conditions for even more intense weather. Image source: NOAA.)


Warnings of potentially life-threatening flooding were issued today from Michigan to the Ohio Valley and on through a large swath stretching from Texas into Arkansas as severe rainfall again inundated the Central U.S.

A massive double-barrel high pressure system sitting off the U.S. East Coast generated strong south-to-north winds running over sea surfaces in the Gulf of Mexico ranging from 1 to 5 C warmer than average. These winds reaped the waters of a much larger than normal load of water vapor and then pumped it over the Central U.S. The result was record atmospheric moisture levels running over the region producing significant and abnormally intense rain storms. Now, many areas are under flood warnings with moderate-to-major flooding expected.

(Much warmer than normal sea surfaces over the Gulf of Mexico resulted in increased atmospheric moisture loading. Image source: Earth Nullschool.)

1-5 C warmer than normal ocean surfaces, as we see in the Gulf of Mexico today, is an extraordinary anomaly. In the past, 2 C warmer than normal readings would have been considered significant. But with human-caused climate change, sea surface temperature anomalies have tended to become more and more extreme.

Though warmer than normal Gulf of Mexico waters are contributing to the presently severe precipitation now falling over the Central U.S., they are not the only waters seeing such high temperatures. In fact, the global ocean is now much warmer than it was in the past and, from region-to-region, produces abnormally high surface temperatures with increasing regularity. These warmer waters have pumped more moisture into the Earth’s atmosphere which has led to an increase in the number of extreme rainfall events both in the U.S. and across the globe. A signal of human forced climate change.

(Large east coast high pressure systems, seen in right of frame as two clockwise swirls, hit a record intensity this week beneath an unusually intense ridge in the Jet Stream. The highs also served to pump that intense Gulf moisture into the Central U.S. Image source: Earth Nullschool.)

The large high pressure system driving such a significant moisture flow over the Central U.S. today is also climate change related. Earlier this week, the high hit a record intensity — spurring a never-before-seen spate of record warm temperatures across the U.S. northeast. The high, in its turn was fueled by a warming-driven polar vortex collapse in the Arctic which generated the intense ridge pattern that allowed it to bloom and sprawl.

What we are seeing, therefore, is a kind of climate change related synergy between severe polar warming and more intense ridge and trough patterns in the middle latitudes. Add in the factor of warmer sea surfaces and this changed atmospheric circulation is enabled to more efficiently tap related higher atmospheric moisture levels to fuel the more intense storms we’re seeing today.

This Week’s Climate and Clean Energy Brief: Category Six Hurricanes, 8,000 Model 3s Produced, Bering Sea Ice Crushed, Electric Semi Savings, and California’s 2018 Snow Crash

While we were focused on extreme warming events and off-kilter weather related to polar amplification this week, there were quite a lot of other developments worth taking note of in both the clean energy and climate news sphere. This post will explore a number of highlights for those interested in the ongoing climate disruption and related responses through renewable energy development.

But before we continue, I’d like to send off a big thanks to Sarah Myhre — an ocean scientist who, unlike a number of broadcast meteorologists, isn’t afraid to tell the climate story like it is (in reference to a the major East Coast warming event this week). Kudos for your clarity, Sarah.

Human-Caused Climate Change is Causing the Most Powerful Hurricanes to Grow Stronger. That’s why scientists are now mulling over adding a new category to define the world’s most destructive storms: Category 6. Advanced by scientists meeting with Dr. Michael Mann in New Zealand and alluded to for the past few years in cutting edge blogs like Weather Underground, a 6th Category would be used to define storms with top sustained wind speeds that exceed 200 mph.

(Hurricane and named storm trend for the Atlantic basin. Note that 2017 was the most destructive year on record for hurricanes [not shown on chart]. Image source: National Hurricane Center and

Global warming, driven by fossil fuel burning, is increasing both atmospheric convection and ocean surface temperatures. These provide energy to tropical cyclones. As a result, storms are forming out of season more often, they are ranging further into the higher latitudes, they tend to last longer, and the strongest storms (major hurricanes) are becoming both stronger and more frequent. 2017 marked the most destructive hurricane season on record for the Atlantic basin. And, unfortunately, with fossil fuel burning still ongoing, the potential for damage is likely to continue to increase with the advent of Category 6 storms.

The clean energy revolution intensifies as Model 3 Production hit an estimated 8,000 this week. According to Bloomberg, Tesla Model 3 production is presently at 1,052 vehicles per week. This is an estimate based on a computer model tracking VIN numbers and internet reports of Model 3 sightings. Overall, the number of this all-electric, clean energy vehicle produced crossed the 8,000 mark on Thursday in the Bloomberg estimate and has now climbed to 8,219. Bloomberg tracking indicates that the 1,052 per week production rate has remained steady for about two weeks.

(Tesla Model 3 production is significantly increasing, but lags earlier and present ambitious targets. Trajectory indicates that end Q1 is likely to be closer to 1,750 to 2,000 vehicles produced per week unless a major ramp in volume occurs soon. Image source: Bloomberg.)

Tesla is struggling to rapidly ramp production amidst amazing demand for its Model 3 vehicle — at approximately 500,000 pre-orders. And it is aiming to hit the 2,500 vehicle per week mark by the end of March. Given past delays in the production ramp, it’s uncertain if Tesla can hit this target (though Tesla says it is presently on track). But what is certain is that Tesla is putting in one heck of an effort. And one optimistic sign that the target may be within reach is the fact that Tesla recently opened Model 3 order configurations to non-Tesla owners.

Tesla isn’t the only clean energy vehicle leader in the world. Nissan, Renault, GM, and a number of Chinese automakers also produce EVs at high quality and in significant volumes. However, its all renewable business model, high quality products, large battery and solar production infrastructure, penchant for producing cutting-edge innovations, and dominance of a number of EV markets distinguishes it as a crucial player. Given the rising volume of Model 3s produced, it appears likely that Tesla will sell between 150,000 and 250,000 all electric vehicles during 2018.

Bering Sea Ice Crushed. We’ve extensively covered polar warming and sea ice losses this week. However, one highlight in the overall story continues to be record low ice coverage in the Bering Sea. Earlier this week, warm winds swept much of the ice out of this near Arctic Ocean zone. Though a return to somewhat cooler temperatures is predicted, it is so late in the season that any ice that does form will likely be very thin and vulnerable to melt come late March or early April.

A similar story is unfolding on the Atlantic side near the Barents Sea and the Greenland Strait. With a major warm wind event predicted for this weekend, a clearing of vulnerable sea ice on that side of the Arctic may well be in the offing. If this does occur, it will reinforce the trend of see-sawing ice losses shifting from Pacific to Atlantic zones that we’ve seen for much of the winter of 2017-2018.

Tesla Semi Promises Major Savings (and it’s scary-fast, see video). Major shipping companies are chomping at the bit for access to the new Tesla Semi. And the reason is that they’re seeing dollar signs. According to a new report out from Electrek, DHL — one of the largest logistics firms in the world — expects that a single electrical truck like the Semi would enable it to save tens of thousands of dollars per year. These savings come due to the fact that though the Semi, at a price starting at 150,000 dollars, is more expensive than your standard long-haul truck, is much less expensive to operate and maintain. Primary costs for trucking include both fuel and vehicle maintenance. Charging costs for EVs range from 30 to 60 percent or more less than refueling costs. Meanwhile, much simpler engine design results in far fewer mechanical failures or parts that could require replacing.

These prospects are generating serious interest and excitement from major shippers like DHL. Tesla has already received well over 500 pre-orders for its all-electrical truck which it plans to begin mass producing in 2019. As with other electrical vehicles, replacement of ICE based trucking with electrical trucking not only produces lower fuel and maintenance costs, it also substantially reduces net carbon emissions from transportation as adoption rates rise.

California’s Snow Crash is as Bad as 2015. Throughout most of fall and winter of 2017-2018, the U.S. West Coast has experienced incredibly warm and dry conditions. And despite a recent switch to cooler, wetter weather, it may be too late in the season for California’s snowpack to see any substantial recovery.

(California’s snow pack is tracking near record low levels. Snow melt and a longer term trend toward hot, dry weather in California is a key indicator of human caused global warming. It is also creating water security issues for the state. Image source: CDEC.)

Present snow pack levels are comparable to those experienced during 2015 — which was one of the worst water years ever in California history. The majority of snow will have already fallen by this date in any given year. So even if normal conditions were to prevail over the next few weeks, it appears that the damage is already done.

California relies on its snow pack to provide water to farms, industry, and cities. Summer of 2015 saw serious water shortages with some municipalities forced to make major cuts in supplies. It appears that a similar situation may be setting up for 2018. And human-caused climate change is the primary contributor to California’s water woes as well as its related longer-term drying trend.


Polar Warming Translates South as June-Like High Pressure Ridge Brings Record-Smashing Temperatures to Eastern U.S. in February

The North Atlantic and Arctic weather pattern is a real mess. Frequent episodes of severe polar warmth relative to normal conditions for this time of year have been a persistent feature. Arctic sea ice extents are at record lows. Meanwhile, the upstream atmosphere generated a record-smashing high pressure system and related abnormal warmth over the U.S. East on Wednesday.

(Severe warming, both at the surface and in the upper atmosphere over the Arctic helped to generate a polar vortex collapse during recent days. This collapse, in turn, generated a number of high amplitude waves in the Jet Stream — one of which produced a record high pressure ridge over the U.S. East Coast on Wednesday, February 21. Image source: Earth Nullschool.)

All these severe weather elements have ties to a climate change related condition called polar amplification. A condition that generates mass sea ice loss and extreme warmth at the northern pole, especially during winter. One that translates into more extreme ridge and trough patterns over the middle latitudes. And due to these features, the weather for both the Arctic and the North Atlantic doesn’t appear to be set to return to anything approximating normal for at least the next five days.

Forecast for More Extreme Warmth…

Far to the north, a long, thin extension in the Jet Stream is setting up to bring predicted above freezing temperatures to the North Pole by Sunday. The surface system anchoring that warm air invasion is a powerful low predicted to bomb out around 930 mb just off the coast of Greenland on Saturday. It will fling hurricane force winds and near to above freezing temperatures over coastal and northeastern sections of this frozen archipelago before translating that significant energy northward into the Arctic by early Sunday.

(Extreme warmth struck both the Arctic and the U.S. East on Wednesday, February 21st. A similar pattern is predicted to repeat by this weekend — pushing temperatures to near or above freezing at the North Pole even as the US southeast swelters. Image source: GFS/Climate Reanalyzer.)

Temperatures over central and northern Greenland are predicted to range between 10 and 25 C above average even as parts of the high Arctic spike to 30 C above average.

… Following Wednesday’s Record-Breaking Ridge

Though much of the recently most extreme weather action has been focused on the Arctic, the mid-latitudes have seen there fair share of climate change wrenched extremes.

Yesterday, a slot of warm air rushing northward built into a powerful ridge over the U.S. East Coast. This ridge was not any typical pulse of warm air at the surface running counter to a much cooler winter time atmosphere. It was heavy and it was tall — translating from the ground and well into the stratosphere.

So much heat generated summer-like conditions across the U.S. East. From the mid Atlantic to the northeast, temperature records last set as far back as the late 1800s were shattered. Washington DC saw 82 degree (F) temps. Vermont shattered several of its all-time record highs for February. Massachusetts saw temps hit 80 in Fitchburg. While New York’s Central Park also broke its all-time record of 68 F as the mercury struck 78 degrees yesterday. It was the strongest outbreak of heat ever to strike the northeastern section of the U.S. since record-keeping began back in the late 19th Century. Temperatures there were more typical of June and far less so of February.

All that extra heat translating so far into the upper atmosphere also generated convection and cloud formations more typical of summer — with cumulus clouds piling up over places like Atlanta.

And it wasn’t just temperatures and clouds that were increasingly trekking into outlandish parameters for February, it was the state of the atmosphere itself. For the central peak of the high pressure system provoking such powerful atmospheric anomalies was a stunning 595 dm at the 500 millibar level. This was the highest pressure ever recorded at the 18,000 foot level of the atmosphere. And the earliest time we’ve ever seen such a strong high pressure system off the U.S. East Coast previously was during June.

By the weekend, another warm air push is expected to invade the U.S. East. This time, it appears that temperatures in the Southeast will be most intense with highs hitting around 85 F across parts of Georgia and Florida even as a broad region of 75 to 80+ degree readings sweeps from the Gulf Coast on up through Virginia Sunday.

In the Context of Human-Caused Climate Change

We would be remiss if we didn’t note that increasing atmospheric thickness and powerful high pressure ridges are noted features of a warming global environment. New record high temperatures are also a climate change indicator — especially when they occur with such high prevalence and frequency. And this is the case even over the continental U.S. as a rapidly warming Arctic is helping to drive increasing hot and cold temperature extremes in the middle latitudes.

North Pole Region Predicted to Experience Another Instance of Above Freezing Temperatures as the Bering Sea Ice is Blasted Away

Those previously rare instances of above freezing temperatures in the Arctic north during winter time are happening more and more often.

(February 20 NASA satellite imagery shows Bering Sea with mostly open water as highly atypical above freezing temperatures drive far north. Note that patches of open water extend well into the Chukchi Sea. Image source: NASA.)

Just Monday and Tuesday of this week, Cape Jessup, Greenland — a mere 400 miles away from the North Pole — experienced above freezing temperatures for two days in a row. This following a February 5 warm air invasion that drove above 32 F temperatures to within 150 miles of this furthest northerly point in our Hemisphere even as, by February 20th, a warm air invasion relentlessly melted the Bering Sea’s typically frozen surface (see image above).

Far Above Average Temperatures Over Our Pole

It’s not just a case of warming near the pole itself. It’s the entire Arctic region above the 66 degree North Latitude line. Over the past few days, Arctic temperature anomalies have exceeded 6 degrees Celsius above the 1981 to 2010 baseline. A period that was already showing a serious warming trend.

(Insane levels of warmth relentlessly invade the Arctic during February — hammering the sea ice and wrecking havoc on local environments. Image source: Climate Reanalyzer.)

For reference, 6 C warmer than normal daily readings for any large region of the Earth’s surface is a very serious temperature departure. And the Arctic is clearly feeling it as it suffers the lowest sea ice extent in our record keeping. The heat is meanwhile wreaking out of control harm on the Arctic environment — endangering key species like seals, walrus, puffins, and polar bears, setting off very rapid coastal erosion as storm waves grow taller, triggering far more extensive and powerful Arctic wildfires, and causing mass land subsidence and various harmful environmental feedbacks from permafrost thaw. It’s also causing Greenland’s massive glaciers to melt faster — contributing to an acceleration in the rate of global sea level rise.

The warm air has been invading primarily from the ocean zones in the Atlantic and the Pacific. Warm storms have frequently roared north through the Barents Sea and up the Greenland Strait near Svalbard. Massive blocking high pressure systems have shoved outlandishly warm temperatures through the Bering Sea on the Pacific side day after day, month after month.

Warm Air Invasions Clear Sea Ice During Winter

A recent warm air invasion has practically cleared the Bering Sea of ice. And the ice edge there is further withdrawn than it has ever been in its history. As we can see from the below animation, this crazy and rapid clearing of ice continues to drive further and further north — ushered in by a relentless invasion of warm air — during February. A time when Bering ice should be expanding, not contracting.

What’s causing such extreme polar weather? In two words — climate change. But drilling down, the details can actually get pretty complicated.

During recent winters, human-caused climate change has been driving temperatures into never-before-seen ranges over our northern pole. Increasingly, Sudden Stratospheric Warming events have been propelling warm air into the upper layers of the atmosphere. The Polar Vortex, which during winter relies on a column of sequestered cold air to maintain stability, is blown off-kilter as these upper level layers heat up. This, in turn, has generated extreme wave patterns in the winter Northern Hemisphere Jet Stream — enabling much warmer than usual temperatures to rocket northward.

An Ongoing Series of Warming Events

On December 30 of 2015, and enabled by a high amplitude Jet Stream wave, a powerful warm storm event pushed a strong wedge of warm, above freezing, air all the way across the 90 North Latitude line. Meanwhile, Jessup Greenland hit above freezing for what was likely the first time ever over the past two winters. Last year’s Arctic sea ice hit the lowest levels ever seen during March due to all the extra heat. And the warm temperature extremes appear to be deepening.

Now, as of mid February, a powerful Sudden Stratospheric Warming Event has again blown the Polar Vortex off kilter — weakening it and enabling warm air to flood into the Arctic even as colder air is displaced southward over Canada, the Western U.S. and Europe. Translating to the surface, this train wreck in the upper level winds has driven the extreme polar warming events of the past 8-10 days even as cold air invasions have overtaken Europe and the U.S. East experiences record-breaking heat.

The polar warming event is still ongoing. And it is expected to deliver another blow to an Arctic environment that typically experiences -30 degree Celsius temperatures this time of year. For another major warm wind invasion is forecast to drive above freezing temperatures over the North Pole by this weekend. Strong south to north winds along an extreme ridge in the Jet Stream are predicted to push 1-2 C temperatures (or approximately 55 F above average temps) over the North Pole on Saturday and Sunday.

(High amplitude Jet Stream wave predicted to drive North Pole temperatures to above freezing by Sunday. Image source: Earth Nullschool.)

Though rare during December, above freezing temperatures at the North Pole during February are practically unheard of. The period of February through April should be a time of strengthening and thickening ice ahead of melt season. But during 2018 this appears not to be the case. The ice instead, in key regions, is being delivered with serious setbacks which is greatly retarding this year’s typical Arctic Ocean ice formation.

If this most recent polar warming event emerges as predicted, it will provide yet one more powerful blow to an already greatly weakened Arctic sea ice pack during a time of year when extents and areas should be reaching their peak. And that’s bad news for both the Arctic and global environments.

Despite Stronger La Nina, January of 2018 was the Fifth Hottest in the 138 Year Climate Record

Major signals of on an ongoing and inexorable global warming trend continued to be apparent during January of 2018, according to NASA records.

The first month of this year saw global temperatures in the range of 0.78 degrees Celsius above NASA’s 20th Century baseline — or about 1 C warmer than 1880s averages when NASA record-keeping began.

Despite the influence of La Nina — which during 2018 is stronger than a similar 2017 Pacific Ocean cooling event — January was the 5th hottest such month in all of the 138 year global climate record. According to NASA, all of the top five hottest Januaries ever recorded have occurred since 2007, with four of those five occurring during the last five years.

(Arctic warming is the primary feature of the fifth hottest January in NASA’s 138 year climate record. Image source: NASA.)

Warm temperature departures for the month were most extreme over the Arctic, over western North America, and through North and Western Europe. This outlier warmth contributed to record low sea ice extent measures in the Arctic and helped to rapidly expand drought conditions across the U.S. In the Southern Hemisphere, Antarctica — recently seeing a series of glacial calving events in the west which hint at a quickening pulse of ice entering the world’s rising oceans — saw an abnormally warm austral summer month. Meanwhile, Australia experienced its own third hottest January even as concerns over renewed mass coral bleaching across the Great Barrier Reef were again on the rise.

During La Nina, movement of warm air and water toward the polar region is enhanced. To this point, global sea ice extent measures are again in record low ranges even after receiving a serious hammering during the winter of 2017. In January, record to near record polar warmth helped to drive a rapid fall in global sea ice extent to today’s record low values in the range of 16 million square kilometers.

Record low sea ice coverage is a climate change amplifier in that it uncovers dark ocean surfaces that capture more of the sun’s rays than white, reflective ice. In addition, open ocean ventilates more heat into the polar atmosphere. Heat that would typically be sequestered beneath the ice. This warming amplification (polar amplification) can also have an impact on the polar circulation of the Jet Stream — causing it to meander more which results in increasing instances of extreme weather (hot, cold, wet, dry, stormy) in the middle latitudes.

(Global sea ice extent is again in record low ranges. This is a primary signal of a warming polar environment — which can have far-ranging harmful impacts. Image source: Global Sea Ice and NSIDC.)

Over the coming months, we should expect some continued stress to both Arctic and Antarctic sea ice — with the caveat being that cloudier late springs and early summers have tended to retard warm season ice loss during recent years in the Northern Hemisphere. That said, continued movement into record low ranges for the Arctic hint that rapid advance of melt during winter may eventually translate to summer.

The primary driver of these serious changes to the global environment is continued fossil fuel burning. And with atmospheric CO2 likely to hit between 411 and 412 parts per million this year (with CO2e ranging toward 493 ppm adding in all greenhouse gasses) the amount of warming already being locked in is starting to look quite dangerous in a number respects. That said, damage can still be greatly limited if the world works to rapidly transition toward renewable energy and keeps harmful fuels where they belong — in the ground.


Breaking Through the 300,000 EV Barrier: What Math Can Tell us About Tesla Model 3 Production

Like most of Elon Musk’s endeavors, Tesla is not a risk adverse venture.

Quite to the contrary, by taking on established energy and automotive players on fields that they’ve dominated for decades socially, politically, and economically, it would seem that Musk and, by extension, Tesla have done everything they can to give risk a big, fat, honking troll.

Helpful Risk of Undertaking Clean Energy Transition vs Risk of Extreme Harms From Climate Change

But if there was ever a time when the serious risk inherent to rapidly breaking new ground in the clean energy field was necessary, then it is now. Just today, in the dead of what should be frigid Arctic winter, a tanker brimming full with climate change amplifying liquified gas (LNG) crossed the typically frozen solid Arctic Ocean. And here’s the kicker — it did it without the need of an escorting ice breaker.

This is the first time a vessel has navigated across the Arctic in such a way during February. Ever. An ominous new marvel made possible by a warming Arctic that is also bringing along such terrors as a multiplying list of endangered species, loss of fisheries, increasing rates of ocean acidification, thawing permafrost, melting glaciers, massive Arctic wildfires, and quickening sea level rise.

In light of such hard facts, we could reasonably say that the risks Tesla and Musk are taking are needed, are indeed necessary if modern society is to have a decent chance at confronting the rising age of human-caused climate change. That the efforts by Tesla and others to speed a transition to energies that do not contribute to the already significant climate harms coming down the pipe are something both valid and necessary. Something that all true industry, education, civil and government leaders would responsibly step up to support.

Of course, the story of clean energy isn’t all about Tesla. It’s about the global need for a swift energy transition away from climate change driving fossil fuels. But Tesla, as the only major U.S. integrated clean energy and transport corporation presently operating that does not also have a stake in fossil fuel infrastructure, is a vision of what energy companies should look like if we are to achieve a more benevolent climate future. And it is for this reason that the company has generated so much support among climate change response and clean energy advocates.

300,000 All-Electric Vehicles Produced

But in order for Tesla to succeed in helping to speed along a necessary clean energy revolution, it needs to produce clean energy systems in increasingly high volumes. During recent days Tesla crossed a major milestone on the path toward mass production of clean energy vehicles. For as of the first half of February, Tesla is reported to have produced its 300,000th electrical vehicle.

A somewhat vague indicator, it nonetheless gives us an idea of the pace at which Tesla EV production is increasing. And, by extension, how fast the more affordable Model 3 is also ramping up.

Consider that approximately 101,000 Teslas were produced during 2017. Also consider that by the end of the year, Tesla had produced about 286,500 EVs throughout its lifetime as a company. If the company crossed the 300,000 mark during early February as indicated, it tells us that Tesla is presently producing around 10,000 EVs per month in total.

This extrapolated pace (keep in mind, we are reading tea leaves here), suggests that Tesla is already building on record 2017 production levels. It also suggests that Model 3 is having a strong impact on the overall rate of production. What’s even more significant is that Tesla production has historically tended to slow down at the start of each quarter and then speed up at the end of each quarter. Right now, overall Tesla production appears to still be on an up ramp.

(Bloomberg has built a model aimed at tracking the total number of Tesla Model 3s produced. It presently estimates that 7,438 Model 3s in total have been built and that Tesla has finally broken the 1,000 vehicle per week threshold consistently. See Bloomberg’s report and interactive graphs here.)

Add to this report the results of a recent Bloomberg model study estimating that around 7,438 Model 3s have been produced in total since July of 2017 and that average weekly production rates are now slightly above 1,000. The Bloomberg study relies on extrapolation from VIN number reporting and observation as well as on internet reports. The reports and data are then plugged into a mathematical model that provides an estimate of total Model 3 production.

The Bloomberg study indicates that Model 3 hit a big surge in production during late January and early February. Which is cautious good news for those still standing in the long line waiting for one of these revolutionary vehicles. A 1,000 Model 3 per week production rate roughly translates to 4,000 per month — which would account for the apparent early year acceleration in total Tesla EV production. But in order to satisfy demand any time soon, Model 3 production will have to increase to more than 5,000 vehicles per week in rather short order.

So Model 3 still has a long way to go before it can start substantially meeting the amazing pent-up demand of the 500,000 person waiting list. In addition, production will have to continue to rapidly pick up if Tesla is to meet the stated goal of 2,500 Model 3s per week by the end of March. That said, Tesla appears to be well on the road toward expanding mass clean energy vehicle production and could more than double its annual EV output this year. Considering the state of the world’s climate, this couldn’t happen sooner.



%d bloggers like this: