Advertisements

10-15 Foot Waves Break Seawall at Barrow, Alaska

This is not something that is normal for typically ice-choked Barrow, Alaska. Today, 25 to 35 mile per hour winds and fetch-driven, 10-15 foot high waves are breaking through coastal barriers and flooding the streets and homes of a town that is used to far more placid seas.

Barrow Flooding

(Recently, Barrow city officials had a barrier of sand erected to protect structures from the newly ice liberated waters of the Beaufort Sea. Today, a strong coastal low pressure system’s surf smashed that barrier, flooded the coastal road, broke a channel through to an inland lake, and swamped numerous structures. Image source: Barrow Sea Ice Webcam.)

*    *    *    *    *

There’s been quite a lot of potential storm energy building in the Beaufort Sea this season. Nearby waters in the Chukchi have ranged between 3 and 5 degrees Celsius above average. Warmth, moisture and low pressure systems have flooded in from the Pacific off the back side of the Ridiculously Resilient Ridge to the south. It was a pool of warmth and heat just waiting for a trigger.

As August swung toward September, the near polar regions began to cool even as the Summer sun retreated. Temperature differentials between ice free sections of the Chukchi and Beaufort and remaining ice covered regions in the Central Arctic Basin hit new extremes. And, yesterday, a strong low pressure system began to develop off the Northern Alaskan coast (see video of yesterday’s building surf here).

image

(Fifteen foot waves north and west of Barrow, Alaska as detected by Earth Nullschool at 2:05 PM EST on August 27th. Image source: Earth Nullschool.)

In response, Alaska weather forecasters yesterday issued a High Surf Advisory. They probably should have issued a Coastal Flood Warning instead. For by today, the low had intensified to a 985 mb system. It has wrapped its left side in 35-45 mph winds and 10-15 foot seas. Seas that are now ripping large holes through coastal barriers erected to protect Barrow from a newly ice-liberated and storm-tossed Arctic Ocean.

High waves and surging seas are expected to persist, and possibly intensify, over the next 12-24 hours for Barrow. So currently observed coastal flooding may continue to worsen through tonight and tomorrow.

Coastlines Newly Vulnerable to Open Water Storms

The Northern Alaskan Coastlines, as with many Arctic shores, are used to typically placid or ice-locked waters. In the past, when sea ice dominated the Arctic Ocean during Summer, there were few open stretches of water available for a storm to generate fetch. Now, vast regions of Arctic Ocean remain open for long periods during July, August and September. In addition, with high amplitude waves in the Jet Stream delivering so much heat and moisture from more southerly regions, the late Summer and early Fall Arctic is increasingly primed for storms.

The result is strong storms running through open waters and generating powerful surf. Surf that is aimed at gently sloping beaches and low elevation coastlines with few natural barriers to protect against waves and storm surge. It’s a new vulnerability that today, for Barrow, resulted in a storm riled and ice free Arctic Ocean surging into streets, roadways and homes. Another climate change related situation that is new — if not at all normal.

Links:

Barrow Sea Ice Webcam

Earth Nullschool

High Surf Advisory For Barrow Alaska

Hat tip to Ryan in New England

Hat tip to Griffin

Hat tip to Timothy Chase (fetch discussion)

Advertisements

Arctic Heat Drives Sea Ice Back Into Record Low Territory At Top of Melt Season

record low sea ice cover March 10

(Record low sea ice cover on March 10, 2014 a time that typically features sea ice maximum. Note that all basins show sea ice area and extent below the, already lower than normal, 1979-2000 base-line. Image source: Climate Change Institute.)

Abnormal, warm southerly winds at the lower and upper levels. More large heat pulses driven by high amplitude Jet Stream waves. Tropical heat launching into the Arctic Stratosphere over the Himalayas. Warm water upwelling from the rapidly heating ocean depths.

All conditions that continue to place the Arctic sea ice under a state of constant siege — winter and summer. All again doing their dangerous work in pushing the now critically weakened ice, once more to record low levels.

Under this state of ongoing assault, regions near Svalbard fell into rapid retreat as floes fractured over warming waters in the Bering Sea and west of Greenland. The result is the lowest measure of winter time sea ice area ever seen in any record for this day since Arctic observation began. Yet one more passing milestone in the vicious and rapid progression of human-caused climate change.

2011 Records Fall

According to reports from NSIDC and Cryosphere Today, Arctic sea ice area dropped to a record low of 12.95 million square kilometers on March 10 of 2014. It is a measure more than 2 million square kilometers, or an area roughly the size of Greenland, smaller than that seen during the late 1970s and breaking the previous record low, set just three years ago, by 150,000 square kilometers. Sea ice extent, meanwhile, had fallen to 14.5 million square kilometers, a measure roughly tied with the previous record low set in 2011 and also about 2 million square kilometers below area values seen during the late 1970s.

It is worth noting that the trend lines for both sea ice extent and area are well below previous trends for record low years 2007 (green below) and 2012 (pink below).

Sea ice area march 10 CT

(March 10 Sea Ice Area showing record low for the day. Image source: Pogoda i Klimat. Data Source: Cryosphere Today.)

Melt Hot Spots: Ocean Zones Near Svalbard and Greenland

With the Aqua Satellite again cresting the Arctic, we can peer down through cloud and ice to see dark, open waters peeking through kilometer-wide cracks or dominating entire ocean zones during a very anemic peak freeze. With recent days bringing average Arctic temperatures in the range of 2.5 to 4.5 degrees Celsius above normal and with local spikes in the +20 degrees C above normal range, areas of visible retreat and fragility abound.

These heat spikes combined with strong southerly winds near Svalbard to drive a rapid, far-north, retreat of ice floes on March 9-11 into zones that previously saw open ocean only during summer time. This far northward invasion of dark, open water is the primary culprit of the new record low:

Open Ocean North of Svalbard March 11

(Open ocean north and west of Svalbard on March 11, 2014. It is worth noting that Svalbard is about 600 miles from the North Pole. The Current sea ice edge, during a time when ice extent should be at its maximum, is now just 500 miles from the North Pole. Image source: Lance-Modis.)

A large region of northern Baffin Bay near Northwest Greenland and the Canadian Arctic Archipelago also showed extensive melt and open ocean zones during recent days.

Over past decade, this region has shown increasing susceptibility to warm ocean water upwelling near the Nares Strait with winter-time melting of northern extremities in Baffin Bay. But this year’s melt was particularly strong. An event that coincided with sea-bed earthquakes and anomalously high methane levels (1950 ppb+) in the region through mid-to-late February. It is possible that upwelling is both driven by warm water currents now filling up the Baffin deep water zone and by the somewhat energetic out-gassing of sea bed methane through faults and seeps.

It is worth noting that evidence of these seeps is based on satellite observation and very little in the way of comprehensive seabed methane assessment has been completed by the global scientific community, a gap in understanding that may well come back to haunt us as human-caused warming continues to put increased heat pressure on both deep and shallow ocean carbon stores.

Baffin Bay Nares Extensive cracked ice open water

(Fingerprints of warm water upwelling, sea-bed methane release? Extensive open water, cracked ice in North Baffin Bay, Nares Strait region during height of sea ice extent, 2014. Image source: Lance Modis.)

Heightened risk for record low year, total meltdown

The current record low status for end winter sea ice and the approach of El Nino, which tends to add heat to the European and Asian continents, results in an increased risk that new record lows for sea ice area, extent and volume may be reached by end of summer 2014. Both warm air and water flushing in from the continents have been implicated in large sea ice retreats during recent years and a rapid heating of the large land mass over Arctic Europe and Asia, along with a simultaneous warming of Alaska, should El Nino progress, may amplify both continental heat build up and heat transfer through river outflow into the Arctic Ocean Basin.

In addition, high temperature anomalies during late winter to early spring continue to suppress sea ice recovery late season. The result is that more open ocean is now available to absorb energy from the rising sun or to deliver that energy in the form of waves and currents to the greatly diminished ice pack. The one saving grace, if it can be viewed as such, is a minor, though likely temporary rebound in sea ice volume extending from late last year, likely bringing volume values into the range of 3rd or 4th lowest on record for March.

It is also worth considering that sea ice area trends show an ever-increasing possibility of a record melt year with melt rates similar to 2007, 2011 or 2012 enough to bring 2014 to new record lows.

sia_projections_from_current_date

(Sea ice area projections based on past trends. It is worth noting that the melt season has lengthened by nearly a month since 1979, the result being increasing volumes of ice lost from end of freeze to end of melt. Image source: Jim Pettit. Data Source: NSIDC.)

In any case, this combination of conditions generates a high risk of sea ice reaching new record lows in sea ice area, volume and/or extent come end of summer 2014 (60%). This prediction finds its basis in observed records of past melt seasons and in the fact that very few days remain for a potential late-season uptick in sea ice. If record low values hold and a late season rebound does not occur, it is worth considering this simple fact: each time sea ice reached a new record low maximum sea ice area since 2005,  a new record area melt was achieved by end of summer. That said, not achieving a record low maximum is no guarantee of safety, as 2012 so starkly proved.

It is also worth considering that sea ice may be very close to tipping points and once thinned beyond a certain threshold will be unable maintain integrity. In such an event, warm, dark, increasingly mobile ocean waters eventually overwhelm an ice pack fighting for survival. We may well have seen the beginning of such a consequence during 2012 when powerful and energetic storms that would usually result in sea ice retention only served to hasten record losses. A warning that there are fewer and fewer conditions favoring summer ice retention as the Arctic energy balance is ever more forcibly shoved toward melt.

Given these potentials — the high likelihood for record low area at maximum, the ever-lengthening melt season, and the increasing fragility of ice come end-summer — it is worth considering the unexpected worst case: total sea ice loss or near total ice loss (less than 1 million square kilometers area) by end of summer 2014. At this point, given record low area conditions late in the freeze season, we will assess a slight uptick of total ice loss risk over the previous year from 10 to 15 percent — a somewhat increased risk that sea ice values reach near ice free levels during a catastrophic melt this summer (15%).

If an observed start to the melt season begins early and if melt rates rapidly steepen, we will likely reassess both the likelihood of new records at minimum and a potential ice-free end summer state in the face of increased risks. At this point, both measures are low confidence estimates based on trends analysis, observation of current unprecedented Arctic warmth, and continued fragile ice state conditions.

UPDATE:

March 11 Arctic sea ice area values showed continued decline into record low territory. March 10 to 11 area losses, according to Cryosphere Today, extended an additional 70,000 square kilometers pushing the value down to 12.88 million square kilometers over the entire Arctic. This level is about 130,000 square kilometers below the previous record low value for today set in 2011 at 13.1 million square kilometers.

Abnormal atmospheric warmth over the regions most affected including north and east of Svalbard, Frans Joseph Land, the Kara Sea, a large region of Russia near Dickson, and in the region of the Nares Strait continued to provide melt pressure driving the most recent record low.

Links:

NSIDC

Climate Change Institute

Jim Pettit

Lance Modis

Cryosphere Today

Pogoda i Klimat

Arctic Ice Graphs

Putting Tremendous Sea Ice Volume Losses into Context: A Truly Devastating Trend

Across the sea ice blogosphere today a great amount of discussion has been dedicated to the subject of sea ice volume. You can take a look at some of this discussion over at Neven’s Arctic Ice Blog.

The general gist is that, for the past few years, the Arctic sea ice community has been cautious about accepting data from PIOMAS. The researchers there model sea ice volume by plugging Arctic Ocean observations into a computer simulation. However, over that time, the trends established by the PIOMAS data have born out in larger Arctic melt trends.

This summer, a group of British scientists validated the PIOMAS findings by using satellite data from Cryosat2. Interestingly, these British scientists came to the same conclusion that many studies of PIOMAS data have pointed to — the Arctic Ocean could be ice-free at summer’s end within the next ten years.

Almost as soon as the British published their Cryosat2 data, the Arctic began to experience another record decline in sea ice area and extent. The visible losses in extent and area have been, for many, enough evidence to take seriously the notion of a nearly ice-free Arctic in a much shorter span than was previously predicted.

Given the increasing acceptance of sea ice volume data and of the conclusions that can be drawn by sea ice data trends, it is important to provide a brief summary of what the volume trends from PIOMAS have been. In short, what PIOMAS and Cryosat2 have revealed is a stunning loss of sea ice and a potential for the total loss of Arctic Ocean ice over a much shorter period than previously thought.

In 1979, the total volume of sea ice according to PIOMAS was about 16,000 cubic kilometers. Today, PIOMAS shows sea ice volume at 3,600 cubic kilometers. This is a total loss of 12,400 cubic kilometers or about 78% of all ice in the Arctic Ocean at the end of summer since 1979. As noted before, at the current rate of melt, volume measurements indicate the Arctic could be ice-free within ten years.

For a visual of the current trends, take a good look at this graph of PIOMAS data produced by Neven:

This is a curve fitting process. So any conclusions drawn from it should be taken in understanding of the limitations of curve fitting.
The last data points are from 2011. Plugging in the values for August of 2012 would show a new volume low of 3,600 cubic kilometers — about 1,100 cubic kilometers below the 2011 measure of around 4,700 cubic kilometers. Final numbers for September 2012 aren’t yet in.

Stepping back, however, you can see a pretty severe melt trend. End of summer sea ice volume reaches about zero by 2017 following the curve. Even more disturbing, the Arctic becomes almost entirely ice-free year-round by 2032 if the trend lines for current decline rates hold.

The only science team yet to validate the potential for an ice-free Arctic during summer within ten years has been those investigating the Cryosat2 results. No-one has yet to validate the potential for an ice-free Arctic year-round by the mid 2030s. Yet this is the potential current melt trends reveal.

It is astonishing to me that such information has received almost zero attention from mainstream news sources. A recent article in the Opinion section of the Washington Post noted the potential for ice-free summers in the Arctic within the next 30 to 40 years. If the volume trends hold out, this article will be a vast underestimation. Perhaps even more disheartening is the article’s conclusion which seems to celebrate the ice free Arctic Ocean while turning a blind eye to the huge masses of ice of Greenland and West Antarctica which are bound to be the next to melt. The writer seems to also be completely unaware of the massive volumes of greenhouse gasses stored in the permafrost and methane hydrates in the region. The same gasses which are bound to amplify human-caused global warming even further.

I’m reminded of the irrational exuberance of economists and investors prior to the financial collapse of 2008. Even the bad indicators were considered ‘good.’ Let’s hope the derivatives of sea ice melt don’t come crashing down with even more terrible consequences. Lacking sound world-wide climate policy, a flimsy shred of hope seems to be all we have.

Advertisements
%d bloggers like this: