Advertisements

The Great Totten Glacier is Floating on More Warming Water Than We Thought

It’s well known now that massive glaciers in Greenland and Antarctica are contributing to an accelerating global sea level rise. And while we first thought Greenland was primarily at risk of producing ocean-lifting melt this Century, we have now learned that both West and East Antarctica are becoming involved.

(A massive glacier the size of France is floating on more of a warming ocean than previously thought. Taking into account past reports of thinning along the glacier’s underside, and this is a rather concerning finding. Image source: Australian Antarctic Division.)

How much and how soon and under how much warming pressure is still a matter of some debate in the sciences. But the situation is now looking a bit worse for the Totten Glacier — an enormous sea-fronting slab of ice as big as France that if it melted in total would, by itself, raise sea levels by about 10-13 feet globally.

Previously thought to be more resilient to melt as a result of human-caused climate change and related fossil fuel burning, the Totten was once considered to be stable. However, over recent years, concerns were raised first when plumes of warm water were identified approaching the glacier’s base and later when it was confirmed that Totten was melting from below. Concerns that were heightened by new research identifying how winds associated with climate change were driving warmer waters closer and closer to the huge ice slab.

(Winds heated by climate change drove warmer waters toward Totten and accelerated the glacier during recent years. Video source: Science News.)

After follow-on expeditions to Totten, scientists (over the past two years) discovered that the glacier’s floating underside was losing about 10 meters of thickness annually even as its seaward motion was speeding up. Now, new research has found that more of the Totten Glacier is floating upon this warming flood of ocean water than previously thought. According to Professor Paul Winberry, from Central Washington University, who spent the austral summer of 2018 with a Tasmania-funded team of scientists taking measurements of Totten:

“A hammer-generated seismic wave was used to ‘see’ through a couple of kilometres of ice. In some locations we thought were grounded, we detected the ocean below indicating that the glacier is in fact floating (emphasis added).”

Beneath Totten lies a large ridge upon which most of the glacier is grounded as it flows toward the sea. But penetrating this ridge are numerous gateways that, if melted through, provide sea water access to the glacier’s interior. And recent studies have found that a number of these gateways have been thawed open, allowing warming ocean waters access to sections of the glacier that are hundreds of miles inland.

(Warm water invasion pathways have opened along Totten’s previous grounding line. These openings have allowed water to flood far inland beneath the glacier. The result is a less stable, more rapidly moving ice sheet. Image source: Jamin Greenbaum/University of Texas-Austin.)

This warm water breakthrough has contributed to Totten’s seaward movement. And the new study was aimed at discovering the extent of the inland water melt flood. According to lead researcher Dr Galton-Fenzi:

“These precise measurements of Totten Glacier are vital to monitoring changes and understanding them in the context of natural variations and the research is an important step in assessing the potential impact on sea-level under various future scenarios.”

The fact that the extent of inland flooding along Totten’s underside runs further than previously thought is a concern in light of recent findings that the glacier is losing a considerable amount of underbelly ice each year. In addition, the fact that we haven’t yet pinpointed the grounding line should add another note of worry. How much we should worry is unclear at this time. But the fact is that the scientific signs coming in from Totten continue to indicate that the glacier is suffering warming impacts that pose risks to its historic stability.

Advertisements

One By One, the Flood Gates of Antarctica are Breaking Open

“We have still time to avoid the worst of it, but we have already opened a number of flood gates, one in West Antarctica, and several in Greenland.”Dr Eric Rignot.

“This kind of rifting behavior provides another mechanism for rapid retreat of these glaciers, adding to the probability that we may see significant collapse of West Antarctica in our lifetimes.” Ian Howat, Earth Sciences associate Professor at Ohio State University.

“Burning all the world’s coal, oil and gas would melt the entire Antarctic ice-sheet and cause the oceans to rise by over 50m, a transformation unprecedented in human history. The conclusion of a new scientific study shows that, over the course of centuries, land currently inhabited by a billion people would be lost below water.” — The Guardian.

*****

Massive Rift Forming in Larsen C

Larsen C. It’s the next big ice shelf on the butcher’s block in West Antarctica. And now it appears the shelf may be well on its way to facing the same fate as its companions Larsen A and Larsen B. That fate — disintegration and the ultimate release of glaciers that have been held in check for thousands of years into the world ocean.

It was only about 150 years ago that the Larsen Ice shelves were discovered. And the Larsen shelf system is thought to have been mostly stable throughout the last 12,000 years. But in 1995 Larsen A splintered into a million icebergs. And in 2002 the larger portion of Larsen B broke apart. Warming Ocean waters heated by an atmosphere loaded with greenhouse gasses did the damage. And now the same warm water currents that shattered Larsen A and Larsen B are endangering their larger cousin — Larsen C.

larsen-c-ice-rift

(Ice shelves and sea fronting glaciers serve as the flood gates keeping West Antarctica’s glaciers from spilling into the ocean and raising sea levels by as much as 20 feet. But warm ocean waters are causing these flood gates to melt and crack wide open. The above image shows a massive abyssal rift forming in the Larsen C ice shelf. A similar rift formed in the center of the Pine Island Glacier last year. A signal that the West Antarctic Ice Sheet could undergo a major collapse over the next 100 years. Image source: NASA.)

For today, a huge rift running through the ice shelf is about to break off a Delaware-sized iceberg into the Atlantic Ocean. The rift is broadening, deepening and extending. And it now measures 70 miles long, 300 feet wide, and a third of a mile deep. Once this enormous abyssal crack runs its course and causes about 10 percent of the ice shelf to break off, the big land-grounded glaciers sitting upon mountainous slopes behind the ice shelf will have less protection. They will increase their forward speed and contribute larger volumes of ice outflow to the growing problem of global sea level rise.

In this way, rifts in Antarctica’s sea fronting glaciers and ice shelves can be seen as giant cracks in the flood gates holding back enormous glaciers that, when released, will lift global sea levels by feet and meters.

Big Crack in the Pine Island Glacier

Closer to the center mass of West Antarctica, the Pine Island Glacier serves as one of the most important of these flood gates. In total, the large grounded glaciers in what could best be termed as an ice bottle neck hold back about 10 percent of all of West Antarctica’s interior ice mass. But just last year a huge rift that formed in this glacial buttress during 2013 cracked wide open — causing three massive icebergs totalling ten times the size of Manhattan to break off.

According to a new study, warm ocean water flooded far inland along the underside of the Pine Island Glacier. It ate away at its base and then spilled down-slope to cut out a melting hollow in the glacier’s heart. Ultimately, an enormous crack formed within the glacier 20 miles away from where the ice mass meets the ocean at the surface.

(Massive crack forms in the Pine Island Glacier, then causes three very large icebergs to break off during 2015. A new study finds that the Pine Island Glacier is melting from the inside out and an inland flood of warm ocean water is causing both the melt and the formation of large rifts in the ice. Scientists believe that these could be the first signs of a significant collapse of West Antarctica that could occur without our lifetimes. Video source: Ohio State.)

Then, in 2015, gigantic chunks of ice covering 225 square miles broke off from the Glacier and floated out into the Amundsen Sea. This was the second series of icebergs to break off from the Pine Island Glacier in as many years. And scientists were notably very concerned.

Pine Island Glacier is particularly vulnerable because it sits on a reverse slope. In other words, a below sea level bed slopes lower as you progress toward the center of the Continent. And, in fact, large portions of West Antarctica are below sea level (see topographic image below).

Pine Island Glacier itself rests upon an opening to one of the deepest valleys sloping inland. At the location of the Pine Island glacier a rift between 500 and 2,000 feet below sea level runs down toward a central region of West Antarctica that sits between 2,000 and 6,000 feet below sea level. And within this basin is a pile of glacial ice that from bedrock to its highest point above sea level towers two and a half miles high. The very valid concern for this glacier is that melt and rifting, once started, will tend to accelerate — taking out larger and larger chunks of the inland ice as it is exposed to the warming ocean and heating atmosphere.

The Larger Picture — Glacial Flood Gates are Cracking Open

Larsen C and Pine Island Glacier serve as but two of the many flood gates that run all along the coast of West Antarctica and East Antarctica. But the increasing flows of warm water coming in from the ocean and a related rise in the frequency of events where large masses of ice break off from buttressing glaciers and ice shelves has put West Antarctica in danger of facing a near term collapse.

west-antarctica-below-sea-level

(Islands encased in ice. Much West Antarctica, on the left side of this topographic image, sits between 0 to 6,000 feet below sea level. If the buttressing glaciers and ice shelves like Larsen C and Pine Island are lost, there is little to prevent the warming oceans from flooding inland and setting off a rapid cascade of melt and seaward outflow. Scientists now believe that such a collapse could happen within our lifetimes. Image source: Antarctic Bedrock.)

With information from new glacial stability assessments in hand, Antarctic ice specialists are warning that the western region of this frozen land may collapse in a major melt event that over the next 100 years could raise sea levels by 10 feet. And West Antarctica is but one of three global regions — including Greenland and East Antarctica — capable of contributing significant glacial outbursts during this period.

Links:

West Antarctica Ice Shelf is Melting From the Inside Out

With a Collapsing West Antarctica, Sea Levels Could Rise Twice as High as We Thought

Combustion of Available Fossil Fuel Reserves Sufficient to Eliminate Antarctic Ice Sheet

Burning all Fossil Fuels Will Melt Entire Antarctic Ice Sheet

Rift in Antarctica’s Larsen C Ice Shelf

The Larsen Ice Shelves

NASA Captures Disturbing Images of Antarctica Ice Rift

Antarctic Bedrock

Pine Island Glacier Topography

Hat tip to Colorado Bob

Hat tip to ClimateHawk

Doomed Pine Island Glacier Releases Guam-Sized Iceberg into Southern Ocean

Science has confirmed it. Human-caused warming is killing Antarctica’s massive Pine Island Glacier (PIG). And this week’s release of a chunk of ice larger than Guam into the southern ocean is just one of the many major losses that will occur as part of what is now an inevitable demise of one of the world’s greatest glaciers.

(CNN provides this stunning NASA imagery sequence of the break-off of B-31, a 12×24 mile iceberg from the, now doomed, Pine Island Glacier.)

Heat-Charged Blow to The Soft Underbelly of Antarctic Ice Shelves

As human greenhouse gas emissions caused the world’s oceans to warm, upwelling currents delivered a portion of that heat to the continental shelf zone surrounding Antarctica. A fortress of ice, numerous glacial ice shelves thrust out from this frozen land and drove deep into the sea floor. Ocean-fronting glaciers featured submerged sections hundreds of feet below the sea surface.

The warming currents encountered these massive ice faces, eroding their undersides and providing pathways for ocean waters to invade many miles beneath the glaciers. These invasions subjected the vulnerable ice shelves not only to the heat forcing of an ever-warming ocean, but also to wave and tidal stresses. The reduction in grounding and the constant variable stresses set the glaciers into a rapid seaward motion.

Antarctica’s most vulnerable glaciers lie along its western out-thrust. Two, Thwaites and the Pine Island Glacier, have recently seen very rapid increases in forward speed. Of these, the Pine Island Glacier, according to a recent study, is undergoing the process of an irreversible collapse. What this means is that the glacier’s speed of forward motion is now too great to be halted. Inevitably, even if the climate were to cool, the entire giant glacier will be launched into the world’s oceans where it will entirely melt out.

PIG basal melt

(Pine Island Glacier underwater melt dynamics. Image source: Nature)

Guam-Sized Chunk of Ice to be One of Many

The Pine Island Glacier is massive, covering a total area of 68,000 square miles and, in some locations, rising to over 2,000 feet in height. It represents 10% of all the ice in the West Antarctic Ice Sheet, holding enough liquid water to raise sea levels by between 1 and 2.5 feet all on its own. And the now destabilized PIG is bound to put added stresses on the adjacent Thwaites glacier together with almost the entire West Antarctic ice system.

Over recent years, PIG’s forward speed has accelerated. Increasing forward velocity by 73 percent from 1974 to 2007. Surveys made since that time show an even more rapid pace. By January of this year, studies were finding that PIG had entered a sate of irreversible collapse. So it is little wonder that enormous chunks of ice are breaking off from this massive glacier and drifting on out into the Southern Ocean.

As of early this week, the immense ice island dubbed B31 measuring 12×24 miles in size (nearly 290 square miles), slid off its temporary grounding on the sea bottom and began its journey out into the Southern Ocean. There it will remain for years, plaguing the world’s shipping lanes as it slowly disintegrates into a flotilla of icebergs. It is just the most recent event in the now ongoing decline of PIG. And we can expect many, many more major ice releases as this vast Antarctic glacier continues its dive to the sea.

Links:

Humongous Iceberg Slowly Drifts Away From Antarctica

Scientists: Warming Ocean, Upwelling Make an End to Antarctica’s Vast Pine Island Glacier

Nature

Retreat of Pine Island Glacier Controlled by Marine Ice Sheet Instability

The Pine Island Glacier

The Thwaites Glacier

Hat tip to Colorado Bob who’s been tracking PIG since 1994

 

 

Advertisements
%d bloggers like this: