Advertisements

2018 to see Third Consecutive Mass Coral Bleaching Event for the Great Barrier Reef?

One point two degrees Celsius hotter than average (1.2 C). That’s the temperature threshold where 50 percent of the world’s corals are likely to die off according to a scientific study written in Nature during 2013.

The El Nino year 2016 was about 1.2 C hotter than 1880s averages. Meanwhile 2017 was about 1.1 C warmer than normal despite a shift toward La Nina.

We are thus entering a very harmful period for the world’s corals. One in which corals are bleaching and dying off at unprecedented rates. The global bleaching event of 2014 through 2017 was the longest lasting and most damaging in the historical record. Many reefs around the world suffered severe losses. Reefs that had never bleached before experienced bleaching and mortality. And this event included severe damage to the majestic Great Barrier Reef of Australia.

Bleached Staghorn corals on Keppel Island Reef during 2016 event that impacted 93 percent of the Great Barrier Reef. Image source: UNESCO.

Unfortunately, despite an official end to the 2014 to 2017 global bleaching event, ocean temperatures across widespread regions remain at thresholds that are likely to result in stress to corals. And it is arguable that if bleaching were so widespread as it is now in past decades, then the present 2018 period would still be considered a global bleaching event.

Regardless of how we parse official declarations, reef systems are obviously still under stress. Just this past week, reports were coming in that sections of the Great Barrier Reef were bleaching for the third year in a row. The bleaching was rather widespread for this time of year. It was occurring earlier than normal — generating concern that 2018 bleaching could be worse than expected come February and March. It was hoped that the large reef system would be given a bit of respite from the heat. But now that particular hope is in doubt.

Corals around the world are still under threat from extreme ocean heat despite the fact that the 2014-2017 global coral bleaching event was officially ended during summer of 2017. Image source: NOAA.

Corals are one of the many canaries in the climate change coal mine. These organisms are a vital aspect of global ocean health and the reefs they build are the present home for upwards of 2 million species. Humans depend on corals for the food chains they support and for the natural beauty they provide. And a global ocean with less corals provides both less food and support for human beings and for ocean life as a whole.

Because corals are so sensitive to temperature change, it is expected that about 90 percent of the world’s corals will be lost if the Earth warms by 1.5 C. Meanwhile, virtually all of the corals (more than 95 percent) could be gone if the world warms by 2 C. With global temperatures at around the 1.1 C threshold and rising, we are in the danger range for corals at this time. And the world stands at the brink of losing the majority of this vital species with the potential to see 90 percent or more of the world’s corals lost over the next 3 decades under various scenarios in which fossil fuel burning continues.

Warmer than normal sea surface temperatures are again threatening Australia’s Great Barrier Reef (GBR). Jan 15, 2018 sea surface temperature anomaly image provided by Earth Nullschool.

Danger to corals is, today, a very immediate issue. And we are in the period of risk and damage now. This reality is highlighted by the fact that what should be a relative respite period for corals is still seeing abnormally high levels of bleaching.

During 2018, La Nina in the Eastern Pacific has generated relatively cooler surface waters in a number of locations. And we would normally expect La Nina to beat back global coral bleaching severity. However, an anomalous hot blob of ocean water between Australia and New Zealand is causing an unusual spike in ocean temperatures for the zone east of Australia (see image above). The result is that the GBR is again at risk.

Early bleaching for the Great Barrier Reef in 2018 is definitely a bad sign. However, scientists aren’t yet stating that this year will see bleaching intensity hitting levels similar to 2016 and 2017. Let’s hope that remains the case. But so long as fossil fuel burning and related warming continues, the road ahead for corals is one of existential crisis.

Advertisements

2017 — Second Hottest Year on Record as Climate Troubles Escalate

The world continues to warm. In the geological context, it is warming very rapidly. Likely more rapidly than at any time in at least the past 200 million years. And as long as this very swift warming trend continues, as long as it is not bent back, it spells serious trouble for the world’s weather, for stable coastlines, for corals, for ocean health, for stable growing seasons and for so, so many more things that we all depend on.

2017 was the second hottest year in the global climate record. It was notable due to the fact that it followed the strong El Nino year of 2016 with ENSO neutral trending toward La Nina conditions. The short term conditions that emerged during 2017 would tend to variably cool the Earth. But the resulting cool-down from 2016 to 2017 was marginal at best — representing about half the counter-trend drop-off following the strong 1998 El Nino. Instead, much warmer than normal polar zones kept the world in record hot ranges even as the Equator tried, but failed, to significantly cool.

(Rate of global warming since the 2010s appears to have accelerated in the above graph following a strong El Nino during 2015-2016 and a very mild counter-trend cooling during 2017. Temperatures in 2018 are likely to be similar to those seen during 2017 if the present prediction for ENSO-Neutral conditions is born out. Image source: NASA.)

Overall, warming above historical baselines remains quite acute in the NASA graph. And global temperatures for 2017 were 1.12 C warmer than 1880s averages. This is comparable to the 1 to 2 C warmer than Holocene range last seen during the Eemian — when oceans were about 20 to 30 feet higher than they were during the 20th Century.

Present rate of warming appears to be at the higher end of the observed 0.15 to 0.20 C warming per decade increase since the mid 1970s. This rate of warming is approximately 30 to 50 times faster than the warming that ended the last ice age. During that time, it took ten thousand years for the Earth to warm by about 4 degrees Celsius. Now we are at risk of seeing a similar warming within 1 to 2 Centuries or less if a switch back to business as usual fossil fuel burning occurs.

(This is what a world featuring temperatures hotter than 1 C above late 19th Century averages looks like. All-in-all not a very cool place. If present levels of atmospheric greenhouse gasses simply remain and do not rise, we are likely to see 2 to 3 times this level of warming long-term and over the course of multiple centuries. Present policy pathways for additional greenhouse gas emissions will likely achieve 2-3 C warming or more by the end of this Century unless more rapid energy transitions, carbon emission curtailment, and atmospheric carbon capture are undertaken. Image source: NASA.)

NASA and other top scientific agencies point toward human CO2 and other greenhouse gas emissions as the primary cause of present warming and a related growing disruption to the Earth’s climate system. Action to switch energy systems away from fossil fuels and to, as a follow-on, draw down a portion of that climate warming CO2 now in the atmosphere is presently necessary to prevent ratcheting levels of harm and disruption on local, regional and global scales.

Though mild compared to the potential impacts of future human-forced warming, present warming and presently elevated CO2 levels in the range of 407 ppm and 492 ppm CO2e are enough to generate climate disruptions of serious consequence over the short, medium and long term that negatively impact the health of human civilizations and the natural world. Meanwhile, continued fossil fuel burning and related dumping of carbon into the atmosphere is increasing the risk of catastrophic events and related mass loss of human shelter, forests, fertile growing zones, and earth system life support services. The need for response and a rapid energy transition to renewables is therefore both considerable and growing.

Toasted — California’s 2017 Foreshadowing of the Monster Fires to Come

Part One: The Story of How Global Warming Turned California into Toast.

The Thomas Fire as seen by a webcam located atop Santa Ynez Peak, a 4300′ mountain 17 miles northwest of downtown Santa Barbara on December 10th.

*****

I want you to indulge me for a minute. I want you to put on your scientist hats with me and engage in a bit of an experiment.

Take a bagel. Cut it in half. Dip about 1/3 of it in water for a couple of seconds. Then put the bagel in the toaster oven for about 5-10 minutes. Remove and see the results.

What you’ll find is that the part of the bagel that hasn’t been dipped in water is, well, toast. The dipped part — significantly less so. If you continued to toast the bagel, eventually the heat from the oven will cause the undipped side to burn. Take even more time and the heat would overcome the moisture on the dipped side and cause it to burn as well.

Here was the result of my at-home experiment after about 10 minutes in the oven at 425 degrees. Can you guess which half was dipped in water?

The more heat, the faster both sides of the bagel burn. But the drier side always first. The wetter side always second.

It’s a simple fact that moisture — whether loaded into bagels or soaking into vegetation and the ground — adds more resiliency and resistance to fire. And this year, given the massive amount of moisture that fell across all of California during the winter and spring of 2016-2017 we didn’t really expect summer and fall to be all that bad of a fire season.

That famous Pineapple Express kept delivering storm after storm after storm. Dams were strained to bursting and over-spill. Roads were washed out. Water rescues were performed. And when all was said and done, California had experienced its wettest water-year in all of the last 122. Given such an obscene amount of water flooding the state, we certainly didn’t expect what happened next. All that moisture soaking into lands, soils, trees, vegetation told us a story. It told us a story that we thought we knew.

Accuweather’s California flood forecast from January 9, 2017 is easy to forget given the record fires we see today. But the temperature and moisture extremes experienced are an aspect of a warming climate. These floods inflicted more than 1.5 billion in damages. Source: Accuweather/Wikipedia.

What we didn’t count on was the oven-like heat that followed. Nor the simple fact that resiliency, no matter how strong at first, is not limitless.

Environmentally speaking, heat is the primary factor in fire hazard so long as fuels are present. Drought is also a factor, though a somewhat less certain one because eventually most fuels are consumed if drought sets in for long enough. As with the bagel, enough heat will eventually blast through any moisture loading so long as that moisture is not recharged to great risk of consuming and conflagrating the fuels that soaked up the moisture in the first place.

At its most basic level, this is why global warming promotes fire hazard. If you bake the forests, grasses and shrubs enough, they will burn.

If there is one thing we know about climate change and weather it is that it promotes extremes. Particularly extreme swings between cooler+wet and record hot+dry as the water cycle is thrown through the atmospheric equivalent of a hyperloop. And the level of extremity California experienced from winter to summer ran a six month race from wettest to hottest. For following the early year deluge, 2017 rapidly rocketed into the hottest summer in California history. Temperatures in many places regularly soared to well above the scorching 100 degree mark. Records for all-time hottest days fell like trees before the wild hurricane.

Large sections of the west, including California, experienced their hottest summer on record. Image source: NOAA.

And given so much excessive heat, it didn’t take long for the fires to arise even following a record wet winter.

We won’t go through all the exhaustive numbers of that grim tally of burning. But we will say that more than ten thousand homes and buildings burned. That many souls perished in the blazes. That billions in damages were inflicted. At times, ash and embers rained down across California as if from a volcanic eruption. The skies — marred by great pillars of smoke erupting from a blasted Earth. To say it was merely the worst fire year California has ever experienced would be to do the nightmare of it all an illiterate, unfeeling, lack-compassion injustice.

The summer fires that came with the heat burned mostly the north. The rains, that were so strong in winter took a bad turn once the heat blazed through the lands enough to dry out all that new forest and grass regrowth. Here we were witnessing, before our very eyes, the kind of new conditions 1.1 degrees Celsius worth of global warming was capable of producing.

Firefighter battling the Thomas Fire, which is just 500 acres away from being the largest in California history. Image source: Campus Safety.

Because of that warming, we know now that fire season never really ends any more in California. A point that was driven viciously home as summer proceeded into fall and the fires still raged in October. By December, the heat and dryness had not relented. Not enough at least. The normally wet month had been transformed. And the carry over of that damage done by the furnaces of summer had prepped the land for more burning.

Howling winds from the longest burst of fire fanning winds ever seen for California fed into a new fire. A fire that is now within 500 acres of becoming the largest fire ever to burn in California history. In December. During what should be a wet, cool month. But one that is hotter and drier and fire blasted.

Toasted.

But if we don’t turn back from the warming that caused this, the worst is yet to come.

CREDITS:

Hat tip to Wharf Rat

November of 2017 was the Third Hottest on Record Despite La Nina

According to NASA GISS, November of 2017 was the third hottest such month in the 137 year global climate record. This continues a trend of warming that began with fossil fuel burning at the start of the Industrial Revolution and that has recently hit new intensity during the 2014 – 2017 period.

NASA warming trend growing more extreme

(NASA color coded warming trend since 1901. Note the very extreme departures in the recent period since 2014. Image source: NASA GISS.)

Counting in November, 2017 is now solidly on track to be the second hottest year in the global climate record — trailing 2016 and edging out 2015. This new record was achieved despite the fact that La Nina emerged later in the year.

La Nina is a periodic cooling of Equatorial Pacific surface waters that also has a cooling influence over the Earth’s atmosphere when it emerges. The fact that we are on track to be experiencing the second hottest year on record, despite La Nina the cooling influence of La Nina which has been largely over-ridden, should be setting off at least a few warning lights.

Overall, temperatures for November were 0.87 C warmer than NASA’s 20th Century baseline and 1.09 C warmer than 1880s averages. Taking into account temperatures during early to middle December — which show a continuation of November ranges — it is likely that 2017 overall will average around 1.1 C warmer than 1880s averages once all the tallies are counted. Edging out 2015 by 0.01 to 0.03 C (see Dr Gavin Schmidt’s graph above).

By contrast, 2015 was a year in which the Pacific was ramping up toward a strong El Nino. So the La Nina signal for 2017 is important by comparison — validating numerous observations from climate scientists and climate observers that global temperatures have taken another step up (one of many due to human based heat forcing, primarily due to fossil fuel burning) without any indication of a step down.

(November 2017 sea surface temperature [SST] anomaly map at top shows evident La Nina pattern over the Equatorial Pacific. This should be creating a relative cooling signal. November 2015 SST anomaly map shows build up to El Nino type conditions. The fact that we will likely experience a warmer year in 2017 than in 2015 despite this contrast is a notable indicator for human-forced climate change and a continuing warming trend. Image source: NOAA.)

Regional analysis for November (see NASA map below) shows a very strong polar amplification signal with the highest Latitudes in the Northern Hemisphere displaying the most extreme temperature departures. Latitude 80-90 N showed the greatest zonal anomaly at around 5.5 C above average. While the global hot spot in NE Siberia hit an amazing 9.3 C above average for the month. Polar amplification was also more evident over Antarctica during the month with temperatures ranging from 1.5 to 2 C above average in the region of 75 to 80 S Latitude. This was significant given the fact that anomalous polar warming relative to past temperature trends tends to take a step back during late spring and summer months (it was late austral spring in November).

(Global anomalies map shows very extreme polar warming during November of 2017 with few regions of the globe experiencing below average temperatures. Image source: NASA GISS.)

It is worth noting that very few regions experienced temperatures below NASA’s 20th Century baseline. That regions experiencing temperatures below 1880s averages were even more scarce. And that the global cool spot at 4.1 C below average was less than half the amplitude of the most extreme warm departure (9.3 C).

The last time temperatures were globally below average during any month was in 1985. Which means that if you’re younger than 32, you’ve never experienced a below average month globally. Presently temperatures are so extreme now that globally below average single days are almost entirely a thing of the past. Warming has thus thrust us well outside the typical range of variability. And as a result, we are experiencing temperature, rainfall, fire, drought, snow, sea level, and storm conditions that are increasingly outside the norm, that are increasingly difficult to manage and adapt to. A trend that will continue so long as we keep burning fossil fuels. So long as the Earth keeps warming.

The National Security Threat that Inflicted 400 Billion in Damages This Year

Back in the 1990s, the U.S. Navy asked Congress to address the issue of rising sea levels at the Norfolk Naval Base. The Navy wanted to raise the piers, which were becoming vulnerable to flooding due to rising waters. For various reasons, including climate change denial, Congress has delayed funding for elevating the base’s 12 piers beyond the present and near term projected reach of ongoing sea level rise. Only four so far have been lifted.

According to former Norfolk Naval Base Commander Joe Bouchard, “Washington went bonkers” when it failed to recognize and address an obvious problem — sea level rise.

Up and down the U.S. coastline, the story is much the same. But it’s not just a case of Navy Base piers. It’s a case that every coastal city in the U.S. now faces rising seas threatening homes, real estate, infrastructure. And at the same time that seas are rising, the strongest storms are growing stronger and fire seasons that once ran through a few months of the year in places like California are now a year-round affair.

(A ribbon-thin rise of land separates the Norfolk Naval Base from flooding due to climate change driven sea level rise. Flooded bases not a national security threat? See related article by Vox. Image source: Wikipedia.)

This is the very definition of climate change as a threat to the security, not just to the world’s largest naval base, but to most if not all of the United States.

So how bonkers is Donald Trump and the climate change denying GOP now? How nuts is it that Trump yesterday made the anti-factual determination, in bald defiance of a plethora of U.S. military leaders, that “climate change is not a national security threat?”

Increasingly Destructive Hurricanes are Putting a Growing Number of People and Structures at Risk

This year, the U.S. has experienced not one, not two, not three, not four, but at least five major weather disasters that were made much worse by human-caused climate change. Three of them — hurricanes Maria, Irma, and Harvey all roared out of a warming ocean. They all formed in a hotter atmosphere loaded up with a higher level of moisture. These factors gave them more fuel to feed on. They unarguably increased their peak potential intensity. Scientific studies have found that Harvey alone was three times more likely to form due to human-caused climate change. That its rainfall was considerably enhanced in a warmer atmosphere.

The storms ran in to land on a higher ramp. Seas, like those at the Naval Base and in so many other places, have risen by a foot or more from the Gulf Coast to New England and on into the Caribbean because the Earth has, indeed, warmed. And this made storm surge impacts worse.

You could go on and on with the list of climate change related factors that compounded this year’s disasters. About the climate zones moving north. About hot blobs in the ocean and bigger blocks in the atmosphere. About enhanced convection and ice cliff instability. About ridiculously resilient ridges and persistent troughs. But it’s just a simple fact that the storms were worse than they would have been. That climate change made them more likely (in some cases far more likely) to occur in the first place. In total, and in large part due to the nefarious influence of fossil fuel burning on the world’s weather, these three storms alone have inflicted 368 billion dollars in damages.

That’s billion with a capital B. A level of harm often attributed to warfare but one that can instead be put at the feet of weather indiscriminately weaponized by fossil fuel burning. For the Atlantic Hurricane season this year, at a time when global temperatures are 1.1 to 1.2 C hotter than 1880s averages, was the most destructive ever recorded. These climate change enhanced storms left whole island nations and entire regions in ruins. In many cases it will take months, years, or even a decade or more to fully recover.

Wildfires are Increasing and Wildfire Season is Getting Longer in the Western U.S.

But in the grim tally of climate change related damages during 2017, we don’t stop at just hurricanes. For California, during 2017 experienced its worst fire season on record. One in which 11,306 structures have so far been damaged or destroyed. We say so far because what is likely to become the largest fire in California history — the Thomas Fire — is still burning.

11,306 structures would be enough to make a decent sized city. All gone due to a fire season that is now year round. Due to western heating, drying and temperature extremes that are increasingly forced to well outside the normal range. Total damages this year for California are presently estimated at more than 13 billion dollars. That’s nothing to shake a stick at. But this damage total is likely to continue to climb as the tally of losses is counted.

(Abnormally above average temperatures and below average precipitation contributed to fire danger in California during December. This odd heat and drought was driven, in no small part, by climate change. Image source: NOAA.)

As with hurricanes, the presently more intense fires are linked in numerous ways to a warming climate. Warmer temperatures increase the rate of evaporation and the intensity of precipitation in the most extreme events. Such variance increases the rate at which vegetation grows during wet season and the rate at which it dries during times when the rains depart. This adds more ready fuels for fires. In addition, northward movement of the Arctic sea ice contributes to an overall warmer and drier pattern for the U.S. West. This pattern, helps to produce stronger high pressure systems that, in turn, strengthen the fire-fanning Santa Ana winds.

This year, December, which is typically a wet month for the U.S. West, especially during La Nina (which we are presently experiencing) has been incredibly dry. This dryness helped to fuel the Thomas Fire. But the dryness didn’t happen in a vacuum. It was associated with a major climate change related influx of heat into the Arctic linked to climate change driven polar amplification.

Failure to Recognize Climate Change Leaves U.S. Citizens Vulnerable to Harm

Anyone following the increasingly clear evidence of how Trump campaign officials coordinated with Russia to disrupt the 2016 elections and how ardently Trump is attempting to cover the whole thing up could draw the reasonable conclusion that Trump cares more about his own personal advancement than the safety and security of the American people. Trump’s, and by extension, the GOP’s climate change denial, can be seen through the same morally relativistic lens. Wealthy fossil fuel donors have for a long time now held an unreasonable influence over persons in higher office. The denial of climate change for both the Republican Congress and the Presidency is, in other words, well-funded.

(GOP funding by fossil fuel donors just keeps going up and up in lockstep with GOP climate change denial and anti-environmental policy. Image source: InsideClimate News.)

Such denial may line the pocketbooks of republican politicians and wealthy oil, gas, and ailing coal companies. But it places the American people, their homes, their livelihoods, beneath the blade of a falling ax. So when Trump says climate change is a hoax, forces government websites to shut down, scrubs words related to climate change from government communications, opposes alternative clean energy, and tells the Department of Defense not to treat climate change as a national security threat, he is culpable and a contributor to a very clear, present, and growing danger.

Record Renewables Growth in 2017 as New Global Solar + Wind Installations are Projected to Hit Near 175 GW 

Last year, global growth in new solar energy installations hit a new record of 56 gigawatts (GW) in a single year. This year, growth could nearly double to 108 GW installed according to recent reports from IHS. Meanwhile wind appears on track to add another 68 GW of clean power generation. In other words, the age of the renewable energy revolution is in the process of overtaking us. None too soon considering the fact that we are now facing serious ramping harms due to fossil fuel burning and related human-forced climate change.

Rocketing Global Growth For Solar Despite Trump/Republican Efforts to Throw a Wet Blanket on a Key Industry

Such amazing growth comes on the back of rapidly ramping solar markets in China, India and around the world. A ramp that’s happening despite anti-solar policy by the Trump Administration feeding a trade case that has injected uncertainty and distortion into the U.S. market. And even as the same Administration is waging an Orwellian-styled war on the employees of the Environmental Protection Agency who are still doing their best, despite rising odds, to protect the health of U.S. citizens from polluting industries.

The upshot is that the U.S. will lag behind these two emerging solar energy leaders as republicans in power put energy policy in retrograde following years of rapid advancement and clean energy leadership under Obama and the democrats.

(U.S. sees shrinking pie of new solar additions under Trump. Image source: PV Magazine/IHS.)

But despite harmful policy stances by republicans and related nonsensical litigation, the U.S. market is still expected to see 10-12 GW of new solar added in 2017 — or the second highest levels of solar installation on record.

Solar’s resilience in both the U.S. and around the world is primarily due to low photovoltaic panel prices combined with broad popular support by states, cities, businesses, and individuals. These low prices are evidenced by numerous solar tenders and purchase agreements that now range below the 5.5 cent per kilowatt hour level, that can often hit below the 4 cent threshold and sometimes dip as low as 3 cents or less. A recent solar purchase agreement in Arizona, for example, sold for less than 3 cents per kilowatt hour or lower than half the price of nuclear for that region. As mentioned above, trade case uncertainty has since driven solar prices in the U.S. marginally higher. Despite this counter to the global trend, U.S. solar sales are still beating out every prior year except 2016.

(Policies like the Sun Shot Initiative under President Obama and major investments by countries like China helped to rapidly reduce the cost of photovoltaic solar panels globally. Recently, major cost reductions have also been realized in concentrated solar power (CSP). Image source: PlanetSave.)

Concentrated solar power (CSP), which has the inherent advantage of offering both clean, renewable energy and storage in a single application, is also seeing falling prices. For ACWA Power is building a 700 MW CSP facility in Dubai that will provide clean solar energy for just 7.3 cents per kwh. This compares to natural gas prices which range as high as 24 cents per kwh for the Gulf region. If such low prices can be widely duplicated globally, CSP, which employs reflectors to gather solar heat into an oil based medium that is used to boil water to spin a turbine, then this additional form of solar is also likely to see broader use.

Wind Continues Steady Gains

Even as solar energy rockets to record gains, wind energy is also expected to see considerable increases. Forecast International now predicts that 68 GW of new wind capacity will be added globally in 2017. Wind installations at this point are quite widely distributed around the world. However, increased growth in Asia is a major factor in the continued steadily rising rate of adoption.

(Globally, wind energy is projected to continue its steady growth trend of recent years. Image source: Forecast International.)

Prices for wind energy range from 3.1 to around 5.5 cents per kwh, according to Lazard. Unlike solar, the price for wind has been on a slower decline curve during recent years. This means that at this time prices for both wind and solar are presently comparable for most regions. It also means that in places like Alberta, where a recent 600 MW wind project is expected to cost an average of 3.7 cents per kwh, prices for wind are less than half that of nuclear and less than most existing coal or even many new gas projects.

Major Growth in Renewable Energy as Coal Stagnates

If IHS and Forecast International projections for new solar and wind growth bear out, then we’ll see about 176 GW of these forms of renewable energy installed in 2017. That’s a tremendous rate of add that will considerably outpace new coal and gas installations even as it helps to reduce overall demand for power from these polluting sources and major contributors to climate change, related sea level rise, and similarly related worsening extreme weather. We are already seeing these effects as the world’s largest coal terminal is seeking to diversify on lowering demand forecast and as GE — a major provider of turbines for the gas industry — is cutting its fossil fuel based equipment sector.

One major aspect of the larger global shift can be seen in China. During past years, China rapidly added new coal and gas capacity. But non fossil fuel power generation additions were the major story for China in the first half of 2017. For by July China had added 24.4 GW of new solar capacity, 7.3 GW of new wind capacity, 6.69 GW of new hydro capacity, and 1.09 GW of new nuclear capacity. The total new add was 39.48 GW of non fossil fuel based electrical power generation vs 18.84 GW of new thermal capacity primarily coming from coal and gas. In other words, renewables outpaced fossil fuel generation in China by more than 2 to 1.

This comes as China is seeking to reduce coal use in an effort to clean up its air quality and fight climate change, as the price of coal burning rises to the point of producing losses in regions like Europe, and as predictions abound that the near term coal market is stagnating and long term future coal prospects, without the addition of costly carbon capture and storage, look bleak.

CREDITS:

Hat tip to Greg

Hat tip to Vic

Hat tip to Suzanne

Worsening Weather to Feed Monstrous Thomas Fire Through Sunday

It shouldn’t be happening in typically wetter, cooler December. But, due to human-forced climate change, it is.

The Thomas Fire, at 242,000 acres, is now the fourth largest fire in California history. Alone, it has destroyed 900 structures — a decent town’s worth gone up in smoke. And today it threatens pretty much all of Santa Barbara’s 62,000 buildings. For future days promise conditions that could expand the monstrous blaze into the largest fire ever seen for the state.

(Persistent western ridge formation is an expected upshot of sea ice retreat in the Arctic. A feature that will result in a drier, warmer, more fire prone California if the trend toward sea ice melt and global warming continues.)

Firefighters battling the blaze have faced insane odds to manage a herculean feat — achieving 35 percent containment as blowtorch like Santa Ana winds consistently billowed through the region over the past two weeks. These winds have been both abnormally strong and persistent. And they’re run over dry lands through a season that is typically known for its more prevalent rainfall — not the expanding drought we see today.

Given these presently very abnormal conditions, fire officials don’t expect to achieve full 100 percent containment for three more weeks. And that’s with over 8,144 firefighters on the ground assisted by 1,004 fire engines and 27 helicopters.

(The 2012 to 2017 California drought was slaked by rains last winter. However, it appears to have returned in force with southern portions of the state again facing an extended dry period.)

Present weather conditions for California are extraordinary. A persistent ridge of high pressure has hovered over the region. And this high has helped to spike local temperatures, speed a re-emergence of drought, and drive very powerful Santa Ana winds through the region. The high formed as sea ice advance in the Chukchi and Bering Seas far to the north lagged. Open water that is usually ice covered at this time of year radiated more heat into the local atmosphere — providing a slot of warmer air that assisted this drought, heat, and wind-promoting high pressure ridge in forming.

The intensity of these highs, influenced by climate change, out west has consistently risen into the 1040+ hPa range. Highs that have been juxtapposed by a strong low further south near Mexico. And a steep pressure gradient between these two persistent weather systems has helped to drive the very strong, fire-fanning, Santa Ana winds through the region. As the Thomas Fire blossomed last week, fire conditions achieved extremes never before seen in state history as those hot, dry winds roared over hills and through valleys.

(GFS model runs show the fire fanning Santa Ana winds strengthening through Sunday. Hat tip to Dan Leonard.)

Unfortunately, weather models for the next few days show this Santa Ana wind producing pressure gradient either persisting or strengthening. Today, this gradient is producing winds with gusts of up to 55 mph. By Sunday, the high over the Pacific is predicted to face off against a low over Northwestern Mexico. And the gradient between these two systems may further intensify these fire fanning winds. Wind speed and fire hazard are not expected to be as extreme as last week. But the re-intensifying winds will do firefighters no favors.

In addition, and perhaps more importantly to the long range picture, there is not even a hint of rain in the forecast through at least the next week. Dry, warmer than normal weather is expected to remain in place at least through that period. And hope for wetter, cooler weather has only begun to emerge in the longer range, less certain forecast.

New Science Confirms that Harvey’s Record Rains Were Made Much Worse by Climate Change

Hurricane Harvey barreled into Texas on August 25th of 2017. Over the next six days, it dumped 52 inches of rain across parts of the state, resulted in 800,000 emergency calls for help, caused 80 souls to be lost, and inflicted over 190 billion dollars in damages.

Harvey was the most damaging storm ever to strike the U.S. It was more costly than Katrina and Sandy combined. And recent studies now show that this damage, in large part, was due to climate change’s influence over the storm.

(Harvey just prior to making landfall on the Southeast coast of Texas. Image source: NASA.)

According to base climatology, we can expect this kind of event to occur once every 9,000 years. But living in base climatology we are not. Due to fossil fuel burning, atmospheric CO2 levels are above 405 parts per million — levels not seen in at least the past 2.5 million years. Meanwhile, total greenhouse gas forcing (after you add in methane and other heat trapping gasses) is at levels not seen in around 15 million years. So we’re now in a world that’s pretty different from what we are used to. A more dangerous world.

How different and how much more dangerous is a measure of some debate. More to the point, the question of how much the presently serious alteration to the world’s climate impacts the world’s weather is a pretty hot topic. What we already know is that the weather is becoming more extreme, more damaging, and that the most intense storms and droughts are growing worse.

(Incidence of record breaking daily rainfall events are increasing as the Earth warms. New science is starting to attribute aspects of individual extreme events to human caused climate change. Image source: Increased Record Breaking Daily Rainfall Events Under Global Warming.)

But boiling it all down to a single storm like Harvey, how much can you blame on climate change? Well, that’s starting to become clearer thanks to a pair of new scientific studies.

According to a recent study in the Geophysical Research Letters, human-caused climate change increased Harvey’s devastating rainfall intensity by at least 19 percent and likely by around 38 percent. Enough of a human caused influence to tip the scales between a relatively rough event and an epic deluge for the history books. Meanwhile, another study led by World Weather Attribution, found that Harvey was also three times more likely to have formed in the present human-altered climate.

If these peer-reviewed studies are correct, their findings point toward a rather stunning conclusion — the storm was much more likely to form due to climate change and the storm was made much more intense after it formed due to climate change.

In essence, the new science finds that climate change’s finger prints are all over Harvey’s devastating impact. Folks around the world take note. Your severe weather has been hyper-charged.

CREDITS:

Hat tip to Eleggua

After a Brief Respite, Climate Change Enhanced Drought is Returning to the U.S.

Unseasonable warmth across the American West and overall dry conditions across the South is causing drought to expand throughout many parts of the United States.

According to the U.S. Drought Monitor, most of the southern half of the United States is presently experiencing abnormally dry or drought conditions. Meanwhile, an intense drought that has remained in place over the Dakotas and Montana for multiple months continues to persist.

Severe drought conditions are now present in the south-central U.S. with exceptional and extreme drought expanding through Arkansas, Oklahoma, Texas, Louisiana and Missouri. Deepening drought in California and Texas are notable due to the fact that Southeast Texas recently experienced record rainfall due to Hurricane Harvey and California experienced a very wet winter and spring period from 2016 to 2017. Somewhat milder drought is also spreading through the Southeast.

Re-expanding Southern California drought is also enhancing record wildfire activity in that state.

Much Warmer than Normal Temperatures

A strengthening La Nina in the Equatorial Pacific is helping to generate a drought tendency for the Southern U.S. However, various climate change related features including above normal temperatures and a persistent high pressure ridge in the West are lending intensity to the rising drought regime.

(U.S. 30 day average shows much warmer than normal conditions for the lower 48 with extreme warmth prevalent over the American West. Image source: Global and Regional Climate Anomalies.)

Over the past 30 days, temperatures for the U.S. as a whole have been 1.52 C above average (see image above). Much of this excess heat has been concentrated over the West, with mountain and Pacific regions seeing between 4 and 5 C above average temperatures.

Excess heat of this kind helps to speed the drying of soils and vegetation by increasing the rate of evaporation. A condition that can lead to flash drought — whose incidence has been expanding in lock-step with the human-forced warming of the globe.

A Ridiculous Ridge

Linked to the western heat and drought is a strong and persistent high pressure ridge. One that has hit a very intense 1041 hPa pressure as of Monday afternoon over the U.S. Mountain West.

(Very intense high pressure ridge over the U.S. west is presently locking in both warmer than normal and drier than normal conditions. Image source: Earth Nullschool.)

Persistent ridging of this kind was a key feature of the recent 2012 through 2017 California drought. Some climate studies have identified a tendency of these kinds of strong western ridges to form as Arctic sea ice recedes. And during the past decade, strong high pressure ridges have been a rather consistent and significant climate feature for the U.S. West. It is also notable that formation of more powerful ridging features during the fall and winter help to strengthen the Santa Ana winds — which fan California wildfires.

Present drought is nowhere near as intense as it has been during recent years. Especially in California which during 2017 has experienced a bit of a respite. However, with La Nina gaining traction in the Pacific, with global temperatures now in a range between 1.1 and 1.2 C above 1880s averages, and with persistent ridging again taking hold over the U.S. West, the risk of a return to intense drought — especially for the Southwest — is increasing.

As Climate Emergencies Rise — A Call For Action

With climate change enhanced wildfires raging across California during December, now is exactly the time to redouble our resolve to fight against the causes of such widespread destruction. To enact policies aimed at reducing the force of a rising crisis that continues to impact so many of our people with increasing intensity.

In California today, there is a move afoot to set a deadline for banning the very fossil fuel based vehicles that have fanned the fires of climate change across the state. To resolve, by 2040, to take gas powered cars off the road.

Phil Ting, a San Francisco Democrat and sponsor of this legislative drive, notes that for the State to meet its greenhouse gas reduction targets, it’s going to have to transition away from fossil fuel based vehicles. Such vehicles represent more than 1/3 of all state carbon emissions. And the state can’t effectively address the carbon dioxide emissions that drive climate change disasters without also directly targeting the number of fossil fuel based vehicles in operation.

(According to California’s Air Resources Board, nearly 38 percent of the state’s carbon emissions are due to transportation.)

New electrical vehicle (EV) technology is enabling just such a move. According to Ting:

“The market is moving this way. The entire world is moving this way. At some point you need to set a goal and put a line in the sand.”

If California sets a policy to ban fossil fuel based vehicles by 2040, it will join a growing number of cities and states that have already set similar goals. These include France, the United Kingdom, India, Germany, and Norway. Meanwhile, China is pursuing very aggressive incentives to increase the number of EVs as a means of combating terrible local air pollution and climate change.

Movement by cities and states to ban fossil fuel vehicles and incentivize EVs has an out-sized impact. It signals automakers that EV preference by government is becoming widespread. And because manufacturers have limited capital to spend on new vehicles, this drives a manufacturing preference as well.

(In this National Renewable Energy Laboratory study, the most rapid carbon emissions reductions were achieved in scenarios where large-scale EV deployment was combined with wholesale replacement of coal, oil, and gas fired electricity generation with renewable sources like wind and solar.)

Since EVs are more efficient that internal combustion engine based vehicles, they greatly reduce carbon emissions when tied to even traditional grids. But when linked to renewable power sources like wind and solar, EVs produce zero emissions in operation. This combination enables a far more rapid rate of carbon emission reduction.

In addition, the manufacturing base for EV batteries can also be used to build storage systems for intermittent wind and solar energy. This enables the removal of fossil fuel emitting coal and gas fired generators held in reserve for times when the wind doesn’t blow or the sun doesn’t shine even as the EVs themselves remove the need for oil based transporation. Such a manufacturing chain also opens up a new market for auto manufacturers — a fact that both Tesla and Hyundai have learned to their benefit.

Because EVs are based on electronic technology that is closely tied to the information age, they can benefit both from synergistic related economies of scale and from various innovations and breakthroughs. This means that EVs already outperform fossil fuel based vehicles in a number of areas. A performance advantage that is increasing and will likely overcome most traditional vehicles by the early 2020s. Because of this advantage, EVs would probably ultimately win out over time. However, the present climate crisis lends urgency to speeding their rate of adoption and in accelerating the rate of harmful fossil fuel based vehicle replacement.

Rise of the Fimbul Fires: Climate Change Enhanced Jets of Flame Rage Across Southern California

Some say the world will end in fire. Some say in ice. From what I’ve tasted of desire. I hold with those who favor fire… — Robert Frost

I am Lorn Sparkfell, guardian of First Frost, without which the world will burn. — Luthiel’s Song, The Death of Winter

*****

Fimbul is an old icelandic word for mighty, giant, great. It is an archaic word that has fallen out of modern use. But considering the fact that the fires now ripping through Southern California are both out of the context of recent milder climates and have explosively expanded to gigantic proportion, it is perhaps time that we should re-introduce the term.

(Photograph of Southern California Fires taken from the International Space Station on December 7 of 2017.)

Sections of Southern California are now experiencing never-before-seen levels of fire hazard as winds gusting to near 80 mph across the region are fanning five out of control blazes. The fires are burning during what should be the cooler month of December. But cool conditions have eluded that part of the state. And the blow-torch like Santa Ana winds that are fanning the flames are being enhanced by conditions consistent with human-caused climate change.

Today, the fire index for Southern California is 296. The threshold for an extreme fire index is 165. And 296 is the highest fire index So Cal has ever experienced according to local firefighters. Fire index is a measure of fire risk. So, if these reports are correct, this region has never seen fire danger hit such an extreme intensity.

(Hurricane Force Winds Fuel Massive Wildfires in Southern California from ClimateState.)

Five fires now burning across Southern California have consumed upwards of 120,000 acres — or a region larger than Atlanta. The Thomas Fire in Ventura County is the largest at approximately 96,000 acres. The Rye Fire, Creek Fire, and Skirball fire all continue to burn. And a new fire — the Horizon Fire in Malibu — has recently ignited. None of these fires are more than 15 percent contained. So all are effectively still out of control.

In total, approximately 20,000 buildings are threatened by fire with more than 300 homes and businesses burned already. 200,000 people are under evacuation orders — enough to fill a relatively large city. Thankfully, there have been no reports of loss of human life so far. But animals, including these horses, haven’t been so lucky.

(Average temperatures across the U.S. West were around 4 C above normal for the entire past 30 day period. This is not at all typical. Image source: Global and Regional Climate Anomalies.)

Climate change skeptics and deniers will try to say that such events are normal for California. That fires always happen. That weather is variable. And tell you five or six or seven other kinds of hogwash.

But the fact is that these conditions are not normal. That California has just experienced its worst fire year on record. That the incidence of large fires in the West has risen fourfold since the mid 1980s. And that report after report after report are linking presently worsening fire conditions in the region to climate change.

Other politically motivated individuals will tell you that now is not the time to discuss climate change — by stating that responding to the disaster itself is more important that examining causes. This is also a red herring — as any effective disaster response will include a responsible review of causes.

To this point, if we are to be effective in both responding to this disaster and in reducing future harm, we should look seriously at the underlying causes that are making fires in places like California worse. And if we are exploring why these Fimbul Fires are happening now, then the big issue is climate change — writ large.

CREDITS:

Hat tip to Colorado Bob

Hat tip to Andy in San Diego

Hat tip to ClimateState

Winter is Supposedly Coming; So Why is California Burning?

As forecasters expect a warming climate will make Santa Ana winds more frequent and faster, that Santa Ana blowtorch is likely to do a lot more damage to the developed parts of the state. — One of the conclusions of a recent climate study.

You can only imagine the impact this weather is having. — Los Angeles Fire Chief.

*****

The popular refrain these days is that ‘winter is coming.’ But for California and the North American West, this is clearly not the case.

(Four large wildfires burn across Los Angeles in this December 5 satellite shot. Image source: NASA Worldview.)

Conditions across the West have been drier lately. Hotter lately. A lot less winter-like during the winter season lately. Add in the fact that climate change is expected to increase the strength of the wildfire-sparking Santa Ana winds and this trend of ebbing winter is a rather serious factor.

The very reason why we use the words — fire season — is due to the fact that fire is more prevalent when it is hotter, when it is drier, and when the dry winds blow more strongly. For California, fire season happens twice a year — once in early summer and again in autumn as the dry Santa Ana winds begin to howl.

(Consistent unseasonal heat and the development of powerful high pressure ridges over the North American West amplify the Santa Ana winds and set the stage for more severe wildfires. This week, a strong ridge and related abnormal warmth and drought helped to fan a historic Los Angeles outbreak. Image source: Climate Reanalyzer.)

The Santa Ana season lasts from October through April. It notable due to the fact that it tends to threaten more heavily populated areas. Its primary mitigating factor — cooler winter weather — is receding. And, according to this research, the same factors that are warming the U.S. West are also making the Santa Ana winds blow stronger. So we have good reason to believe that the effects of human-caused climate change are making California’s fall and winter fire season considerably worse.

Today is December 6, just a little more than two weeks before the Winter Solstice. Seasonally, we are at the gates of winter. Winter should be coming. But, instead, we have drought in Southern California. Instead we have had consistently warmer than normal weather over the past 30 days. Instead we have 70 mile per hour Santa Ana winds raging over withering peaks and through the drying valleys. These are conditions consistent with a fire season amplified by climate change. Not with normal winter.

And today, in Los Angeles alone, we have four fires raging simultaneously.

The largest fire, the Ventura Fire, has now burned more than 65,000 acres. It threatens 12,000 buildings. And it is already estimated to have consumed at least 150 of these structures. The fire has cut off power to upwards of 250,000 people and has forced numerous closures and evacuations.

The Creek Fire, Rye Fire, and Skirball Fire have reportedly burned an additional 15,000 acres and forced more than 150,000 people to evacuate. The Skirball fire is threatening the Getty Museum even as it has forced the closure of a section of highway 405. This 150 acre fire is also encroaching upon a 28 million dollar home owned by right wing media mogul — Rupert Murdoch. Notably, Rupert has used his media empire to support the views of climate change deniers and has called rational concern over climate change related risks ‘nonsense.’ Today, one of his many homes may burn as a result of such ‘nonsense.’

(Present location and extent of Los Angeles wildfires. Image source: Google Maps.)

In total, more than 1,000 firefighters are presently battling these four fires around the Los Angeles region. And the risks to the city are now as high as they have ever been. For on Wednesday, weather forecasters are calling for Santa Ana winds to continue to gust as high as 70 miles per hour. With the strength of these powerful fire-inducing winds peaking on Thursday as gusts are predicted to hit as high as 80 miles per hour. The winds will loft sparks and burning material from the fires and drop it over the city — creating nightmare conditions for firefighters trying to contain the four blazes. Red flag warnings — indicating that conditions are ideal for fire combustion — are expected to remain in place over Southern California through Friday.

U.S. Electrical Vehicle Sales Rose by 30 Percent in November, Likely to Hit Near 200,000 by Year End

Good news continues in the U.S. on the renewable energy front where electrical vehicle sales increased by about 30 percent in November of 2017 vs November of 2016.

In all, 17,178 electrical vehicles sold on the U.S. market in November. This number compares to 13,327 sold during November of 2016. Top selling brands for the month were the Chevy Bolt EV, The Tesla Model X, the Chevy Volt, the Toyota Prius Prime, and the Tesla Model S. The Chevy Bolt topped the list of monthly best sellers with nearly 3,000 vehicles going to owners during the month. The top annual seller remains the Model S (at 22,085 estimated sales so far) — which the lower-priced Bolt is unlikely to surpass this year.

(Over the past few years, the performance of electrical vehicles has been steadily catching up to or outpacing that of conventional fossil fuel vehicles. The Tesla Roadster by 2019-2020 will have a 620 mile range, hyperfast charging, a top speed of 250 mph, and be able to go from 0-60 in 1.9 seconds. A combined set of specs that no gas guzzler could hope to match. By 2022, most EVs will cost less and perform better than their comparable fossil fuel counterparts. Image source: Tesla.)

Total electrical vehicle sales for the year so far has hit nearly 174,000 through November. This compares to 158,614 for all of 2016. Given that December is often a top sales month and that Model 3 production is continuing to ramp, it’s likely that final sales for 2017 will hit close to or exceed the 200,000 mark for the year in the U.S.

Model 3 Production Ramp Rate Still a Mystery

Model 3 sales will likely continue to ramp through December as Tesla works through scaling production. Considering the fact that there are more than 500,000 Model 3s on order, the big question is — how fast? For even if Tesla were able to produce 10,000 Model 3s per week, it would take more than a year to fill all the orders.

Production is presently considerably lower. But it more than doubled in November to an estimated 345. A similar rate of increase would result in 800 of the vehicles being sold in December. Meanwhile, the company plans to be making 5,000 Model 3s per week by Q1 of 2018.

There are some indications that Tesla is preparing for a start of mass market releases. It is filling an LA Model 3 distribution site even as it has opened up ordering to customers outside of employees. Meanwhile, Panasonic recently announced that battery production issues will soon clear. Which raises the possibility of a faster ramp going forward.

Updated Nissan Leaf Begins Mass Production

New developments also include the start to mass production of the 2018 Nissan Leaf in the U.S during December. The 2018 Leaf features longer range (150 miles), lower cost (700 dollars less) and higher performance (more horsepower) than the previous Leaf. And it will be followed on by a (higher-priced) 225 mile range version in 2019 which will put it in a distance capability class similar to that of the Bolt and the base line Model 3.

Electrical Vehicles — Key Aspect of the Renewable Energy Transition

In context, solar energy, wind, and battery storage are the triad of new renewable energy systems that have the serious potential to really start cutting down global carbon emissions as they replace fossil fuels.

All these energy systems are getting less expensive. All have what they call a positive learning curve. And all can work together in a synergistic fashion while leveraging technological advances. Economic advantages that fossil fuel based systems lack.

In addition, renewable energy sources help to drive efficiency, even as they clean up transportation, power generation, and manufacturing chains they are linked to by producing zero carbon emissions in use.

(By transitioning to renewable energy as the basis for economic systems, we can dramatically reduce global carbon emissions. In order to stave off very harmful impacts from climate change, this transition will have to be very rapid. In the best case, more rapid than the scenario depicted above. Video source: IRENA.)

On the battery storage side, electrical vehicles are a crucial link in the battery development chain. As electrical vehicles are mass produced, this process drives down the cost of batteries which can then be used to store electricity and to replace base-load fossil fuel power generators like coal and gas plants. Meanwhile, battery electrical vehicles are considerably more efficient than gas or diesel powered vehicles and those linked to wind and solar or other renewable energy sources emit zero carbon in use.

Both electrical vehicles and other renewable energy systems have a long way to grow before they provide the same level of energy produced by dirty fossil fuels today. This large gap represents a great opportunity to cut back on the volume of harmful gasses hitting our atmosphere in the near future.

Gigantic Iceberg Disintegrates as Concern Grows Over Glacier Stability, Sea Level Rise

The stability of a key Antarctic glacier appears to have taken a turn for the worse as a large iceberg that broke off during September has swiftly shattered. Meanwhile, scientists are concerned that the rate of sea level rise could further accelerate in a world forced to rapidly warm by human fossil fuel burning.

(Iceberg drifting away from the Pine Island Glacier rapidly shatters. Image source: European Space Agency.)

This week, a large iceberg that recently calved from West Antarctica’s Pine Island Glacier rapidly and unexpectedly disintegrated as it drifted away from the frozen continent. The iceberg, which covers 103 square miles, was predicted to drift out into the Southern Ocean before breaking up. But just a little more than two months after calving in September, the massive chunk of ice is already falling apart.

The break-off and disintegration of this large berg has caused Pine Island Glacier’s ice front to significantly retreat. From 1947 up until about 2015, the glacier’s leading edge had remained relatively stable despite significant thinning as warmer water began to cut beneath it. But since 2015, this key West Antarctic glacier has begun to rapidly withdraw. And it now dumps 45 billion tons of ice into the world ocean each year.

(Glaciers like Pine Island balance on a geological razor’s edge. Because they sit on a reverse slope, it only takes a relatively moderate amount of ocean warming to precipitate a rapid collapse. These collapses have happened numerous times in the past when the Earth warmed. Now, human-forced climate change is driving a similar process that is threatening the world’s coastal cities. Image source: Antarctic Glaciers.)

The present rate of melt is enough to raise sea levels by around 1 millimeter per year. That’s not too alarming. But there’s concern that Pine Island Glacier will speed up, dump more ice into the ocean and lift seas by a faster and faster rate.

Pine Island Glacier and its sister glacier Thwaites together contain enough water to raise seas by around 3-7 feet. The glacier sits on a reverse slope that allows more water to flood inland, exposing higher and less stable ice cliffs as the glacier melts inland. If the glacier melts too far back and the ice cliffs grow too high, they could rapidly collapse — spilling a very large volume of ice into the ocean over a rather brief period of time. As a result, scientists are very concerned that Pine Island could swiftly destabilize and push the world’s oceans significantly higher during the coming years and decades.

No one is presently predicting an immediate catastrophe coming from the melt of glaciers like Pine Island. However, though seemingly stable and slow moving, glacial stability can change quite rapidly. Already, sea level rise due to melt from places like Greenland and Antarctica is threatening many low-lying communities and nations around the world. So the issue is one of present and growing crisis. And there is very real risk that the next few decades could see considerable further acceleration of Antarctica’s glaciers as a result of human-forced warming due to fossil fuel burning.

Dr Robert Larter, a marine geophysicist at British Antarctic Survey, who has researched Pine Island Glacier in his work with the Alfred Wegener Institute, recently noted to Phys.org:

“If the ice shelf continues to thin and the ice front continues to retreat, its buttressing effect on PIG will diminish, which is likely to lead to further dynamic thinning and retreat of the glacier. PIG already makes the largest contribution to  of any single Antarctic glacier and the fact that its bed increases in depth upstream for more than 200 km means there is the possibility of runway retreat that would result in an even bigger contribution to sea level.”

CREDITS:

Hat tip to Colorado Bob

Hat tip to Erik Friedrickson

Hot Blob off Southeast Australia Fuels Life-Threatening Rain Bomb Event

Hot Blobs. These pools of severe warmth at the ocean surface have, during recent years, fueled all kinds of climate change related extreme weather ranging from droughts to floods to record hurricanes.

(Hot blob southeast of Australia features ocean temperatures as high as 8 F [4.5 C] above average. This is an extreme climate and severe weather-triggering feature related to climate change. One that has also been associated with strong, persistent atmospheric ridges and related high pressure systems. Image source: Earth Nullschool.)

The blobs themselves often form under persistent and strong high pressure systems which lock-in both heat and high rates of evaporation. These highs, sometimes called resilient ridges, are thought by a number of experts to be an upshot of changes to both atmospheric circulation and energy balance as a result of the Earth warming. They are an example of the kinds of extreme climate and related severe weather triggering outliers you would tend to expect in a warming world. A new kind of weather phenomena producing new effects.

Today, sea surface temperatures between Australia and New Zealand are ranging as high as 8 F (4.5 C) above average. A very significant warm temperature departure for this area of ocean. One that well meets the qualification for the term ‘hot blob.’ The large blocking high associated with the blob has, for some time now, been circulating very high volumes of moisture evaporating off these much warmer than normal waters over Eastern Australia. This moisture loading provides fuel for powerful storms in the form of both more explosive atmospheric lift and higher rainfall potential.

(Ridge-tough dipole triggers extreme weather in region prepped by moisture venting off an ocean hot blob. Image source: Earth Nullschool.)

All that heat and moisture bleeding off the hot blob just needed a catalyst to produce the kind of climate change related event I’ve been calling a ‘rain bomb.’ And, unfortunately for Southeast Australia, just this kind of catalyst in the form of a sharp facing trough in the Jet Stream and related upper level low forming over South Australia is on the way.

From today through late Friday, this low will generate added atmospheric energy that will produce very severe thunderstorms over Southeast Australia. Ones capable of generating extreme rainfall amounts in excess of 2 inches per hour over certain locations. With total rainfall amounts hitting between 4 inches (100 mm) and 12 inches (300 mm) between now and late Friday.

(Predicted extreme rainfall event is being fueled by very warm sea surface temperatures to the east.)

The storm system will also generate strong winds, lightning, and tidal flooding for some locales.

This is a dangerous event risking loss of property and life with a number of climate change related factors involved. Those in the areas affected should stay tuned to local weather (BOM) and government emergency management for storm and response information.

CREDITS:

Hat tip to Colorado Bob

Hat tip to Vic

54 Fahrenheit Above Average: Extreme Warming Event For Greenland, Baffin Bay Underway

At the mouth of Baffin Bay just off the West Coast of Greenland today hurricane force wind gusts are blowing in from the south.

This roaring invasion of warm air originates from the Central Atlantic along a latitude line south of the Azores. It climbs hundreds of miles north to where it is intensified between a grinding 975 mb low off Labrador and a massive 1042 mb high squatting over Central Greenland. Temperatures in this warm air mass range from near 50 degrees (F) over Southwestern Greenland to around 40 degrees (F) over the mouth of Baffin Bay. Or between 9 and 36 degrees (F) above normal for this time of year.

(Hurricane force wind gusts are driving a wedge of above freezing air into Baffin Bay and over Western Greenland at a time when these regions should be seeing well below freezing conditions. Image source: Earth Nullschool.)

This warm wind driven air mass is expected to move north over the next 24 to 48 hours. It will steadily blanket both glaciers and areas typically covered with sea ice. And as it does so, it will push temperatures above freezing for large sections of both Baffin Bay and Western Greenland with above 32 F readings progressing as far as the Petermann Glacier.

What this means is that temperatures will likely hit record ranges of up to 54 degrees Fahrenheit above average in some locations near the far northern extent of this expected warm air invasion. Overall, Greenland itself is expected to see 15 degree (F) above average readings for the entire island. This will generate brief surface melt conditions for parts of Greenland during late November.

(Large region of 20 to 30 C, or 36 to 54 F, above average temperatures is predicted to blanket Greenland and the Canadian Archipelago after moving north through Baffin Bay over the next two days. Image source: Global and Regional Climate Anomalies.)

Strong warm air invasions of the Arctic at this time of year are a signal coming from human-forced climate change. As the northern pole darkens with winter, a global warming related phenomena called polar amplification ramps up. In addition, during recent years, we’ve seen warm air slots tend to develop beneath strong ridging features in the upper level Jet Stream. This year, the warm air slots have tended to form over the Bering Sea along the Pacific side of the Arctic and progress northward into the Chukchi. This has resulted in a large zone of ice free waters for a typically frozen region between Alaska and Siberia as warm winds and storm force waves have continuously beat the ice back.

The present warm air invasion for Greenland may be a signal that a similar warm air slot is attempting to develop over Baffin Bay going forward. Or it may be a fluke in the overall pattern. Watch this space.

UPDATE 11/29/2017: As predicted, temperatures over the Petermann Glacier hit above freezing at around 2200 UTC yesterday. According to climate reanalysis, temperatures for the region are ranging between 50-54 F above average in present model estimates for 11/29. In other words, the warm air invasion progressed as expected and resulted in above freezing temperatures for brief periods across Western and Northern Greenland.

Overall temperatures for Greenland are presently 15.5 F (8.6 C) above average in the models while the Arctic as a whole is 9.9 F (5.5 C) above average.

From Ice Apocalypse to Mega-Thunderstorms, Continuing to Burn Fossil Fuels Makes the World Scary as all Hell

So I’ve got to say I feel for Eric Holthaus.

Here’s a smart guy. Probably a few years younger than me. A meteorologist by degree and a climate journalist by trade. A guy with two kids that, as is clear from his twitter comments, mean all the world to him. And he’s finally gotten to that point in his study of climate change where he’s thrown his hands up and said — this stuff scares the crap out of me, can we please all just do something about it?

(The calving front of the Pine Island Glacier as seen by a NASA DC-8 aircraft. Image source: Commons.)

For him, as with any of us, the point of existential realization can come through overexposure to a wide range of worsening climate problems. Declining ocean health, rising extreme weather, how much faster we are warming the world up than during the worst hothouse extinction, can all weigh heavily on the heart and mind of any compassionate, feeling person who takes these subjects seriously enough to actually read the science. For Eric, the big deal, and it is a very, very big deal, was sea level rise.

Ice Apocalypse

Yesterday, Eric penned this seminal article on the issue of ice cliff stability as explored by glacier scientist Robert DeConto entitled Ice Apocalypse.

Ice cliff stability is a pretty technical term. One that may make the eyes of your typical reader gloss over. But when we consider that the glaciers of Greenland and Antarctica can be upwards of two miles high, then the question of whether or not the cliffs of those great ice mountains are stable may start to generate a flicker of warning. May conjure up a phantom of the titanic roar set off when such ice giants tumble away into the sea as has happened throughout the deep history of Earth whenever the world warmed up by a certain amount.

When I think of the words ice cliff stability, my mind’s eye pictures a vast wall of numbing white-blue stretching hundreds of feet high. It expands both left and right as far as I can see. And it looms over an endless warming ocean. Waiting for a colossal fall if just that right amount of extra heat is applied.

Ice is fragile. It’s not like stone. It doesn’t flex much. It doesn’t give much. And even minor stresses are enough to make it shatter. We see this with ice cubes in a cup of water at home. Put an ice cube into relatively warmer water, and that little 1×2 inch block will snap and crack. Now just compound that fragility. Set it on the massive scale of a mile-high glacier. Not too hard to image what can happen.

(2012 filming of massive calving event at Jakobshavn Glacier.)

It’s happened already at Jakobshavn Glacier in Greenland. The ocean warmed. The ice shelf protecting the glacier dissolved. And the front of the gigantic glacier fell like great, enormous, white dominoes. We’ve seen it happening in films like Chasing Ice. And we’ve struggled to grasp the enormous scale of it.

Our burning of fossil fuels did this.

Jakobshavn is, even now, contributing to a more rapid rate of global sea level rise. But the amount of ice held back by Jakobshavn is small when compared to the vast volumes kept in check by the Pine Island and Thwaites Glaciers of West Antarctica. What Robert DeConto did, and what has apparently scared Eric Holthaus so much, was apply a computer model based on observations of Jakobshavn ice sheet collapse to these larger Antarctic ice masses.

The DeConto study unearthed results that, indeed, looked apocalyptic. From Grist:

A wholesale collapse of Pine Island and Thwaites would set off a catastrophe. Giant icebergs would stream away from Antarctica like a parade of frozen soldiers. All over the world, high tides would creep higher, slowly burying every shoreline on the planet, flooding coastal cities and creating hundreds of millions of climate refugees.

All this could play out in a mere 20 to 50 years — much too quickly for humanity to adapt…

Instead of a three-foot increase in ocean levels by the end of the century, six feet was more likely, according to DeConto and Pollard’s findings. But if carbon emissions continue to track on something resembling a worst-case scenario, the full 11 feet of ice locked in West Antarctica might be freed up, their study showed.

The DeConto study is just one scientific exploration of what could happen in West Antarctica this Century. And, already, reassurances to a worried Eric Holthaus are forthcoming.

But the problem with the DeConto study, as with any other form of serious climate risk, is that there are plausible scenarios in which terrible catastrophic events are possible even if their degree of likelihood is still somewhat debatable. And reasonable precaution would dictate that even if there were just a 10-20 percent chance of DeConto like events coming to pass, we would do everything we could to avoid them. The risk of this scenario emerging, however, is probably a bit higher. As numerous studies have identified the potential for 6, 8, or even 12 feet of sea level rise by as early as 2100.

The Future of Mega-Thunderstorms Looks Grim if We Continue to Burn Fossil Fuels

Eric’s appeals to his Twitter friends related to his article were touching to me in that I feel like I go through similar shocks with each passing week. And what should be a time of national thanksgiving even as more than half of Puerto Rico’s population is still in the dark 63 days after the climate change amplified blow of Hurricane Maria is no exception.

For a model study recently produced by Nature Climate Change and explored by Bob Henson at Weather Underground has found that the rate of rainfall in large thunderstorm clusters could increase by 80 percent this Century if fossil fuel burning proceeds along a business as usual pathway.

To put this in context, an 80 percent increase in the amount of rain that fell in the Ellicott City Flood in Maryland last year would have produced nearly ten inches of rain in an hour and a half.

(The rainfall intensity in large thunderstorm clusters was found to be greatly enhanced under worst case fossil fuel burning scenarios [RCP 8.5] according to a recent Nature Study. Image source: NCAR, Nature, and Weather Underground.)

As with ice cliff instability, we find ourselves faced with another scientific term in the new study — mesoscale convective systems (MCS). And to translate this term we can simply say that MCSs are gigantic clusters of thunderstorms. The study found that rainfall amounts in the largest of thunderstorm complexes were greatly enhanced as warming proceeded along a business as usual track.

From the Study author’s statement to Weather Underground:

“These new simulations of future MCS rainfall are concerning, because they show very large increases in the amount of rain that a given MCS is likely to produce. The MCSs that we would today consider to be ‘extreme’ in terms of precipitation would become more commonplace in the future. There are also some regions that currently don’t see a lot of MCS activity that might start seeing some of these heavily raining MCSs in the future.”

These increases are on top of already elevated rates of rainfall intensity we presently see today in destructive events that our infrastructure and disaster planning is clearly not prepared for (as seen during Harvey). So as we take the time to give thanks for the great bounty that many of us still have, perhaps we should also take the time to think of the things we can do to keep safe what we have worked so hard for and care so much about and to do our best to help those who are less fortunate. Who have already fallen casualty to a time of troubles.

The Equatorial Pacific is Going Through its Variable Cool Phase, But 2017 is 94 Percent Likely to be the Second Hottest Year Ever Recorded

During late 2016, the Pacific Ocean started to cool off along its Equatorial region after experiencing one of the strongest warming events for that zone ever recorded. But despite this late cooling phase, the year ended up being the hottest ever recorded in the 137 year climate record — topping out at around 1.22 degrees Celsius above preindustrial temperatures. A longer term warming trend that has been directly driven by human burning of fossil fuels and related greenhouse gas emissions.

This year, the periodic Equatorial cooling known as La Nina is again taking place in the Pacific during fall following a very mild warming during winter and spring. But despite the appearance of a second such periodic cooling event, according to NASA 2017 is 94 percent likely to be the second warmest year ever recorded (see above).

October readings have come in and at 0.9 C above NASA  baseline (1.12 C above 1880s averages), temperatures are disturbingly high. The month is now the second hottest ever seen by modern humans. With only October of 2015 coming in warmer at 1.08 C above the 20th Century baseline (1.3 above 1880s).

(Heat transfer into the polar zones is increased during La Nina periods. This effect is enhanced by polar amplification related to human caused climate change. This week, very high relative temperature departures are expected for the Arctic. Image source: Climate Reanalyzer.)

Over the past two years, La Ninas (cooling Pacific) appear to have been at least partly off-set by very strong warming in the Arctic and Antarctic. Atmospheric circulation tends to transport more heat into the polar zones as the Pacific cools. This is due to the fact that temperature differential between Equator and poles during La Nina is less and the lower temperature differential causes the upper level winds to slow and meander. Coupled with polar amplification due to human-caused climate change, the result can be some pretty extreme temperature departures. This week is no exception as Arctic temperatures by Thursday through Saturday are expected to be between 4 and 5 degrees Celsius above average for the entire region above the 66 North parallel.

Such record warm temperatures do not occur in isolation. They help to drive extreme weather events such as severe droughts, rainfall, and powerful hurricanes. They are also accelerating sea level rise by melting glaciers even as both warming temperatures and related increasing ocean acidification contribute to dead zones, coral reef deaths and declining ocean health. Global temperature rise coupled with rising CO2 is therefore producing a major systemic crisis the world over.

RESOURCES:

Record Emissions: 41 Billion Tons of Heat-Trapping Carbon Dioxide Were Added to the Atmosphere This Year 

Over the past few years, something pretty amazing and hopeful happened. Global carbon emissions began to stabilize. This was caused, primarily, by stronger emissions reduction policies in China even as the rest of the world moved steadily away from coal burning and more and more toward adopting clean energy systems provided by the likes of wind, solar and electrical vehicles.

But during 2017, there appears to have been a return to rising emissions rates from both China and the rest of the world. As a result, a rather bad global climate situation is continuing to worsen.

China’s Swing Back to Coal and More Rapid Growth Result in Rising Emissions

As the major present emitter of carbon dioxide and a host to hundreds of hothouse gas spewing coal plants, any big move by China can also really move the global carbon emission total. We saw this in practice from 2013 to 2016 as China began to reign in rampant coal consumption and as global emissions levels subsequently responded.

(During recent years, global carbon emissions have plateaued. But during 2017, a new record high was reached on the back of a return to increased rates of coal burning in places like China. The peak year of fossil fuel burning and the year at which net negative carbon emissions occur are very important factors in determining future warming. And even the best case emissions scenarios will likely lead to 2 C or greater warming this Century. Impacts from 2 C warming will be very difficult to manage with a high likelihood that at least some widespread catastrophic impacts would occur. 3 C warming would be terrible — with very widespread harm and disruption. And it is unlikely that most nations would survive the impacts related to 4 to 6 C warming. Image source: University of East Anglia.)

This year, we see a bit of backsliding by this key energy and climate player due to a combined reduction in hydro based power supply and strong annual rates of economic growth.

Drought afflicting China has hit hydro-electrical power generation pretty hard. China presently possesses about 320 gigawatts of hydro power generation capacity. This is about 1/3 of its total coal generating capacity and compares to a relatively smaller wind and solar capacity of around 150 gigawatts. So any disruption to water flowing into hydro generators can have a big effect on coal use and related downstream carbon emissions.

China also rapidly added solar this year. But it was apparently not enough to offset the impact to hydro resources which increased demand for coal. In addition, China’s rapid projected growth rate of 6.8 percent in GDP also resulted in higher overall power demand — leading to more coal burning. Overall, China’s carbon emissions grew by 3.5 percent or around 350 million tons per year. This increase is well ahead of overall global carbon emissions growth in the range of 2 percent for 2017.

U.S. and E.U. Emissions Drop; India and Rest of World Sees Rise

Other factors included a slowing of U.S. carbon emissions reduction due to a degradation of helpful climate policies by the Trump Administration. Despite this deterioration, U.S. emissions fell by 0.4 percent or around 21 million tons per year. The European Union also saw continued if slow emissions reductions of around 7 million tons per year. Environmentalists have criticized mixed policies in places like Germany that continue to protect high-carbon coal burning. But the picture for the EU has, overall, been one of slow if steady progress. India-based emissions increased by a slower than expected rate of 50 million tons per year. Another somewhat disturbing feature in the new data shows that the rest of the world saw carbon emissions grow by 2.3 percent or about 305 million tons per year.

(Most energy and climate experts did not expect to see a potential peak in global carbon emissions until at least the early 2020s. However, 2013 to 2016’s plateau did provide a hopeful look at what was possible. In order to see an actual peak, the countries of the world will have to be far more aggressive about shutting down fossil fuel based energy sources and rapidly deploying renewables. Image source: The University of East Anglia.)

So even without the big bump in China’s emissions, the world, as a whole would have experienced some CO2 emissions growth. But this single country accounted for almost half of all carbon emissions growth around the world during 2017. And it is worth noting that even a relatively minor reduction in carbon emissions by China this year would have resulted in an extension of the global carbon emission plateau.

A Problem Caused by Fossil Fuel Burning

Where the problem of increasing carbon emissions is coming from is pretty obvious. According to reports, 41 billion tons of CO2 were emitted to the atmosphere during 2017 due to human activities. Of this amount, almost 90 percent came from fossil fuel burning — accounting for 36.8 billion tons of CO2 each year. This overall rate of emission is more than ten times faster than during the last hothouse extinction event to occur on Earth.

(Annual rates of atmospheric CO2 accumulation are now higher than 2 parts per million per year. The last time atmospheric CO2 levels were as high as they are now — around 407 parts per million — the oceans were between 25 and 75 feet higher than they are today. Image source: The University of East Anglia.)

The present increase is problematic in that it also makes it less likely that warming this Century will be limited to 1.5 or 2 C. The scientific community has often identified these as safer limits for warming. But we should be clear that no level of warming is entirely safe. That present warming in the range of 1.1 to 1.2 C above preindustrial levels is already causing harmful impacts like shifting climate zones, more instances of damaging, extreme weather, worsening wildfires, and ramping rates of sea level rise that are threatening islands and coastal cities. We should also be clear that present atmospheric greenhouse gas levels in the range of 407 ppm CO2 and 491 ppm CO2e imply a warming close to or above the 1.5 to 2 C threshold range by the end of this Century even if these levels were to merely remain stable.

An Increasingly Urgent Situation — But the Means of Lessening the Damage is at our Disposal

The urgency of the situation, therefore, cannot be understated. We are presently living in a time during which the safety of global civilization requires that we rapidly reduce to zero presently unprecedented annual levels of greenhouse gas emissions. And the first step to doing this is a swift as possible cessation of fossil fuel burning enabled by a transition to renewable energy.

It is worth noting that 2017’s rate of carbon emissions growth was less than the 3 percent annual rates experienced during the decade of the 2000s. Back then, less well developed renewable energy technology and very rapid economic growth in places like China resulted in far higher annual emissions gains than we see at present. So 2017’s gain may be a blip due to circumstances as combined wind, solar, and electrical vehicle advances begin to take hold of the larger energy and emissions trend. That said, challenges to rates of renewable energy adoption and related rates of carbon emissions reduction coming from right-wing governments like the Trump Administration should not be discounted. Failure to act by leaders in the U.S. and around the world or attempts to return to increasing rates of coal, oil, and gas burning are measures that will result in serious harm going forward.

We are thus at a moment of crisis when it comes to global emissions. We can continue to move forward on replacing fossil fuels with zero emitting energy sources. Or we can return to the very harmful increases in global carbon emissions of the past — at which point the damages we see from climate change will be rapidly enhanced.

RESOURCES:

World’s Carbon Emissions Spike by 2 Percent in 2017

The Global Carbon Budget

Warning Signs For Stabilizing CO2 Emissions

Fossil Fuel Based Auto Industry Faces Alien Invasion; 440 Starship Model 3s Have Been Manufactured So Far, But that’s Just the First Wave

Some have conjectured that the only way to make sense of present politician resistance to climate change responses is that alien body snatchers determined to inject toxic climate warming gasses into Earth’s atmosphere have taken control of key world leaders. Given the nonsensical behavior and strange skin color changes seen in some of the world’s most powerful people, this supposition, though fanciful, has broad appeal.

But if the ‘bad aliens’ have taken the side of the fossil fuel industry, we should not also ignore the angelic race hailing from the Blue Star who have decided to come to the aid of humankind and life on Earth. For a secret weapon in the fight to save the world from climate disaster is now steadily being deployed. And the global fossil fuel based auto industry doesn’t even begin to have a clue as to what’s about to hit them.

(Blue Star alien spaceship? Smart, living renewable energy technology, wrapped in a car’s body? Warrior fighting global climate disasters? Or all of the above? Tesla’s Model 3 poses an out-of-context threat to the world’s fossil fuel based automakers. Image source: Clean Technica.)

Like the body snatchers, this weapon has also taken the form of something we humans see as normal and innocuous. It has come to inhabit mere automobiles. For beneath the metal hoods, glass windows and roofs, and sustainably designed interiors of seemingly familiar Tesla road vehicles resides the electrical beating heart of alien technology. A living, almost biological, smart-tech that is pulsing within the fixed metal, plastic, and glass forms we see across the world and on its streets and byways.

The tech possesses living characteristics in that it can change and grow. For after each Tesla is produced, the starship inside awakens, empowering these vehicles to transform in a very autobot-like fashion. Possessed of the much the same hardware as many ‘normal’ electrical vehicles, the smart, alien tech that runs the battery in the breast of each machine is capable of learning and improving. Vehicles coming off the lines with a mere 200 mile range may see improvements that jump it to 230 miles (see Your Tesla May Have Secret Powers). Starship Model 3s with stated 310 mile ranges may suddenly and unexpectedly stretch their legs to 334 miles. The cars may learn to accelerate better using the physical materials that they already possess. They may learn to charge faster. And sitting in their driveways at night, after drinking deep of afternoon solar panel trapped energy, they may dream strange dreams of a vital new world that beats back the oppression of global hothouse extinction even as they learn to cut off the choking fumes of coal-fired powerplants.

(Are we really living in a space opera? No. But the stakes are just as epic. Video source: Iscandar.)

But this starship — posing as automobile — counter-force faces a serious challenge. Earthling means of mass producing the new alien technology that will give each person the opportunity to possess a world-saving starship is presently struggling to ramp up to face down the dark forces of hothouse extinction. Tesla is, after all, just a flawed human-run company. And so only 440 of the cutting-edge Model 3 craft had been produced by the end of October.

Yet Tesla is moving forward despite all opposition. Though suppliers capable of producing alien level tech have sometimes proven unreliable, the company is determined to build the needed components for Blue Star spaceships in-house. And it aims to have this counter-force of Model 3s marching off assembly lines en-masse at the pace of 5,000 per week by early 2018. Though earlier ambitions of a large first wave of Model 3s were disappointed, the second wave is forming with greater mass than before.

The orange skinned, one eyed, fossil fueled political people eaters have, thus far, been unsuspecting of the Blue Star forces in their midst. Perhaps Tesla’s mighty struggle to produce these new craft will provide for them some foreshadowing of the death blow to their nefarious designs that is to follow.

Advertisements
%d bloggers like this: