Advertisements

Record Warmth Blankets Alberta

Extreme warmth associated with a powerful western high pressure ridge and conditions related to climate change has broken temperature records across Western Canada during recent days.

On December 9, the southern Alberta cities of Lethbridge and Grand Prairie saw temperatures rising to record highs of 14 C or 57 degrees Fahrenheit. Meanwhile, Calgary experienced 15.4 C temperatures (60 degrees F) — which shattered the previous record of 14.4 C that had stood for 127 years. Four other cities in southern Alberta also saw record warm temperatures on Saturday.

For context, temperatures for this region typically range between -1 to -13 C this time of year.

(The first 11 days of December show far above average temperatures for most of Western North America and the Arctic. Image source: Global and Regional Climate Anomalies.)

The primary feature driving such extreme temperatures is a power high pressure ridge that has been anchored in place during November and December. The ridge has been drawing warm air north and generating unusually warm weather for regions from the U.S. West through central and western Canada and on up into the Northwest Territories and Alaska.

Very slow reformation of sea ice in the Chukchi and Bering Seas is a likely contributing factor to the ridge. A physical feature associated with human-caused climate change. La Nina is likely also enabling the synoptic transfer of heat into both the Arctic and the North American West through a very pronounced Rossby type wave pattern in the Jet Stream. But present Arctic warmth in the range of 3-5 C above climatological averages is well beyond 20th Century norms during La Nina years. It is instead primarily an upshot of polar amplification — where human-forced warming due to greenhouse gas emissions generates more warming at the poles than in the lower latitudes. So climate change related factors are also influencing this overall warmer than normal pattern.

(Above freezing temperatures aren’t typical for Alberta this time of year. But the region was blanketed by 40-60 degree [F] highs on Saturday. That’s 9 to 27 degrees [F] above average. Image source: Earth Nullschool.)

As a result, places like Calgary haven’t received any snowfall so far this year during December. A situation that is likely to continue for at least the next five days as warmer than normal conditions are expected to persist.

December is typically a rather snowy month for Calgary — receiving 8 days of snow during a normal year. But this year isn’t really that normal and the climate, with global temperatures exceeding 1 C above 1880s averages, isn’t normal anymore either.

CREDITS:

Hat tip to Dobby

Advertisements

After a Brief Respite, Climate Change Enhanced Drought is Returning to the U.S.

Unseasonable warmth across the American West and overall dry conditions across the South is causing drought to expand throughout many parts of the United States.

According to the U.S. Drought Monitor, most of the southern half of the United States is presently experiencing abnormally dry or drought conditions. Meanwhile, an intense drought that has remained in place over the Dakotas and Montana for multiple months continues to persist.

Severe drought conditions are now present in the south-central U.S. with exceptional and extreme drought expanding through Arkansas, Oklahoma, Texas, Louisiana and Missouri. Deepening drought in California and Texas are notable due to the fact that Southeast Texas recently experienced record rainfall due to Hurricane Harvey and California experienced a very wet winter and spring period from 2016 to 2017. Somewhat milder drought is also spreading through the Southeast.

Re-expanding Southern California drought is also enhancing record wildfire activity in that state.

Much Warmer than Normal Temperatures

A strengthening La Nina in the Equatorial Pacific is helping to generate a drought tendency for the Southern U.S. However, various climate change related features including above normal temperatures and a persistent high pressure ridge in the West are lending intensity to the rising drought regime.

(U.S. 30 day average shows much warmer than normal conditions for the lower 48 with extreme warmth prevalent over the American West. Image source: Global and Regional Climate Anomalies.)

Over the past 30 days, temperatures for the U.S. as a whole have been 1.52 C above average (see image above). Much of this excess heat has been concentrated over the West, with mountain and Pacific regions seeing between 4 and 5 C above average temperatures.

Excess heat of this kind helps to speed the drying of soils and vegetation by increasing the rate of evaporation. A condition that can lead to flash drought — whose incidence has been expanding in lock-step with the human-forced warming of the globe.

A Ridiculous Ridge

Linked to the western heat and drought is a strong and persistent high pressure ridge. One that has hit a very intense 1041 hPa pressure as of Monday afternoon over the U.S. Mountain West.

(Very intense high pressure ridge over the U.S. west is presently locking in both warmer than normal and drier than normal conditions. Image source: Earth Nullschool.)

Persistent ridging of this kind was a key feature of the recent 2012 through 2017 California drought. Some climate studies have identified a tendency of these kinds of strong western ridges to form as Arctic sea ice recedes. And during the past decade, strong high pressure ridges have been a rather consistent and significant climate feature for the U.S. West. It is also notable that formation of more powerful ridging features during the fall and winter help to strengthen the Santa Ana winds — which fan California wildfires.

Present drought is nowhere near as intense as it has been during recent years. Especially in California which during 2017 has experienced a bit of a respite. However, with La Nina gaining traction in the Pacific, with global temperatures now in a range between 1.1 and 1.2 C above 1880s averages, and with persistent ridging again taking hold over the U.S. West, the risk of a return to intense drought — especially for the Southwest — is increasing.

From Record Floods to Drought in Three Months: Unusually Hot, Dry Conditions Blanket South

Back during late August of 2017, Hurricane Harvey dumped as much as 60.48 inches of rain over southeast Texas. Harvey was the wettest tropical cyclone on record ever to strike the U.S. — burying Houston and the surrounding region under multiple feet of water, resulting in the loss of 91 souls, and inflicting more than 198 billion dollars in damages.

Harvey was the costliest natural disaster ever to strike the U.S. Its tropical rains were the heaviest ever seen since we started keeping a record. But strangely, almost inexplicably, just a little more than three months later, the region of southeast Texas is now facing moderate drought conditions.

(Just three months after Harvey’s record rains, Southeast Texas is experiencing drought. No, this is not quite normal despite a mild La Nina exerting a drying influence. Image source: U.S. Drought Monitor. Hat tip to Eric Holthaus.)

How did this happen? How did so much water disappear so soon? How could an instance of one of the most severe floods due to rainfall the U.S. has ever experienced turn so hard back to drought in so short a time?

In a sentence — climate change appears to be amplifying a natural switch to warmer, drier weather conditions associated with La Nina.

Climate change, by adding heat to the Earth’s atmosphere and oceans fundamentally changes the flow of moisture between the air, the ocean and the land. It increases the intensity of both evaporation and precipitation. But this increase isn’t even. It is more likely to come about in extreme events. In other words, climate change increases the likelihood of both more extreme drought and more extreme rainfall.

Of course, climate change does not exist in a vacuum. Base weather and climate conditions influence climate change’s impact. At present, with La Nina emerging in the Pacific, the tendency for the southern U.S. would be to experience warmer and drier conditions. But in a normal climate, these conditions would tend to be milder. In the present climate — warmed up by fossil fuel burning — the tendency is, moreso, to turn toward an extreme. In this case, an extreme on the hot and dry end of the climate spectrum.

For the region of Southeast Texas flooded so recently by Harvey’s record rains, it means that a turn from far too wet to rather too dry took just a little more than 3 months.

(Both temperature and moisture took a very hard turn over the past 30 days. Such extremely warm and dry conditions increase the likelihood of flash drought. A climate feature that has become far more frequent as the Earth has warmed. Image source: NOAA.)

South Texas, however, is just one pin in the map of a larger trend toward drought that is now blanketing the South. Over the past month, precipitation levels were less than 50 percent of normal amounts in most locations with a broad region over the south and west experiencing less than 10 percent of the normal allotment of moisture. Meanwhile, 90-day precipitation averages are also much lower than normal across the South.

Precipitation is a primary factor determining drought. But temperature can mitigate or worsen drought conditions. Higher temperatures cause swifter evaporation — driving moisture out of soils at a faster rate. And average temperatures across the south have been quite warm recently. With one month averages ranging from 1 C above normal over most of the south to a whopping 8 C above normal over parts of New Mexico. As with lower than normal precipitation, higher than normal temperatures have also extended into the past 90 day period across most of the South.

 

(Moderate drought conditions are widespread as severe to extreme drought is starting to crop up in the South-Central U.S. With La Nina likely to continue through winter and with global temperatures in the range of 1.1 to 1.2 C above pre-industrial averages, there is risk that conditions will intensify. Image source: U.S. Drought Monitor.)

The upshot is that moderate drought is taking hold, not just in southeast Texas, but across the southwest, the southeast, and south-central U.S. Severe to extreme drought has also already blossomed from northern Texas and Louisiana through Oklahoma, Arkansas and Missouri. This is relatively early to see such a sharp turn, especially considering the fact that La Nina conditions have only lasted for a short while and have, so far, been rather mild on the scale of that particular climate event.

Furthermore, like Texas, many of these drying regions experienced extreme rainfall events during spring and summer. Such events, however, were not enough to stave off a hard shift to drought in a world in which human-caused climate change is now driving both droughts and more extreme rainfall events to rising intensity.

(Predicted temperature and precipitation variance from normal over next three months. Climate change is likely to enhance this variability related feature. Image source: NOAA.)

With La Nina likely to remain in place throughout winter, the typical climate tendency would be for continued above average temperatures across the south and continued below average rainfall for the same region. Present human-caused global warming through fossil fuel burning in the range of 1.1 to 1.2 C above pre-industrial averages will tend to continue to amplify this warm, dry end of the natural variability cycle (for the southern U.S.).

In other words, there is not insignificant risk that the hard turn away from record wet conditions in the South will continue and that severe to very severe drought conditions will tend to spring up and expand.

RELATED STATEMENTS:

Predicted Record 94 Degree (F) November Temperatures for Dallas as Globe Warms Despite Trend Toward La Nina

The globe should be cooling relative to recent and near record warm summer temperatures. But it isn’t. La Nina like conditions, the Pacific Ocean pattern that generally precipitates globally cooler weather, is again spreading across the Equatorial Pacific. Yet if you’re living in Dallas, Texas, or many other places across the globe, you wouldn’t know it.

For this week, temperatures in Dallas are expected to exceed all previous records since monitoring began back in 1898.

(Record warm temperatures predicted for Dallas later this week. Image source: Euro Model.)

According to meteorologist Ryan Maue, and to reanalysis of Euro weather model data, Dallas is expected to see temperatures between 90 and 94 degrees Fahrenheit by Friday of this week. Readings that would be considered pretty hot for a normal summer day occurring on November 3rd. That’s really odd. Especially when you consider the fact that Dallas has never experienced a 90+ degree high temperature from October 31 through December 29 in all of the past 119 years.

If Dallas does hit 94 on Friday, that will be 21 degrees (F) above typical high temperatures there for this time of year.

(According to GFS Model Reanalysis, the globe has warmed through Northern Hemisphere Fall despite a trend toward La Nina. Image source: Global and Regional Climate Anomalies.)

Drawing back from focus on the Dallas region, we find that the world overall is also warming relative to June through September temperature departures. A climate change associated warming that appears to have been kicked off, primarily, by warmer than normal temperatures at the poles (see previous article). This despite cooling Equatorial Pacific Ocean surface waters associated with a 55 to 65 percent of La Nina formation by winter.

In a normal climate system, we would expect a trend toward La Nina to produce relative cooling. But this does not appear to be happening as June warm temperature departures were lower than those during August through October. Preliminary GFS reanalysis indicates that October warm temperature departures were higher than those occurring in September — likely hitting around 1.1 C above 1880s averages (see image above).

So despite a weak La Nina forming, it again appears that polar warming is a major driver for global temperatures as fall moves into winter. Climatologists take note.

RELATED STATEMENTS AND INFORMATION:

Links:

Euro Model

Global and Regional Climate Anomalies

Ryan Maue

NOAA

With Indicators Pointing Toward Back-to-Back La Ninas, NASA Shows August 2017 was Second Hottest on Record

The Earth really hasn’t backed off that much from the record heat of 2016. And since we’re experiencing what NOAA states is more and more likely to be back-to-back La Nina periods, the world should really sit up and take notice.

El Nino and La Nina Variability as Part of the Larger Warming Trend

As a measure of natural variability, La Ninas bring cooler conditions to a large portion of the Equatorial Pacific Ocean. Since the influence of this ocean on the larger climate system is so strong, La Ninas tend to generate periodic cooling in surface temperatures across the globe. El Nino, by contrast, generates periodic warming. The cycling between these two states can be imagined as a wave form.

(1998 and 2016 were both strong El Nino years — producing new record hot global temperatures when they occurred. Follow-on La Nina years resulted in counter-trend cooling that was not great enough to disturb the much larger overall global warming based trend. Image source: NASA.)

This cycle, however, should not be confused with the overall larger climate trend — which has been for considerable and rapid warming over the course of more than a century. That said, and despite the larger and obvious warming trend, La Nina years have tended to be cooler than El Nino years. This prevalence has resulted in years in which global surface temperatures temporarily, but slightly compared to the larger trend, back off from recent records. Meanwhile, El Nino years have tended to bring on new record hot temperatures due to their peaking influence on the greater trend of fossil fuel and carbon emissions based warming.

August 2017 Second Hottest on Record; 2017 Also Tracking Toward Second Hottest Year

According to NASA, August of 2017 came in as the second hottest August in the 137 year climate record. Overall August temperatures were 1.09 C warmer than 1880s averages. A measure that came in 0.14 C cooler than the record hot August of 2016 and 0.05 C warmer than the third hottest August — 2014. This added heat to the Earth System continued a larger record trend that has been in place at least since 2014 in which temperatures near the Earth’s surface spiked to far higher than previous levels (see image above).

Present NASA tracking shows that the first 9 months of climate year 2017 (Dec-Aug) were 1.14 C hotter than 1880s averages. By comparison, climate year of 2016 (Dec-Nov) hit 1.24 C above 1880s averages with January through December hitting 1.22 C above 1880s averages. The third warmest year on record, 2015, came in at around 1.09 C hotter than 1880s. Given this larger trend, NASA scientists presently provide an 83 percent probability that 2017 will come in as the second hottest year on record.

Back to Back La Ninas Probably on the Way, But no Significant Cool-Off So Far

It appears that 2017 is likely to hit around 1.11 C above 1880s averages. This is a 0.11 C dip below the record hot year of 2016. And it’s a dip enabled by the formation of a La Nina during fall of 2016 and a likely back to back formation of La Nina during the same season of 2017. In contrast, the strong La Nina following the 1997-1998 El Nino produced a much greater relative global temperature drop of around 0.2 C. An approximate 0.1 C return from the very strong 2016 spike is not much of a variability-based fall back and could point toward a stronger relative warming and a possible near term challenge to the 2016 global record in a likely El Nino during 2018-2020.

(One of the sole cooler than 30-year climatology regions in the Pacific is the Equatorial zone stretching from the Central Pacific to the West Coast of South America. Periodic cool water upwelling is driving this cooling which is a signal for La Nina. NOAA presently identifies a 55 to 60 percent chance of La Nina developing during fall of 2017. If this happens, late 2016 and late 2017 will feature back to back La Ninas. Despite this development, global temperatures are still hanging near record hot ranges. Image source: NOAA.)

Wild cards for this fall will hinge, in part, on how strong Northern Hemisphere polar amplification ramps up as Arctic cooling lags. Arctic sea ice extent appears to be tracking toward 5th to 6th lowest on record at end of the summer melt season. While sea ice volume has hit near second to fourth lowest on record. Both re-radiated heat from warmer than normal Arctic Ocean sea surfaces and larger energy transfer from the middle latitudes should drive a strong polar amplification signal similar to those seen during recent years. And, already, it appears the upper latitude Northern Hemisphere cooling is lagging typical 30-year climatology. However, it remains to be seen whether fall of 2017 will rival fall of 2016’s record observed heat transfer over the Pacific and north into the Beaufort region.

Such a signal would likely firmly solidify 2017 as second hottest on record. However, stronger than expected variable La Nina based cooling could upset this trend and bring 2017 closer to 2015 values. With so many months already passed, we’re looking at a possible swing of 0.02 to 0.04 C on the lower end if La Nina is stronger and a strong polar amplification signal does not emerge — which would still result in less of a variable dip than we saw post 1998.

(High amplitude Jet Stream waves to again transfer prodigious volumes of heat into the Arctic during fall of 2017? Watch this space. Earth Nullschool GFS model based image from September 28, 2017 shows another larger ridge forming over the Pacific Northwest and extending up into the Arctic.)

The end result is that the world is now firmly in a 1 to 1.2 C above 1880s temperature zone. Such a zone is one that is well outside of typical recent human experience. One that will tend to continue to produce unsettling and harmful weather and climate extremes. Furthermore, increasingly harmful climate change related events are likely to more swiftly ramp up with each additional 0.1 C in global temperature increase and as the world approaches the 1.5 C to 2 C threshold.

Links:

NASA

Dr. Gavin Schmidt

NOAA

Earth Nullschool

JAXA

PIOMAS

DMI

Major Hurricane Maria Could Hit 150 Mph+ Intensity as it Barrels Toward Puerto Rico

As of early afternoon on September 18, Hurricane Maria had reached major hurricane intensity of 125 mph maximum sustained winds and a 956 mb minimum central pressure. Moving west-northwest at 10 mph, the storm is tracking through already the hurricane-weary eastern Caribbean islands on a path toward a Puerto Rico still recovering from its close brush with Category 5 Hurricane Irma.

(National Hurricane Center’s [NHC] projected path and intensity for Maria shows a major hurricane threatening Puerto Rico over the next two days. Image source: NHC.)

Maria is expected to track over very warm Caribbean waters in the range of 84 to 86 degrees Fahrenheit (29+ C) as it enters a favorable atmospheric environment. And forecasters now call for Maria to rapidly intensify. Hurricane watches have already been issued for the American territory of Puerto Rico. And the present official Hurricane Center track and forecast intensity for Maria (see above image) shows a severe blow by a powerful category 4 storm striking somewhere along southeastern Puerto Rico early Wednesday with maximum sustained winds of 150 mph.

2017 Already a Season for the Record Books

It’s worth noting that some models presently show Maria tracking north of Puerto Rico. So the island could still avoid a direct hit. But the current official consensus is a rather grim forecast.

(IR satellite imagery of Maria shows an increasingly organized storm. Forecast points and sea surface temperatures included for reference. Image source: National Hurricane Center.)

Maria is the fourth major hurricane to form in the Atlantic during 2017 — which has been an exceptional season in many respects. This year saw the early formation of Arlene in April — only the second named storm recorded to have formed during that month. It saw the strongest hurricane ever to form outside of the Carribbean or Gulf of Mexico — Irma — which was also tied as the strongest land falling hurricane in the Atlantic. Both Category 4 Harvey and Irma struck the continental U.S. — the first time two Cat 4 storms have struck the states in a single month. And Harvey produced the heaviest recorded rainfall total from a tropical system at 51.88 inches. Overall damage estimates from the 2017 Atlantic hurricane season presently stand at 132 billion dollars — which makes this season the second costliest so far (behind 2005).

How Climate Change and Other Global Factors Contributed

With damages from Harvey and Irma still uncounted, with Maria barreling in, and with a week and a half left to September and all of October remaining, it’s likely that 2017 will see more to come. Though Irma and Jose have churned up cooler waters in their wakes, large sections of the Gulf, Caribbean, and North Atlantic remain considerably warmer than normal.

(Sea surface temperature anomaly map shows that much of the North Atlantic and Carribbean are between 0.5 and 2 C warmer than the already warmer than normal 30-year average. Image source: Earth Nullschool.)

Meanwhile, a very vigorous Inter-Tropical-Convergence-Zone (ITCZ) is still producing powerful thunderstorms over Africa. And cool water upwelling in the Pacific has generated La Nina-like conditions that tend to cut down on Atlantic wind shear — allowing more storms to fully develop and tap those warmer than normal waters to reach higher maximum intensities. Some of these factors — particularly the warmer than normal surface waters and possibly the increased intensity of ITCZ thunderstorms are climate change related. So yes, statements from those like Dr. Michael Mann claiming that this season’s hurricanes were made worse by climate change are absolutely valid.

(UPDATES TO FOLLOW)

RELATED STATEMENTS AND INFORMATION:

Links:

National Hurricane Center

Earth Nullschool

World Climate Stays in Uncharted Territory as May of 2017 Hits Second Hottest on Record

We’re currently in what should be a relatively considerable temperature trough following a strong 2015-2016 El Nino. But the globe hasn’t really cooled off that much.

In contrast, during the two year period following the 1998 super El Nino, annual global temperature averages subsequently cooled by around 0.2 C to about 0.64 C warmer than 1880s averages as a strong La Nina swept in. This post El Nino cooling provided some respite from harmful global conditions like increasingly prevalent droughts, floods, fires and coral bleaching events set off by the 1998 temperature spike. It did not, however, return the world to anything close to average or normal temperature conditions.

Warming Out of Context

(So far, 2017 temperature averages for the first five months have remained disturbingly close to what should have been an El Nino driven peak in 2016. Temperatures remaining so warm post El Nino are providing little respite from this peak warming. Meanwhile, the longer significant La Nina conditions hold off, the more extreme and out of context the post-2013 period looks from a global weather/climate perspective even relative to the significant warming occurring from the late 1970s through the early 2010s. Note the steep temperature spike following 2013 in the graph above. This should flatten out, step-wise, as La Nina conditions ultimately push against the larger surface warming trend [driven primarily by fossil fuel burning]. We thus await a La Nina stronger than the very weak late 2016 through early 2017 event with bated breath… Image source: NASA.)

During 2015 and 2016, the world was forced to warm much more intensely than during the 1998 event as very high and rising greenhouse gas concentrations (400 ppm CO2 +) met with another strong El Nino and what appeared to be a very widespread ocean surface warming event. Temperatures peaked to a troubling 1.2 C hotter than 1880s averages during 2016. An annual peak nearly 0.4 C warmer than the 1998 temperature spike. But unlike the period following the 1998 event, it appears that 2017 will probably only back off by about 0.1 degrees Celsius at most.

This counter-trend cooling delay is cause for some concern because a larger portion of the global surface heat added in during the 2015-2016 El Nino appears to be remaining in the climate system — which is lengthening some of the impacts of the 2015-2016 temperature spike and putting the world more firmly outside of the weather and climate contexts of the 19th and 20th Centuries.

(2017 temperatures aren’t trailing too far behind 2016’s record spike. A trend that is, so far, considerably warmer than 2015, which was the second hottest year on record. Image source: NASA.)

Record heat, drought, rainfall events, unusual storms, coral bleaching, glacial melt, wildfires, sea ice melt and other effects related to extreme global temperature will, therefore, not abate as much as some would have hoped. Furthermore, though current science does not appear to identify a present perturbation in the ENSO cycle (which may produce more El Ninos as the world warms), monitoring of that cycle for warming-related change at this time seems at least somewhat appropriate.

Second Hottest May on Record

According to NASA, May of 2017 was 0.88 degrees Celsius hotter than its 20th Century baseline — or 1.1 C warmer than 1880s averages when the world first began a considerable warming trend clearly attributable to fossil fuel burning and related human carbon emissions. This reading is just 0.05 C shy of the record warmest May of 2016. It’s also slightly warmer than the now third warmest May (0.01 C warmer) of 2014. And all of the top four warmest Mays in the present NASA record have now occurred since 2014.

(NASA’s second hottest May on record brought above normal temperatures to much of the globe. Disturbingly, the most extreme temperature departures above average occurred in the vulnerable Coastal regions of Antarctica. Small regions including parts of the North Pacific, the Northern Polar Region, the extreme South Atlantic, and the Central U.S. experienced below average temperatures. But these outliers were few and far between. Image source: NASA.)

Add May of 2017 into the present 2017 running average and you get a total of 1.19 C warmer than 1880s conditions. This is the second warmest first five months on record following 2016 at a very considerable 1.38 C above 1880s. It is, however, just about 0.01 C behind 2016’s annual average of 1.2 C above late 19th Century global temperatures.

It’s worth noting that most of the temperature spike attributable to the 2015-2016 El Nino occurred beginning in October of 2015 and ending in April of 2016. Somewhat milder months comparable to April and May 2017 averages followed from June through December of 2016 as a very weak La Nina followed. Since about February, Pacific Ocean conditions warmed into an ENSO neutral state where neither El Nino or La Nina dominated. NOAA’s present forecast calls for ENSO neutral conditions to continue as the Equatorial Pacific slowly cools again. So a continuation of present trends could leave 2017 rather close to the 2016 spike.

Forecast Trends

GFS model guidance for June shows somewhat cooler global conditions than in May. If this trend continues we will likely see the month range from 0.7 to 0.82 C above NASA’s baseline. If the GFS summary is accurate and this meta-analysis is correct, then June of 2017 will likely range between 1st and 4th warmest on record. Meanwhile, ENSO (El Nino Southern Oscillation) neutral conditions should tend to keep 2017 as a whole in the range of 1 C to 1.2 C hotter than 1880s averages — likely beating out 2015 as the second hottest year on record and keeping the globe in what basically amounts to uncharted climate territory.

(UPDATED)

Links:

NASA GISS

NOAA’s Weekly ENSO Report

With New El Nino Predicted, 3rd Hottest January on Record May be Cool Mark for 2017

Last month was pretty darn hot as global temperature measures go.

According to NASA, the world’s thermometer averaged 1.14 C warmer than 1880s temperatures or about 0.92 C warmer than NASA’s 20th Century baseline. These readings were the third warmest for January since NASA record keeping began in 1880.

janaury-2017-3rd-hottest-on-record-nasa

(A record hot world cools a little during January of 2017 relative to 2016. Unfortunately, with La Nina fading and a new El Nino predicted and with atmospheric CO2 measures continuing to climb, more record breaking or near record breaking global heat appears to be on the way. Image source: NASA GISS.)

2016-2017 La Nina — Not Very Cool

For a temperature measure that has consistently been producing ‘hottest months on record’ throughout 2016, the dip back to top 3 during January represents an ephemeral respite. More to the point, the fact that this third hottest ever reading occurred during the cool phase of natural variability called La Nina presents little cause for reassurance.

The Pacific Ocean has merely been drawing in more atmospheric heat on balance, as its periodic cycles dictate, during the months of September 2016 through January 2017. But despite a heat draw-down due to this variable cool ocean phase, the period produced consistent second and third hottest months on record globally. In particular, warming at the poles (and especially in the Arctic) appeared to substantially counter the cooling influence of the weak La Nina.

nasa-global-temperature-record

(With a weak La Nina fading, a weak to moderate El Nino apparently on the way, and with atmospheric greenhouse gasses at record high levels, it appears that 2017 temperatures will range close to the record global warmth that occurred during 2016. Image source: NASA.)

Overall, the average temperature of these five cooler La Nina months was 0.876 C above NASA’s 20th Century average (1.096 C above 1880s). A reading considerably warmer than the 1998 super El Nino year average of 0.63 C above 20th Century baselines (0.85 C above 1880s). An average unsettlingly close to the 0.98 C above baseline (1.2 C above 1880s) measure for 2016 as a whole.

Predicted 2017 El Nino Would Push us Back to Near Record Hot Too Soon

With a La Nina period so greatly exceeding 1998 El Nino averages, we can confidently say at this time that the old cherry previously used by climate change deniers for so many frequent misrepresentations has now been left in the dust and ash of the great global burning of fossil fuels continuing unabated since that time and that this year will push CO2 and CO2e levels to above 410 ppm (peak) and 493 ppm respectively.

warm-kelvin-wave-forming

(Warm Kelvin Wave now propagating across the Pacific indicates that a weak-to-moderate El Nino may form by Summer of 2017. Such an event, when combined with record levels of atmospheric greenhouse gasses, would tend to keep 2017 temperatures closer to record warm ranges established during 2016. Image source: NOAA.)

For the coming months, we can say with some confidence that global temperatures again appear likely to start rising. NOAA model guidance now points toward a likelihood of a new weak El Nino forming by May or June. An event that will possibly expand into a moderate strength event come the Fall of 2017. Already, a plug of warmer than normal water is propagating from west to east just beneath the Equatorial Pacific’s sea surface. And this warm water is expected to expand off South America and then spread westward along the Equator in a classic El Nino scenario for the coming months.

El Nino forecasts for this time of year can be rather uncertain. However, if NOAA models are correct, the added warmth over so much surface water in the Equatorial Pacific will also tend to push an atmosphere already loaded with an abundance of heat-trapping gasses to again warm.

beginning-to-look-a-lot-like-el-nino

(NOAA CFSv2 model runs show a moderate El Nino forming by late Summer or early Fall. Image source: NOAA.)

So the La Nina range of 0.95 to 1.15 C above 1880s will tend to tip toward 1.05 to 1.25 C above 1880s during a weak to moderate El Nino event. A range very close to what we recently saw during the record warm year of 2016.

Risks for Heat Related Climate Disruptions to Remain Heightened

So much re-warming so soon on the tails of 2016 is not very good short or medium-term news for the global climate system. It means that issues such as severe droughts and floods, disruption of monsoonal weather patterns, increasingly prevalent wildfires, climate related stresses to crops, global coral bleaching, and immediate melt stresses to polar zones are likely to fail to abate during 2017. The one silver lining being that 2017 is less likely to hit a new record global high temperature mark than 2016 was. But global temperatures hitting so high already at the tail end of three record warm years in a row is little cause for comfort.

Links:

NASA GISS

The Climate Prediction Center

NOAA

Warm Atmospheric River Aims Parade of Storms at U.S. West During La Nina Year of 2017

A river of moisture arises from the Pacific Ocean and links up with a procession of enormous storms that bring heavy surf, flooding rains, and mountain snows to the U.S. West. It’s a weather narrative that one usually associates with a strong El Nino during winter time. But the powerful El Nino ended last year and it failed to bring the expected rains. Meanwhile, in early 2017, during a La Nina year in which typical trends would tend to point to drier conditions for the U.S. West, a procession of severe storms is now slamming into California.

El Nino Pattern During a La Nina Year

So what the heck happened? What could possibly cause such a crazy weather flip-flop in which record drought conditions extend through a time of El Nino but severe and extreme rains come with the onset of La Nina?

The answer appears to be that a record warm ocean combined with a strongly positive Pacific Decadal Oscillation to produce a powerful river of moisture aimed directly at California. And when the associated storms arrived it was with an extreme intensity — setting off numerous flash flood events.

atmospheric-river-pacific

(Water vapor models show an atmospheric river running out of the Western Pacific — crossing that vast ocean before engorging storms slamming into the U.S. West Coast on January 17 of 2017. This is a severe weather feature more typical of an El Nino year that is now occurring during a period of weak La Nina conditions. The difference being that rivers of moisture running into California typically issue over Hawaii. The present ‘Pineapple Express’ is coming all the way from the Philippines. Image source: Earth Nullschool.)

An almost continuous spate of heavy downpours since the first week of January has now unloaded enough moisture to fully slake severe drought conditions over Northern California and to considerably reduce the drought in the south. Overall, precipitation totals for the past 30 days have been as much as 2.5 times above the normal amount for California.

Another Batch of Heavy Rain on the Way

This week, NOAA expects another batch of powerful storms to come blasting out of the Pacific. Sections of Southern California are predicted to get hit with around 9-13 inches of rain over the next seven days while the north receives another 10 to 15 inches. These are notably severe rainfall totals for California. And NOAA model predictions have tended to range higher over the past 24 hours.

 

noaa-extremely-heavy-precipitation

(NOAA 7-day precipitation forecast indicates a severe rainfall event for the U.S. West Coast with heaviest amounts hitting parts of Northern California. Image source: NOAA.)

According to Accuweather, the heavy rains are expected to spur flash flooding, increase the risk of mudslides and to possibly push some rivers over their banks. However, since many rivers are still at low levels following persistent drought during the last five years, over-topping is less of a risk than it otherwise would have been.

Storms tend to bring cooler weather to this region and the Western U.S. has cooled somewhat during 2017 compared to past years. However, the conditions in which these storms are firing are warmer than they have been in the past. As a result, mountain snowfall has occurred higher up on the slopes. Consistent with the warmer than normal storms, Accuweather predicts this week’s storm system will not produce big snowfall totals for the Cascades as snow levels are driven above 7,000 feet by the warmer than usual temperatures.

Very Warm, Moist Pacific; Positive Pacific Decadal Oscillation

There’s been very little weather and climate discussion as to why heavy rains are falling in California during a year when the odds stacked against such an event would tend to be higher due to La Nina. The elephant in the room at this time is a major excursion of global surface temperatures in the range of 1.2 C above normal during 2016. A notably severe climate change related insult to the Earth system. Such extreme atmospheric warmth will tend to hold more water vapor aloft in suspension. As a result, when the rains do fall, they will tend to be heavier and come more in the form of downpours and deluges than as moderate or lighter precipitation.

sea-surface-temperature-anomalies-pacific

(This sea surface temperature anomaly map shows that despite La Nina, the Pacific Ocean, on balance, is much warmer than normal. These warmer than normal sea surfaces are pumping out a considerable amount of moisture — which is helping to feed the powerful storm systems running into the U.S. West Coast. Image source: Earth Nullschool.)

To this point, despite a La Nina blanketing the Pacific’s central Equatorial region in cooler than normal waters, most of the Northern Pacific is considerably warmer than normal. And all this extra warmth is helping to pump a lot of water vapor into the atmosphere above the ocean zone. A feature that is not typically consistent with La Nina, but one that is consistent with a considerably positive Pacific Decadal Oscillation acting in conjunction with overall global warming. Positive Pacific Decadal Oscillation (PDO) values are associated with above normal sea surface temperatures in the Eastern and South-Central Pacific. Positive PDO tends to produce longer and strong El Nino events. And it is also associated with strong storm tracks running from west to east along the 40 N latitude line.

Storm Track Runs All the Way to U.S. West Coast

To this  point, it’s worth noting that PDO has been in a positive range for the past three years running. But it wasn’t until recently that a persistently strong storm track stretching all the way to the U.S. West Coast has developed. During past years, strong storms veered north into Alaska and Canada, deflected by powerful ridges over the U.S. West.

crazy-wavy-jet-stream-u-s-canada

(The crazy, wavy jet stream with a strong storm track hitting California and a ridge riding up into Central Canada is rather changed from the Ridiculously Resilient Ridge blocking pattern that helped to spark severe droughts along the U.S. West Coast during 2013-2015. Now, severe flooding rains are the rule of the day. Under human-caused climate change, we can expect weather patterns to tend more toward extremes. For the U.S. West Coast extreme drought has been replaced by heavy rains. Image source: Climate Reanalyzer.)

Assisting the process of storms running toward the U.S. West Coast was the removal of a hot blob of water off coastal Washington and Oregon as a zone of somewhat cooler than normal waters formed. These cooler waters extended from just off Northern Japan to south of the Aleutians and on toward the U.S. West Coast. This zone is providing a dipole temperature anomaly between the cooler than normal surface waters in the north and the warmer than normal waters in the south. As a result, the Jet Stream has a nice slot along which to produce a powerful, flat storm track. These two features — a strong temperature dipole between the 40 and 50 degree latitude lines and a very warm Pacific producing copious amounts of moisture south of the 40 degree latitude line — are the key ingredients that appear to be fueling the powerful West Coast storms in a counter-La Nina fashion.

In contrast to the 2013 to 2015 period, high pressure ridging along the U.S. West Coast is not now strong enough to deflect the storms running across the Northern Pacific. In other words, it appears that the influence of the Ridiculously Resilient Ridge and hot Ocean blobs off Washington and Oregon during 2013 to 2015 is has now faded out. However, the new climate and weather trends driving this most recent influx of heavy rainfall to the U.S. West Coast are almost as odd and notable.

Links:

Threat of Flooding For U.S. West Coast

West Coast Storms Cause Dangerous Flooding in California

U.S. Drought Monitor

Climate Reanalyzer

GISS Temperature Data

Climate Reanalyzer

Pacific Decadal Oscillation

Hat tip to Colorado Bob

There’s a La Nina Developing — So Why is the World Still Heating Up?

Long term, there’s no doubt what’s in control of the world’s temperature trend. The vast belching of greenhouse gasses by fossil fuel industry and related non-renewable based machinery has caused atmospheric carbon levels to hit 405 ppm CO2 and 490 ppm CO2e this year. All this added carbon has caused the world to warm by a record 1.22 C since 1880s levels during 2016 (approx). But superimposed over this long term warming trend is the natural variability based ebb and flow of atmospheric and surface ocean heat that is the El Nino Southern Oscillation (ENSO) cycle.

ENSO — A Wave Pattern Overlying the Long Term Warming Trend

Think of it as a smaller wave pattern that overlaps the current global upswing in temperatures. As El Nino builds and comes into the fore, natural forcings caused by periodic ocean surface warming in the Equatorial Pacific push global temperatures higher. This tends to add to the human forced global warming trend. So, often, El Nino years are also record warm years.

global-temperatures-enso

(El Nino to La Nina temperature variations create a wavy pattern in the overall global warming trend. Note — the record warm year of 2016 is not included in this graph. Image source: NOAA.)

Conversely, La Nina, which generates a periodic cooling in the Equatorial Pacific tends to pull a bit against the long term warming trend. So periods of La Nina tend to show average global atmospheric temperatures in the annual measure drop off by about 0.2 to 0.4 C from the peak periods of atmospheric heating during El Nino. Of course, since the ENSO variability typically follows a range of +0.2 C to -0.2 C but does not affect long term temperature trends, it only takes about a decade for La Nina years to be about as warm as recent El Nino years.

Slight Warming During Fall of 2016 Despite La Nina

During fall of 2015 and the winter and spring of 2016 a powerful El Nino helped to push global surface temperatures into new record high ranges. This happened because greenhouse gasses the world over had been loading heat into the Earth System for some time and the strong El Nino served as a kind of trip wire that opened the flood gates for a surge of atmospheric heat. Which is why 2016 will be about 1.22 C hotter than 1880s temperatures (1 C hotter than NASA 20th Century baseline temps) and why the years from 2011 to 2016 will average above 1 C hotter than 1880s values overall (0.8 C hotter than 20th Century baselines).

But now, with the 2016 El Nino in the rear view mirror and with a La Nina forming in the Pacific, we would expect global temperatures to cool down somewhat. For the most part, this has happened. Back in January and February, monthly average temperatures were as much as 1.5 C above 1880s averages. Since summer, the averages have dipped to around 1 to 1.1 C above 1880s values.

gfs_anomaly_timeseries_global

(Global temperatures bottomed out at around 1 C above 1880s or 0.4 C above the 1981 to 2010 average in this GFS based graph by Karsten Haustein during June then began to slowly climb through fall even as a weak La Nina began to develope.)

With La Nina continuing to form, we would expect these monthly values to continue to fall for a bit as La Nina strengthened. But that doesn’t appear to be happening. Instead, global atmospheric temperatures bottomed out at around 1 to 1.1 C above 1880s levels in June, July, August and September and now they appear to be rebounding.

Polar Amplification Signal Shows Up as a Blip in the Global Measure

In other words, we see a rise in the global temperature trend when we should see a steady counter-trend decline forced by natural variability.

Why is this happening?

The climate evidence points to a rather obvious set of suspects. First, the long term Pacific Decadal Oscillation value has continued to push into the positive range. And this state would tend to favor more heat radiating back into the atmosphere from the ocean surface.

However, if you look at the global climate maps, the major anomaly drivers are not coming from the Pacific, but from the poles. For this fall saw extreme warming both in the northern and southern polar regions of the world. Today, temperature anomalies in both the Arctic and the Antarctic were 5.84 and 4.19 C above average respectively. A rough average between the two poles of +5 C for these high latitude regions. As we’ve mentioned many times before, such severe warming is an obvious signal of climate change based polar amplification where temperatures at the poles warm faster relative to the rest of the Earth during the first phase of greenhouse gas forced warming.

extreme-polar-amplification-november-4

(Extreme warming of the polar regions continued on November 4 of 2016. This warming is pushing against the La Nina trend which would tend to cool the world temporarily. Image source: Climate Reanalyzer.)

By themselves, these abnormally high temperatures at the poles would be odd enough. But when taking into account that La Nina should still be cooling the globe off, it starts to look like this severe polar warming has jostled the La Nina cooling signal a bit — turning it back toward warming by late fall. And if that is what’s really happening, then it would imply that the natural variability signal that is produced by ENSO is starting to be over-ridden by polar amplification based influences. In other words, there appears to be another signal that’s starting to intrude as a polar amplification based temperature spike.

It’s something that has popped up from time to time as a blip in the observational data over the past few years. But fall of 2016 provides one of the stronger signals so far. And it’s a signal related to a set of feedbacks that have the potential to affect the overall pace of planetary warming. Something to definitely keep an eye on.

Links:

NOAA

Karsten Haustein

Climate Reanalyzer

NOAA El Nino

Hat tip to June

Hat tip to ClimateHawk1

Hat tip to JCH

Bad Rains Fall Across Globe — 700,000 Evacuated in Kyushu Deluge as Worst Flood in 100 Years Inundates West Virginia

In Kyushu, Japan on Friday, government officials urged 700,000 residents to evacuate as record heavy rains and severe flooding inundated the city for the fifth day in a row. Half a world away in West Virginia, another unpredicted record deluge dumped 8.2 inches of rain, washed out roads, cut off shopping malls, flushed burning homes down raging rivers, and left more than 14 people dead and hundreds more stranded.

Individually, these events would be odd. But taken together with what are now scores of other extreme flooding events happening around the world in the space of just a few months and the context begins to look a lot like what scientists expected to happen due to human-forced climate change.

700,000 Urged to Evacuate in Kyushu Deluge

Kyushu Rains

(Heavy rains fall over Kyushu on Friday in the most recent wave of extreme storms to blanket the island. Image source: LANCE MODIS.)

In Kyushu, the skies opened up on Monday. An extension of a seasonal front draped across China and feeding on moisture bleeding off of record hot ocean surfaces edged out over Japan. Mountainous cloud banks unloaded. Record rains in the range of five inches an hour then began to inundate the southern Japanese island. This mass dumping of water eventually accumulated to half a meter (or 1.6 feet) over some sections of the island over the course of just one 24 hour period.

The rains set loose raging rivers of water through Kyushu streets and saturated hillsides already weakened by an April earthquake. The flooding and resulting landslides killed 6 people on Monday alone and resulted in calls for tens of thousands of people to evacuate the hardest hit areas. Over the week, hourly rainfall totals of 1-3 inches and daily rainfall rates of 4-8 inches continued as more and more of the region succumbed to flooding. By Friday, bridges and roads had been washed out, an elderly man, a university student, and a child had gone missing, trains had been blocked by mudslides and the evacuation calls extended to include 700,000 people.

Unexpected Record Floods Hit West Virginia

By early Wednesday in West Virginia the weather was starting to get a little rough. Strong storms had been running over the region since Tuesday as an unstable air mass funneled lines of thunderstorms into the Appalachian Mountain region. The forecast did indicate some potential for severe weather, but nothing near so extreme as what emerged.

NOAA QPC predictions called for peak rainfall amounts in the range of 3.24 inches from Wednesday through Friday. But the inundation that occurred on just Thursday alone resulted in rainfall totals of more than two and a half times that:

Forecast Beat By Climate Change Again

(In another instance that calls into question whether current forecast models are keeping up with the heavy rainfall potentials that are now made possible by a record hot global atmosphere NOAA’s predicted rainfall totals are again greatly exceeded by events — this time in West Virginia where 14 people have been reported dead due to flooding. An indication that weather prediction may not be fully taking into account the added threat posed by human-forced warming. And also an indication that endemic climate change denial in the US political system [in vast majority among republicans] — which has resulted in a dramatic failure to fund needed and necessary climate change monitoring — is having a harmful overall impact to public safety and disaster preparedness. Image source: NOAA QPC.)

Reports indicate that 8.17 inches of rain fell in just one 24 hour period in Sulfur Springs, West Virginia. But it was just the center mass of the worst flood in a century for parts of the state. One that has so far resulted in the deaths of more than fourteen people. Five hundred people are also currently stranded in a shopping mall that has now been cut off by the flood.

(A burning home floats down a West Virginia creek swollen to a raging torrent by the worst flood to hit the state in 100 years.)

Numerous homes and hundreds of cars have also been lost due to the flash floods that swept through West Virginia’s valleys. In one instance, a burning house was filmed floating down a river. As a result of the severe and unexpected rains, 44 of the state’s 55 counties have now been declared a disaster area.

Conditions in Context — Global Warming Fuels More Extreme Rainfall Events

These severe flooding events add to those this week occurring in China, Australia, Sri Lanka, Indonesia, and Great Britian over just the past seven days. In addition, extreme floods have swept through Texas, Canada, Central Asia, Europe, Ghana and Argentina over the past couple of months.

The floods occur at a time when global temperatures are just coming off of new record highs during the first part of 2016. Temperatures that, in February peaked near 1.5 degrees Celsius hotter than 1880s averages. For each 1 degree Celsius that you add to global temperature, you increase the atmospheric moisture loading by about 7 percent. This is a physical fact of the Earth’s climate system. If you heat the atmosphere, you increase evaporation and that results, in turn, in more moisture held up in the world’s airs.

It’s this well understood dynamic of atmospheric physics that scientists have long warned would result in more extreme droughts and downpours as a result a human-forced warming of the world. Chris Fields, a climate scientist cited by US News and World Report in an article covering the record Paris floods earlier this month also noted:

“One of the clearest signs of climate change, over much of the world, is the increase in the fraction of the rain that falls in the heaviest events.”

So not only does a loading up of the hydrological cycle with moisture result in heavier rainfall events generally, it also results in a greater fraction of overall rainfall coming in the form of heavy rain. In other words climate change causes heavier rain on top of heavier rain. The worst events, as a result do not just get worse, they get much, much worse. And this is due to the added convection — or updrafts — that keep moisture in the air longer. In other words, the rain in a hotter world needs to be heavier to fall out of clouds that are pushed higher and with greater force by heat rising up off the Earth’s surface.

image

(In a record-warm world, a transition from El Nino to La Nina can result in an unprecedented amount of moisture being wrung out into trough and storm zones. Extraordinarily heavy rainfall events like those experienced across the world over the past few months is the all-too-likely result. It’s a feature that has been added by global temperatures that are now about 1.2 C hotter than 1880s in the annual average. As global temperatures increase, heavy precipitation events will continue to grow more intense even as droughts in other regions worsen. Image source: Earth Nullschool.)

As for the timing of the most recent heavy rainfall events — the last element to the equation has been a transition from El Nino to La Nina. During the most recent El Nino, the Equatorial Pacific warmed and new record global temperatures were achieved. But as the Equatorial Pacific cooled, so did the atmosphere. And now, some of that record atmospheric moisture load isn’t recieving quite as much heat from beneath keeping it all aloft. So a greater portion of it tends to fall out in the post El Nino period.

And none of this is to say at all that El Nino is causing the increased rate of flooding. The El Nino to La Nina transiton is a natural variability based event that is instead being influenced by human-forced warming in such a way that is resulting in an increasingly extreme period of rainfall. And we’re experiencing that globally now.

Links:

Kyushu Deluge Continues, 700,000 Urged to Evacuate

Flooding, Landslides in Southwest Japan Kill 6

Heavy Rains Kill 6 in Kumamoto

14 Dead in West Virginia Flooding, Body of Missing Child Found

Flooding in West Virginia is So Bad a Burning House Flooded Down a Creek

French President: The Paris Floods are Exceptional

NOAA (please support funding for public climate change monitoring)

Hat tip to Greg

Hat tip to Colorado Bob

Hat tip to Climate Hawk

Heatwave Mass Casualties Strike India in April Amidst Severe Drought, Water Shortages

Loss of water from snow melt in the Himalayas, increasing temperatures and instances of drought over the food-producing plains, and a potential endemic weakening of the annual monsoonal rains. These are all climate change related impacts that appear to be settling in over India as global temperatures consistently begin to hit levels higher than 1 C above 1880s values. Impacts that are setting up conditions for sustained and increasingly severe droughts and heatwaves.

****

Yesterday, temperatures rocketed to 114.44 degrees Fahrenheit (or 45.8 degrees Celsius) in Bhubaneshwar, the capital of Odisha, on the Indian east coast. It was the hottest April reading ever recorded for a region that typically sees daily highs in the upper 90s this time of year. A level of heat that’s excessive even for this typically warm region.

India Heatwave

(Most of India baked under a severe heatwave yesterday [April 11] as the number of lives lost to heat stroke mounted and a water train was dispatched to far-flung drought-stricken regions. Image source: Earth Nullschool.)

Bhubaneshwar, however, was just one of many locations experiencing temperatures above 110 Degrees (F) yesterday. For a broad heatwave and a related severe drought has sprawled over much of India throughout early April — hitting a peak intensity for many locations this week. Heat so intense that it had already resulted in the tragic loss of more than 110 lives due to heat stroke by April 9th.

India’s Two Year Drought

The drought itself is an ongoing feature — one that has lasted now for two years in many provinces as abnormally high temperatures and reduced monsoonal rains have produced severe and widespread impacts. In total, 10 of India’s 29 states are now suffering under drought conditions. Some locations, like the Maharashtra town of Latur, east of  Mumbai, are experiencing water shortages so severe that Indian officials have dispatched a drought relief train — containing a half a million liters of water — to provide aid. For hardest hit areas, the situation is so dire that riots are now a risk — prompting authorities to outlaw gatherings of more than 5 people near some water distribution sites. Maharashtra itself is experiencing some of the most severe losses with reports indicating that reservoirs there are at less than 5 percent capacity. Average capacity for all reservoirs throughout India amounted to just 29 percent by the end of March — and the annual monsoonal rains are still at least two months away.

Overall impacts are quite widespread. Ranchi, the capital of Jharkhand has declared a water emergency. And the Ganges River is now so low that it is unable to provide water to cool one of the largest coal-fired electrical power stations in West Bengal — forcing it to suspend operations.The great river is dramatically shrunken — causing islands of mud to emerge even as pollutants concentrate in its thinning thread. A diminishing flow that India’s 1.3 billion people rely on for much of their water. It’s a greater crisis so extreme that late last month one of BBC’s India correspondents asked — is this the worst water crisis India has ever faced?

Such broad-ranging and long-lasting drought has hit India’s farmers hard. Last year, more than 3,500 farmers committed suicide after facing some of the worst conditions ever to strike India. This year, the situation is arguably even worse — forcing some desperate regions to consider cloud seeding as a means of possible drought alleviation.

Stronger Monsoon for 2016? Or Will A Warming Globe Dim India’s Hopes For Rain?

Reports from India’s Meteorological Division have called for a normal to above normal monsoon to provide replenishing rains this year. However, monsoonal predictions over the past two years were overly optimistic, which is cause for caution over last week’s forecast.

Overall, the early extreme record heat and drought over India provides a barrier to any influx of monsoonal moisture. In addition, El Nino conditions — possibly hanging on in the Central Pacific through June — may help to dull or delay monsoonal development even as a predicted progression to La Nina later in the year provides some hope for additional moisture during late Summer and Fall. A switch to rains that may well be quite intense for some regions given the unprecedented atmospheric moisture content as a result of record high global temperatures.

Longer-term, there are growing indications that climate change is starting to impact India’s breadbasket. Record high temperatures over the Gangetic Plain — India’s productive farming region south of the Himalayas — are starting to take hold as a result of a human-forced warming of the globe. A condition that IPCC reports indicate could decimate (reduce by ten percent) wheat, corn, soy and sorghum yields over the coming years. So even as a shift to La Nina provides some hope for an alleviation of India’s current drought woes later in 2016, the larger trend is for an increasing prevalence of drought and extreme heat as a reckless fossil fuel emission continues to force the globe to warm.

Links:

India Scrambles to Alleviate Severe Drought

Is India Facing its Worst-Ever Water Crisis?

Water Train Reaches Latur

Heatwave Claims 111 Lives in India

India Meteorological Division

With Months to Go For Rains, this is the Drought Map of India

Earth Nullschool

Drought, El Nino and a Weak Monsoon Conspire to Hit Indian Farmers

Hat Tip to Colorado Bob

Hat Tip to TodaysGuestIs

As a Titanic El Nino Begins to Fade, What Fresh Trouble Will a Record Warm World Bring?

Today the globe is feeling quite a bit of backlash from a human-warmed sea surface and atmosphere. As it ends up, Dr. Kevin Trenberth was right. Deep ocean warming set off by heat-trapping fossil fuel emissions and building up through the first two decades of the 21st Century did re-surge from the depths to haunt us in 2014, 2015 and 2016. In that wrenching global climate system shift to the hot side of natural variability, a titanic El Nino emerged. It was one of the top three strongest such events in the modern record. One that by NOAA’s measure appears to have tied the extreme event of 1998 at its peak intensity.

ONI sea surface temperature anomalies in Nino 3.4

(Sea surface temperature departure from average in the benchmark Nino 3.4 zone shows surface ocean heat anomalies for the 2015-2016 El Nino equaled peak 1997-1998 values. Image source: NOAA/CPC.)

Expected Heat, Drought, and Storms Together With a Few Ominous Surprises

This event did push the world into extreme warmth even as predicted related severe weather flared in some of the typical regions. Annual average global temperatures rocketed to about 1.06 C above 1880s baselines during 2015 even as monthly departures hit 1.2 to 1.3 C or more higher than the same benchmark during December and January.

Amidst this great upheaval of global heat, the world also experienced yet one more wave of freak droughts (this time over Northern South America, the Caribbean, large swaths of Africa and Southeast Asia), heat-related mass casualty events, floods, and strongest hurricanes on record. Arctic and global sea ice measures are once again plunging to new record lows. A global coral bleaching event, perhaps the worst such instance ever experienced, was also set in motion.

The predicted patterns and potential worse-case events (such as heatwave mass casualties, coral bleaching, and sea ice loss) were also contrasted by a number of surprises. The first and perhaps most ominous was the failure of El Nino to bust the California drought. Though the West Coast of the US did experience a number of storms, the pattern was more typical of normal Winter moisture for the Northwestern US even as drought continued throughout the Southwest.  Moisture instead tended to split fire-hose fashion — with storms either cycling northward into Alaska, the Aleutians, or the Bering Sea, or south over Southern Mexico or Central America, up across the Gulf and on out into a particularly severe storm zone forming in the North Atlantic.

30 day precipitation anomaly shows southwest drought continuing

(Over the last 30 days the southwest drought re-emerged as a blocking pattern again began to take hold over Western North America and the Eastern Pacific. Image source: NOAA/CPC.)

This continued loss of moisture for the US Southwest despite a record El Nino is particularly apparent in the Climate Prediction Center’s most recent precipitation anomaly measure for the last 30 days. Here we find that large parts of Central and Southern California have received just 10 to 50 percent of typical rainfall for this period. Coupled with 1-3 C above average temperatures for the month, this loss of rainfall during what would typically be California’s wettest period has come as a disappointment to many who were hoping a strong El Nino would help break the state out of a crippling drought. Now, the window for late Winter and early Spring rains is starting to close even as the blocking pattern appears to be strongly re-established in both the present weather pattern and in the forecast model runs.

But perhaps the biggest surprise coming from this El Nino year was a set of weather events in the North Atlantic that were likely more related to climate change. There, severe storms hammered a flood-beleaguered UK as a greatly distorted Jet Stream heaved Equatorial heat and moisture northward — rushing it up over a ridiculously warm and apparently backed-up Gulf Stream before slamming it on into a likely Greenland ice melt-outflow related cool pool. There the heat and moisture collided with cold to produce the epic storms that then vented their fury upon the UK.

Warm Arctic Storm

(December 29th saw temperatures rise above freezing at the North Pole — the first time temperatures have warmed so much for this high Arctic region so late in the year. Image source: Earth Nullschool.)

During one such event, a daisy chain of heavy-hitting North Atlantic lows hurled high winds, heavy rains and epic surf at the UK even as the meridional flow set up by these powerful beasts shoved above-freezing temperatures all the way to the North Pole during late December. Yet one more unprecedented and unexpected event during a record warm year. One that looks more like a human forced warming which has overcome the traditional influences of El Nino, rather than an El Nino related impact in itself.

As El Nino Fades, Equatorial Heat Tends to Move Pole-ward

Though we may see these two events — the failure of El Nino to provide heavy rains to the US West Coast, and the massive northward pulses of storms, heat and moisture hitting the North Atlantic — as unrelated, the twain patterns appear to be linked to an ongoing polar amplification. Overall, heat within the Arctic has tended to weaken the Northern Hemisphere Jet Stream over these two zones. And even during El Nino, when the Jet would have typically strengthened, we have continued to see high amplitude wave patterns forming over these regions.

But as El Nino weakens and the Equator cools, the Jet Stream would tend to slow even more. Such an atmospheric state would tend to further exaggerate already significant Jet Stream wave patterns — transferring still more low-Latitude heat poleward. In addition, the ocean gyres tend to speed up as El Nino fades or transitions to La Nina. The result is an amplified pulse of warmer waters emerging from southern Latitudes and entering the Arctic.

It’s for these combined reasons — tendency to amplify south to north atmospheric heat transfer into the Arctic post El Nino and tendency to flush warmer waters toward Arctic Ocean zones during the same period that it appears we are entering a high risk time for potential new sea ice melts and possible related Greenland land ice melts during 2016 and 2017.

Hot Blobs

(Northeastern Pacific Hot Blob remains at high intensity even as its size is predicted to expand through July. Meanwhile, very warm sea surface temperatures are predicted to remain in place off the Eastern Seaboard. The net effect of these two hot blobs may be to shove the Jet Stream far northward over North America during the summer of 2016 — potentially increasing the risk of widespread and potentially record heat and drought. Predicted very warm sea surfaces in the region of the Barents and Greenland seas — in excess of 3 C above average for a large region — is also cause for concern. This is not only due to risk for sea ice loss through this zone, but also due to its potential to set off blocking pattern and heat dome formation over Eastern Europe and Western Russia. Image source: NOAA/CFS.)

In addition, we are at serious risk of seeing the high amplitude blocks and wave patterns re-establish and persist, especially in the zone over Western North America were a related Northeastern Pacific Hot Blob is expected to restrengthen as El Nino fades. In fact, large regions of the US may fall under record to near record heat and drought this summer due to the combined influences of two very warm ocean zones surrounding her shores. Models now indicate a particular late spring drought risk for the Great Lakes region as well as an extended period of far above average temperatures for pretty much all of the Continental US during summer. Meanwhile, predicted above average spring-time precipitation for the Southwest appears less and less likely to emerge.

Finally, extreme above average sea surface temperatures are predicted to intensify over the Barents and Greenland seas through to end of Summer 2016. This is an area to watch. The added ocean heat would tend to pull the Jet Stream northward over Eastern Europe and Western Russia — generating risk of heatwaves and drought for this region even as Central Asia fell under risk of floods. Long range CFS precipitation and temperature model runs for Europe have not yet picked up this risk. However, given the intensity of heat predicted for Barents sea surfaces and the related tendency of warmth over oceans and in the far north to influence the formation of blocking patterns, heat domes, and high amplitude troughs, it’s worth keeping a weather eye on the situation.

El Nino to Weaken and Then Return; or is a Shift to La Nina Now Under Way?

Related to a polar and ocean warming-enhanced tendency to generate high amplitude Jet Stream waves — as well as associated persistent heatwaves, droughts, and floods — is the heat balance of the Equatorial Pacific. Strong El Ninos, or even a tendency to remain in or near an El Nino state, has historically aided in the breaking of new record global high temperatures when linking up to the greenhouse gas warming trend. Meanwhile, the shift toward La Nina has tended to enhance a range of global heating related issues including record rainfall events and large injections of heat toward the poles in the drop off from El Nino to La Nina.

The cause for increased risk of major precipitation events is due to the fact that El Nino is providing a massive moisture bleed into the atmosphere at times of peak intensity. With the current El Nino topping out near record levels and with global temperatures at above 1 C higher than 1880s averages, global atmospheric moisture levels are hitting new record highs at this time. If global temperatures subsequently drop by around 0.1 to 0.2 C during a transition into La Nina (into a range about 0.9 to 0.8 C hotter than 1880s values) then the atmosphere will be unable to keep a larger portion of that extra moisture in suspension and it will fall out as precipitation — primarily wringing out where the major trough zones tend to set up. We should be very clear here in saying that the drought risk related to a global warming intensification of ridge and heat dome formation is not reduced during such instances — just that the risk of extreme precipitation events is enhanced.

Russian Heatwave Pakistan Floods Jet Stream

(During 2011, as the 2010 El Nino faded into La Nina conditions, a high amplitude wave in the Jet Stream set off record heat, drought and wildfires over Russia even as Pakistan was hit by a month-long deluge that was the worst rainfall event for the region in the last 1,000 years. La Nina’s tendency to wring excess water out of the atmosphere can enhance the risk for such events to occur in a warming climate state. Image source: NASA.)

As for risks to sea ice, we’ve provided some of the explanation above. However, it’s also worth noting that the mobility of heat poleward tends to be enhanced during the periods when El Nino drops off toward La Nina. During these times, Equatorial heat tends to propagate in wave fashion toward the Poles — especially toward the Northern Hemisphere Pole which has already lost its strong Jet Stream protection warding away warm air invasions.

These two factors are major issues when considering whether La Nina or an ENSO Nuetral state will appear post El Nino during 2016. But there is a third — rate of global temperature rise. Though the primary driver of global warming is a massive human fossil fuel emission, the response of the world ocean system can significantly wag the rate of atmospheric temperature increases on a decadal time scale. If the ocean tendency is for La Nina, this would tend to somewhat suppress the overall decadal rate of temperature increase — and we saw this during the 2000s. But if the ocean tendency is to produce El Ninos (in a switch to a positive Pacific Decadal Oscillation, as appears to be happening now), then the overall pace of global atmospheric temperature increase would tend to be enhanced.

La Nina Emerges

( IRI/CPC consensus model runs show a drop off to a weak La Nina by late in the year. However, CFS model runs [image below] have shown a tendency to predict a resurgence of El Nino conditions by Fall. Image source: NOAA/CPC.)

To this point we find that the official model forecast consensus published by NOAA (IRI/CPC figure above) shows a transition to ENSO neutral states by May, June, and July which then proceeds on to a very weak La Nina by Fall. In such a drop off, we would likely still see record global high temperatures during the period of 2016 (in the range of 1.03 to 1.15 C above 1880s values).

However, the late 2016 and 2017 tendency for temperatures to recede from new record highs would be somewhat enhanced (likely dropping below the 1 C above 1880s mark in 2017 or 2018 before again making a challenge to the 2015-2016 record with the potential formation of a new El Nino in the 3-5 year time-frame of 2019 through 2021). It’s worth noting that this scenario shows an increased risk of a stronger warm air pulse heading toward the Northern Polar zone together with added fuel for extreme precipitation events as global temperatures would tend to drop off more swiftly from late 2015 and early 2016 peaks.

El Nino Continues

(CFSv2 model run — shows El Nino continuing on through the end of 2016. Over recent months, the CFSv2 series has shown a high accuracy. However, NOAA’s current forecast preference is for the IRI model set predictions [previous image above]. Image source: NOAA/CPC.)

In contrast, the CFSv2 model forecast from NOAA (above image) shows El Nino only weakening through to July and then re-strengthening in the October-November time-frame. This CFS model scenario would result in higher atmospheric temperatures in 2016 — practically guaranteeing a lock on an unprecedented three back-to-back-to-back record warm years for 2014, 2015, and 2016. But such a scenario — implying that the Pacific Ocean had entered a new period of El Nino tendency — would also tend to keep atmospheric temperatures nearer to the newly established record highs.

Under the CFSv2 scenario, we may expect annual average global temperatures to rise as high as 1.08 to 1.2 C above 1880s values during 2016 (a very extreme departure and one uncomfortably close to the 1.5 C warming mark). These extreme values would, perhaps, recede to around between 0.9 and 1.1 C during 2017 so long as the second El Nino pulse did not remain in place for too long. However, if the bounce back toward El Nino conditions was strong enough in late 2016, there would be an outside chance that the globe may experience not 3, but an absolutely obnoxious 4 back-to-back record warm years.

NASA temperature trend

(During 2015 global annual temperature rocketed to above 1 C hotter than 1880s values. There’s at least an even chance that 2016 will be hotter still. Considering the considerable heating tendency imposed by a fossil fuel-forced warming of the world, how much worse can it get during the 21st Century’s second decade? Image source: NASA GISS.)

Meanwhile, the warm air pulse heading toward the poles may be somewhat muted under this scenario. A statement that should be qualified by the fact that we’ve already seen a substantial amount of El Nino heat heading poleward during the present event. In addition, potentially heavy rainfall events may not receive the added oomph of a decent global temperature drop to wring out more moisture. A statement that requires the further qualification that overall atmospheric moisture loading is enhanced by rising global temperatures — so comparatively less heavy rainfall is a relative term here.

At this time, NOAA favors a transition to La Nina forecast stating:

“A transition to ENSO-neutral is likely during late Northern Hemisphere spring or early summer 2016, with a possible transition to La Nina conditions by fall.”

However, it’s worth re-iterating that the CFSv2 model forecasts have been quite accurate in predicting the path of the current record El Nino to date.

Links:

NOAA/CPC

NASA GISS

Hothouse Mass Casualty Event Strike Eqypt

Southern Hemisphere’s Strongest Storm on Record

Punishing Four Season Storm Grips US

A Monster Arctic Melt Season May Have Already Begun

Deep Ocean Warming is Coming Back to Haunt Us

Warm Arctic Storm to Unfreeze the North Pole

More Signs of Gulf Stream Slowdown as Floods Devastate Cumbria England

Deconstruction of Asia’s Wild Weather

Hat tip to Caroline

 

Bad Climate Outcomes — Atmospheric Warming to Ramp up as PDO Swings Strongly Positive?

Last year, quietly and without much fanfare from the mainstream press, the Pacific Ocean underwent a powerful shift. A shift from a state in which cooler surface waters absorbed atmospheric heat, to a phase in which surface water warming caused ocean heat to be transferred to the world’s already warming airs.

The shift was heralded by a powerful oceanic Kelvin Wave. One that brought warm water up from the depths and spread them across the Pacific Ocean surface. Ever since that time, warm Kelvin Waves have continued to refresh this surface water heat pool.

monster-el-nino

(Major Kelvin Wave that heralded a switch to strongly positive PDO values for the Pacific. Image source: NOAA/ESRL)

And so the Pacific Ocean surface warming continued throughout 2014.

By December, Pacific Decadal Oscillation (PDO) values, a measure directly tied to this warming, hit a new all-time record level of +2.51. That’s the highest and hottest PDO value since record-keeping began in 1900. One that only backed off slightly into January at +2.45 in the preliminary measure.

It’s a major swing in Pacific Ocean surface temperatures to a phase where more heat is dumped into the atmosphere. One that is causing some scientists to warn that a new period of rapid atmospheric warming may just be getting started.

image

(Sea surface temperature anomaly map shows very warm surface waters dominate much of the equatorial, eastern and northern Pacific in a signature that is strongly characteristic of a powerfully positive PDO on Thursday, February 26 2015. Image source: Earth Nullschool. Data Source: Global Forecast Systems Model.)

PDO and The Multi-Decadal Heat Pump

Pacific Decadal Oscillation (PDO) is a periodic change in sea surface temperature states in the Pacific. One that is thought by many oceanic and atmospheric researchers to have a strong influence on global weather and temperature variability.

In the negative state, PDO tends to encourage La Nina events which also coincide with a downswing in global temperatures as the vast Pacific waters take in more heat. In the positive state, PDO tends to encourage El Nino events which result in the great ocean belching heat into the air on a grand scale — pushing atmospheric temperatures higher.

All things being equal, this natural variability would pan out — marking upswings and downswings in a global average. However, human fossil fuel burning and related greenhouse gas emissions have bent this curve upward by trapping more and more heat in the lower atmosphere. So the case is now that during positive PDO phases, in which more El Ninos occur, atmospheric warming has tended to ramp drastically higher. And, consequently, during negative PDO phases, atmospheric warming has tended to merely slow down even as oceanic warming sped up.

You can see this speeding up and slowing down in the below graphic provided  by Weather Underground:

PDO vs global temperature change Weather Underground

(Global temperature change since 1900 vs phases of positive PDO [1925 to 1945 and 1975 to 1998] and negative PDO [1945 to 1975 and 1998 to 2014]. Image source: Weather Underground. Data Source: NOAA.)

In the era during which global temperatures have been increasingly driven by human greenhouse gas emissions, four phases of PDO have been recorded. Two were positive, two were negative.

In the first positive PDO phase during 1925 through 1945, global average temperatures jumped upward by about 0.5 degrees F (+0.25 F per decade). This initial surge in atmospheric warming abated as global temperatures remained roughly steady during the negative PDO period of 1945 to 1975 (+/- 0 F per decade). But by 1975, PDO values were positive again and the period through 1998 showed a rapid warming of about 0.8 F over 23 years (+0.4 F per decade). After the super El Nino of 1998, PDO values again trended negative as atmospheric warming continued at a somewhat slower pace of about +0.15 F per decade.

Global Warming and Related Ills to Ramp Up?

This underlying trend should be cause for serious concern.

The first issue is that we see warming now during negative PDO decades where we only saw cooling or zero warming before. Given the present rate of warming in the range of +0.15 F per decade during periods in which the Pacific Ocean is taking on atmospheric heat, one could expect the next positive PDO phase to see decadal warming in the range of +0.55 F or higher (or by about 1 C in 20-30 years).

Such a rapid pace of warming could challenge the fabled 2 C ‘point of no return’ before 2050 (for reference, we are at about +0.85 C above 1880s values now). And it is for this reason that some scientists are now starting to sound alarm bells.

In the recent Weather Underground commentary penned by Jeff Masters, Kevin Trenberth, an NCAR scientist and one of the world’s foremost experts on ocean temperature dynamics, noted:

“I am inclined to think the hiatus [in global temperature increases] is over, mainly based on the PDO index change. If one takes the global mean temperature from 1970 on, everything fits a linear trend quite well except 1998.”

NOAA global surface temperature anomalies

(Global surface temperature anomalies. Image source: NOAA.)

Though Trenberth does not explicitly spell out the potential for an overall warming acceleration, he does point toward a return to the +0.29 F per decade trend line seen since 1970. Meanwhile, Matthew England of the University of South Wales warned in the same Weather Underground commentary that any post ‘hiatus’ warming would be likely to be very rapid.

Dr. Michael Mann, a climate scientist of considerable fame both due to his Hockey Stick tree ring study and due to his ongoing success fighting off smear campaigns launched by climate change deniers, recently put together climate model assessments that showed world temperatures exceeding the 2 C threshold by 2036 under business as usual greenhouse gas emissions. To reach such a high reading so soon would require in excess of 1 degree Fahrenheit warming over each of the next two decades. And such a rate of warming would be very rapid indeed, unprecedentedly rapid and well outside the linear trend line from 1970.

Michael Mann today made related comments at Realclimate on the more recent oscillations in Pacific Ocean sea surface temperature:

There is the possibility that internal, natural oscillations in temperature may have masked some surface warming in recent decades, much as an outbreak of Arctic air can mask the seasonal warming of spring during a late season cold snap. One could call it a global warming “speed bump”. In fact, I have… Given the pattern of past historical variation, this trend will likely reverse with internal variability, instead adding to anthropogenic warming in the coming decades. That is perhaps the most worrying implication of our study, for it implies that the “false pause” may simply have been a cause for false complacency, when it comes to averting dangerous climate change.

To these points, it is worth noting that any rate of warming above 0.3 F (0.2 C) per decade is extraordinary and terrifying. Such a rate is enough to achieve post ice age warming of 4 C in merely 2 centuries where it took 10,000 years to achieve such warming before. Warming at 0.4, 0.6 or 1 F per decade would be both drastic and devastating to current climates, geophysical stability, weather stability, glacial stability, water security, food security, and ocean health. In the current world, already warmed by about 0.85 C above 1880s levels any acceleration to current warming is a rather bad outcome on top of an already dangerous situation.

Links:

Are We Entering a New Period of Rapid Global Warming?

Climate Oscillations and the Global Warming Faux Pause

NOAA’s National Climate Data Center

NOAA’s Earth Systems Research Lab

Monster El Nino Emerging From the Depths?

Far Worse Than Being Beaten With a Hockey Stick: Michael Mann Climate Model Shows 2 C Warming by 2036

Global Warming Speed Bump? The Answer May be Blowing in the Wind.

Earth Nullschool

Global Forecast Systems Model

Hat Tip to Colorado Bob

Hat Tip to Bassman

Despite Unprecedented Heat Transfer to Oceans, NASA Shows January 2014 was 3rd Hottest On Record; Models Hint at El Nino, Big Atmospheric Temperature Jump on Horizon

A cycling between warm ocean surface waters and cool ocean surface waters in the Eastern Pacific called El Nino and La Nina, for centuries, has been a primary driver of relative atmospheric warmth and coolness. During the times when the Eastern Pacific disgorged its heat, the Earth’s atmosphere warmed. And during times when the same region cooled, a portion of atmospheric heat was taken back and transferred into the world’s oceans.

ENSO Index since 1950

(ENSO Index since 1950. Image source: ESRL/NOAA.)

Since about 1300 CE, this cycling governed the top and bottom ends of average global climate. Temperatures during this time remained within about .3 degrees Celsius of a very stable base line. But beginning around 1900, that cycle was broken, with unprecedented and rapidly increasing warmth proceeding along with an explosive human use of fossil fuels.

Since that time, and especially since the late 1970s, the regular El Nino and La Nina cycle has been a less and less reliable governor of atmospheric temperatures. Certainly the El Nino years were generally hotter — a majority of El Nino years since 1980 were record hot ones. And the La Nina years were definitely cooler. But the overall temperature curve skewed upward and even La Nina years featured within the range of top ten hottest years on record with increasing frequency.

The past five year trend only showed a more extreme amplification, when taken in the broader context of an ongoing ocean heat transfer.

The last El Nino year, 2010, was also the last hottest year on record. Being a relatively lack-luster El Nino, with only moderate warm temperature departures for the Eastern Pacific, it is abundantly clear that human-caused global warming was the underlying driver for this record breaker.

Global temperatures since 1880 NASA GISS

(Global Temperature variation since 1880. Image and data source: NASA GISS.)

In the years that followed, 2011 and 2012 featured La Ninas while 2013 was a year in which the Eastern Pacific is neither warm nor cool (ENSO neutral).

In a normal world, under normal climate conditions, such a long period of cool surface waters covering the Eastern Pacific would have driven global temperatures down below typical averages. The vast waters would have sucked heat out of the air and deposited it into the oceans. And, as we will see below, it did suck a massive amount of heat out. But not enough even to bring global temperatures back into the average range, much less put it below the average (both NASA and NOAA show 2011-2013 as top 10 hottest years on record). This is very concerning, especially when we consider, as we do below, that the rate of atmosphere to ocean heat exchange is currently unprecedented.

Despite four years of ongoing coolness in the Eastern Pacific and of a much more vigorous than usual mixing of ocean and atmosphere, global surface temperatures have remained at or near record highs during a time that should have featured a down-turn. Meanwhile, ocean heat content spiked.

And the start of 2014 is no exception.

Third Hottest January On Record

Come January 2014 with ENSO still remaining on the cool side of neutral, reports from NASA GISS show January 2014 was the third hottest in the climate record since measurements began in 1880. NASA’s Land-Ocean Temperature Index  reveals temperatures for the month at .70 degrees Celsius hotter than the 1950 to 1980 average and .90 degrees Celsius hotter than the annual average for 1880.

Global Surface Temperature Anomaly NASA GISS

(Global Surface Temperature Anomaly in degrees Celsius of departure from the, already warmer than normal, 1951-1980 average. Image source: NASA GISS.)

By contrast, January of 2002 and 2003, which were both El Nino years, tied for second hottest in the record at .72 degrees Celsius hotter than the average while 2007, also an El Nino year, showed January at .93 C hotter than average. So the temperatures we are seeing this year, a year in which the Eastern Pacific is still sucking up atmospheric heat, are nearly as warm as recent times in which that same vast stretch of ocean was bleeding heat back to the airs above it.

For atmospheric temperatures to be so hot without the presence of El Nino is, today, an ominous sign for many reasons. First, we are seeing amazing heat spikes in the Arctic. And these spikes largely drove the January temperature anomaly — a clear sign that northern polar amplification is becoming a powerful driver of continued atmospheric warming in its own right. One that may play a harmonic role with the ENSO cycle as the next few decades progress. Second, we may be beginning to see that the ocean, which has taken up so much excess atmospheric heat is starting to lag as a sink even as it is grudgingly shoved back toward dumping a portion of that extraordinary excess warmth into the atmosphere.

As mentioned above, we have seen an unprecedented transfer of heat into the surface, middle and deep ocean over the past decade. And the Argo float graph below bears a stark testimony to this transfer:

OHC_2an

(Image source: L Hamilton. Image data: NOAA. Produced for The Arctic Ice Blog. Note the extraordinarily steep slope indicating recent ocean warming.)

Note the huge jump in ocean heat content that began in 2001 just as the most recent negative PDO and La Nina cycle began to kick in. This vast heat content is now a latent source for atmospheric warming that will, as many scientists note, almost certainly come back to haunt us once the ocean heat uptake mechanism is exhausted.

This Unprecedented Heat Transfer

The graph above provides us with much cause for concern, as ocean heat is certainly spiking. But a recent study provides yet another important indicator — an extraordinary jump in trade wind intensity.

A primary driver of the strength of La Nina and its ability to transfer atmospheric heat into the oceans is the corresponding strength of the east to west trade winds blowing across the Pacific. A strong trade wind blowing over South America and shoving a huge pile of water across the Pacific from east to west generates vigorous upwelling. The strong upwelling, in turn, transfers relatively cool deep ocean waters to the surface, where they take up atmospheric heat. When the trades weaken, the opposite occurs and warmth builds up in the surface waters along with a corresponding shift to El Nino.

Given these factors, it is important to note that a recent study has found that the trade winds over the past decade have been their strongest since at least 1910 with the wind continuing to strengthen and intensify well into 2012.

EnglandFig1450

(Global temperature and wind anomalies with IPO overlay. Negative departures in the lower graph indicate unprecedented trade wind strength through 2012. Image and data source: England Study. Note — IPO stands for Interdecadal Pacific Oscillation, a condition related to El Nino and La Nina cycling over decadal periods.)

With such strong trade winds blowing over the Eastern Pacific, we are seeing an unprecedented transfer of heat from the atmosphere to the ocean (validated by both the trade winds data and the Argo float data). And given the strength of this transfer, we should be seeing some of the strongest La Ninas on record. But the ocean is now too warm for that, so instead we are seeing consistent La Ninas of normal caliber over the past 14 year period. A set of La Nina’s consistent enough to shift the Pacific Oscillation into a negative mode and, according to the England study, to temporarily suppress overall atmospheric warming by between .1 and .2 degrees Celsius.

And what this means is that when we see the period of consistent La Ninas end and shift to a time of more consistent El Nino events, that .1 to .2 degree Celsius heat transfer from atmosphere to ocean will stop and we will likely see a correspondingly rapid jump in air temperatures.

In a recent interview with The Guardian, England noted:

“the heat uptake is by no means permanent: when the trade wind strength returns to normal – as it inevitably will – our research suggests heat will quickly accumulate in the atmosphere. So global temperatures look set to rise rapidly …”

Model runs conducted by the England study that take into account trade wind strength and rate of heat transfer into the oceans show an extraordinarily vigorous increase in global temperatures of .2 C to .4 C by 2020 once the global trade winds return to normal. This, potentially very rapid, jump in atmospheric temperatures could be seen over a very short period during the next six years once the trade winds abate and the Eastern Pacific settles again into a more consistent period of El Ninos.

Models Show El Nino May be on the Horizon for 2014

Meanwhile, NOAA models are also beginning to hint that the hammer of Pacific Ocean heat may well be starting to fall. A majority of model runs, as of late January, were showing El Nino emerging in the Pacific by summer of 2014. Five models showed El Nino on the 9 month horizon, while two showed La Nina and three showed ENSO neutral conditions.

The NOAA Earth Systems Research Laboratory explained these findings:

Of the 10 nearest ranked December-January cases since 1950, FIVE rose to at least weak El Niño status within the next nine months (two within the next three months), while the count of weak or stronger La Niña rankings added up to two cases (1961 and 1967) after nine months. This confirms a noteworthy shift in the odds towards El Niño development in 2014 that was first pointed out two months ago. Compared to last month, the number of cases ending up as ENSO-neutral has dropped to 6 in three months, 5 in six months, and only 3 in nine months (September-October).

… While ENSO-neutral conditions are the safest bet for the next few months, a transition towards El Niño by mid- or late 2014 would not be surprising, perhaps even overdue.

How the Temperature Jump May Unfold

In light of the above reports, it is important to again state how rapid an atmospheric temperature increase of .2 to .4 C over the course of six years is. By comparison, the average decadal increase has been about .15 to .2 C for each 10 year period since the 1970s. So the England study suggests that atmospheric heating could double the usual rate between now and 2020.

What we would expect under such conditions is a gradual abatement of the current and unprecedented trade wind strength over the Pacific Ocean. As the trades weaken, the pool of very hot, deep water east of Australia and the Philippines would begin to shift eastward even as the Eastern Pacific took on uncharacteristic warmth. The long period of mixing with a rapidly heating atmosphere will have created an amazingly large and deep pool of hot water whose intensely high temperature anomalies become increasingly evident at the surface. The hot zone, in this case, exceeds even the extreme anomalies seen during 1998 for this critical region and a massive heat dump into the atmosphere begins.

At this point, single year variations above past record highs may reach or exceed +.1 C or more for multiple years running.

The unprecedented heat bleed from the Pacific doesn’t occur without a number of severe weather consequences. Especially under the gun for this, most recent, potential event of human caused climate change is California and the Desert Southwest. Having labored under drought since the early 2000s, the region sees a radical shift to unprecedented stormy conditions. During winter, a massive flow of heat driven moisture rides up from the Pacific and arcs over California carrying with it a stream of storms. The stormy period drags out for weeks, beginning to resemble the megastorm of centuries past. Cities and industries laboring under the strain of too little water see a sudden and radical, though brief, shift in the opposite direction. California, under the gun for tens of billions of dollars in damages from water shortages and drought instead falls under the gun for possibly hundreds of billions of dollars in storm damages.

El Nino related weather extremes crop up in Africa, Australia, the US East Coast, India, the Pacific Northwest, and in other locations. In all cases the extremes are far more radical than for a typical El Nino year.

Under such a regime, it is likely that global surface temperatures could reach 1 degree Celsius above the 1950 to 1980 average and 1.2 degrees Celsius above the average seen during 1880 by 2020. Very dangerous warming and related extreme weather would be well underway at this time under such conditions along a path toward an even more difficult and violent climate scenario to follow.

Links:

ESRL/NOAA

NASA GISS

Recent Intensification of Wind-Driven Circulation in the Pacific

Unprecedented Trade Wind Strength is Shifting Global Warming to the Oceans

The Pacific Arkstorm

California’s Superstorm

NASA’s Land-Ocean Temperature Index 

Arctic Heat Pushes Sea Ice to Record Low Levels in Early February

The Arctic Ice Blog

The NOAA Earth Systems Research Laboratory

2013 4th Hottest Year on Record, Deep Ocean Warming Fastest, NASA, NOAA Find No Pause in Long-Term Warming Trend

2013 4th Hottest On Record

(Global temperature anomalies for 2013. Image source: NOAA)

With the readings coming in for 2013 — atmosphere, ocean surface and the deep ocean — it becomes increasingly obvious that anyone saying planetary warming has slowed down is clearly misinformed.

Criticisms of the misinformed aside, according to reports from NOAA’s National Climate Data Center, 2013 was the world’s 4th hottest on record since temperature measures began in 1880. All this despite ENSO conditions remaining neutral in the Eastern Pacific and deep ocean heat content continuing to rapidly rise while sucking a portion of that heat out of the atmosphere.

The NCDC measure found numerous regions in which temperatures were the hottest ever recorded including a large swath of Australia, a broad stretch of the Pacific Ocean adjacent to New Guinea and the Philippines, an area larger than Texas at the heart of the Asian Continent, and multiple other locations ranging from south of Svalbard to East Africa to the Indian Ocean to the Northern and Southern Pacific. Aside from these record hot zones, over 70 percent of the land and ocean surface measured came up either hotter than average or much hotter than average while 28% of the globe experienced average temperatures and less than 2% of the Earth’s surface experienced cooler than average temperatures.

Notably, no regions of the globe saw record coldest temperatures and the only zone coming up cooler than normal cropped up in the Southern Ocean just north of Antarctica.

NASA found 2013 to be the 7th hottest on record and the 2nd hottest non El Nino year on record.

Helpfully, NASA also put together a graph of global temperature averages as measured since 1950 showing that atmospheric warming has continued unabated despite much false and inaccurate press coverage of a ‘global warming hiatus.’

gistemp_nino_s

(GISS temperature measurements with trend lines for El Nino, La Nina and all years. It’s worth noting that this temperature graph indicates no pause in warming since 1950. Instead, what we see are inexorable global surface temperature increases. Image source: NASA GISS)

Deep Ocean Warming Measures Far More Dire

Recent news reports have also falsely claimed that more heat going into the deep ocean, as measured by NASA, NOAA, the Trenberth study, and others, is an indication of lowered global climate sensitivity. To the contrary, a warming ocean contains two very dire consequences that, if set into play, could both enhance warming, and create an ecological nightmare for first the oceans and finally the surface world.

The first, a growing risk of subsea methane release, is greatly enhanced by a rapidly warming ocean. We have covered the risks and consequences of methane release (both seabed and terrestrial methane) in numerous posts over the past year. For your convenience I’ve linked them below. But, suffice it to say that a warming ocean puts at risk the more rapid release of hundreds of gigatons of methane, an amount that could greatly amplify the already powerful and ongoing signal of human warming. More worrisome, initial indications show that at least some of this methane is already destabilized and venting into the world ocean system and atmosphere.

The second consequence involves growing ocean hypoxia and anoxia as the oceans warm, become more stratified and as major ocean current systems are disrupted and altered. Growing ocean hypoxia and anoxia results in, among other terrible impacts, ocean sea bottoms that are less and less able to support a diversity of life and that, more and more, come to support dangerous hydrogen sulfide producing bacteria.

A third consequence includes the basal melting of ocean contacting ice sheets. Such melting has already destabilized the massive Pine Island Glacier which, according to a recent scientific study, is on the path to an inevitable collapse into the Southern Ocean.

Yet, according to these excellent graphs produced by Larry Hamilton for The Arctic Ice Blog, world ocean heat content has been rising by leaps and bounds over the past few years, especially in the deep ocean where warming puts at risk the most dangerous of outcomes — methane release and anoxia.

OHC_7an

OHC_2an

(Image source: L Hamilton. Image data: NOAA. Produced for The Arctic Ice Blog. Note the extraordinarily steep slope indicating deep ocean warming since 1985.)

The top graph shows ocean heat content increases in the first 700 meters of ocean water. The bottom graph shows ocean heat content in the first 2000 meters of ocean water. Note that ocean heat content gains for the deep ocean (2000 meter graph) are more rapid by 25% than heat content gains in the shallower ocean. Meanwhile, both graphs show a very rapid accumulation of heat, especially through recent years during which the so-called global warming hiatus was in effect.

If we could find a place to put the majority of heat from human-caused climate change, the deep ocean would be the last place any sane ecologist would look. Warming the deep ocean is a worst-case disaster in the making. It puts added stress on methane hydrate stores and it pushes the very dangerous consequences of ocean stratification and anoxia along at a much more rapid pace.

These are not optimistic measures. In my view, this is much closer to an absolute worst case.

Mixed Outlook for 2014

Early indications for 2014 show an increased chance of La Nina for the first three months of the year. That said, ocean surface heat in the Eastern equatorial Pacific appears to be on the rise, especially in areas closest to coastal South America.

sst.daily.anom

(Image source: NOAA)

Should ENSO tip the scale to El Nino, it is almost certain we will see a hottest year on record for surface temperatures during 2014. Should conditions remain neutral or tip to La Nina, we’ll still likely experience a top ten hottest year on record (atmosphere) even as ever more heat is transferred to the deep ocean.

Links:

NASA Finds 2013 Sustained Long-Term Warming Trend

National Climate Data Center Global Analysis

Larry Hamilton CA The Arctic Ice Blog

The Arctic Methane Monster Continues its Ominous Rumbling

Arctic Methane Monster Shortens Tail

The Arctic Methane Monster Stirs

Through the Looking Glass of the Great Dying

Awakening the Horrors of the Ancient Hothouse — Hydrogen Sulfide in the World’s Warming Oceans

Warming Ocean, Upwelling to Make an End to Pine Island Glacier

Hat Tip to Colorado Bob

Radio Ecoshock Interview: Record Floods, ENSO, Methane Release, and Slope Collapse

ecoshockradio_header

Last week, I discussed the issues of recent record floods, record ocean temperatures despite the negative Pacific Decadal Oscillation, methane release, slope collapse and ocean stratification along with other environmental and ecological issues surrounding our ongoing climate change crisis with Alex Smith at Radio Ecoshock. The program became available online late Tuesday and will be airing on various radio stations around the US this week. You can click on the image above to listen to my 30 minute interview or you can listen to the entire 60 minute program which also includes an interview with Oxford marine biologist Dr. Alex Rogers here.

The professionally produced program will air on 71 radio stations over the coming week and will be continuously available online at Radio Ecoshock. This is, perhaps, one of the best interviews I’ve conducted and Alex Smith is a fantastic host providing fantastically insightful questions and analysis. So, if you have the time, I wholeheartedly suggest you listen to the entire program.

Those familiar with my blog will probably be well acquainted with the topics discussed. In addition, Dr. Rogers provides an excellent analysis of his recently published State of the Oceans 2013 report which is available here. In it Dr. Rogers explores ongoing threats to the world ocean system resulting from human activity and carbon emissions to include ocean acidification, increasing instances of ocean anoxia (both in the deep ocean and near coastlines), as well as the ongoing impacts caused by over-fishing. Rogers also hints at the growing problem of ocean stratification which combines with a warming ocean system to greatly increase anoxia.

State of the Oceans

(Link to 2013 State of the Oceans report here)

Perhaps most alarming is his explanation that fish species such as marlin are already altering their migration patterns due to changes in ocean water oxygen content — an ominous sign that we are already moving to a more stratified ocean state.

For reference, the following blogs will be helpful to those listening:

August 2013: Hottest Ocean Temperatures on Record Defy ENSO, Spur Continental Deluges

Growth Shock and our Climate Change Choices: Mitigation, Adaptation or Harm

A Requiem for Flooded Cities: Russian Flood Disaster Worsens, Amur River to Hit 30 Feet

I Have A Confession to Make: We Are In Trouble

The Methane Monster Grows New Teeth: Sea Level Rise Found to Cause Methane Release, Tsunamis, Slope Collapse

A Song of Flood and Fire

A Deadly Climb From Glaciation to Hothouse, Why the Permian Extinction is Pertinent to Human Warming

Climate Monsters We Want to Keep in the Closet: Heinrich Events, Superstorms, and Warming the Deep Ocean

2012: 9th Hottest Year on Record, Continuation of Inexorable Heating Trend

Image

According to reports from NASA’s GISS division, 2012 was the 9th hottest year on record globally. It was also the hottest year on record for the continental United States. The above image is a composite heat map showing global temperature difference for the 2008-2012 period — a period that has included one hottest year (2010) and two consecutive La Nina years that ranked 2nd and 3rd hottest (2011, 2012). Overall, 2008 was the 12th hottest year on record, 2009 the 7th hottest, 2010 the hottest, 2011 the 10th hottest, with 2012 coming in 9th hottest.

The last year that experienced temperatures cooler than the 20th century average was 1976.

Image

“One more year of numbers isn’t in itself significant,” GISS climatologist Gavin Schmidt said. “What matters is this decade is warmer than the last decade, and that decade was warmer than the decade before. The planet is warming. The reason it’s warming is because we are pumping increasing amounts of carbon dioxide into the atmosphere.”

Given the degree to which heat keeps building up in the atmosphere due to human CO2 emissions, a record 34 gigatons in 2012, it is likely that the next El Nino year will produce a strong new temperature record. However, 2011 and 2012 both experienced La Nina conditions. ENSO conditions are expected to remain neutral throughout much of 2013 with chances rising for a return to El Nino by the end of this year.

NASA scientist James Hansen, who has labeled the ongoing procession of extreme weather events, rapid sea ice melt, glacial melt, and abnormally hot conditions a ‘planetary emergency,’ puts the current state of the human-caused warming trend into perspective:

“The U.S. temperatures in the summer of 2012 are an example of a new trend of outlying seasonal extremes that are warmer than the hottest seasonal temperatures of the mid-20th century,” GISS director James E. Hansen said. “The climate dice are now loaded. Some seasons still will be cooler than the long-term average, but the perceptive person should notice that the frequency of unusually warm extremes is increasing. It is the extremes that have the most impact on people and other life on the planet.”

Links:

http://www.nasa.gov/topics/earth/features/2012-temps.html

http://iri.columbia.edu/climate/ENSO/currentinfo/update.html

La Nina Redeveloping in Pacific?

Over the past few years, we’ve seen historically strong La Nina conditions in the eastern Pacific. These conditions affect growing seasons and weather patterns around the world and, combined with human global warming, have been a contributor to drought conditions in the US.

This year, forecasters predicted a reappearance of El Nino (warming waters in the Eastern Pacific as opposed the the cooling waters that represent La Nina). But the warming that occurred in this critical region was very weak. Now, a few cool patches have again developed over the eastern Pacific, begging the question — is another La Nina emerging?

These cool patches are, currently, rather small and disperse, but consistent growth could result in another La Nina after two following 2010 and 2011. Such an event would likely mean a continued intensification of US drought even as another year of record-breaking worldwide temperature highs may be put off to 2013 or 2014. It currently appears 2012 may be in the range of 7-10th hottest on record and another La Nina in 2013 could hold it in that range as well.

The heat map itself shows a strange trend in which the Northern Atlantic, the Arctic Ocean, the Pacific region near Japan, and the Mediterranean all show water temperatures very high above average with widespread milder, but still above average, zones throughout the southern hemisphere. Only two regions — the Pacific Ocean around Alaska and the Pacific east of Hawaii — showed significant below average readings. And, as mentioned before, little cool blips are starting to show up in a region that typically spawns La Nina/El Nino.

Is The ENSO Signal Being Over-Ridden by Global Warming?

The periodic switch between warm and cool surface ocean temperatures over the eastern equatorial Pacific has long been a powerful driver of global weather. The reason is that such a large body of water can do major work moving weather patterns depending on its relative cool or warm state. This area of the Pacific is very large — about 9 million square kilometers and it sits directly below the equatorial wind flows. So warming and cooling in this region pushes weather governing winds, changing the direction of storms and the location of droughts, serving as a powerful governor of world weather and climate.

But human caused global warming may be shifting the role of ENSO into a secondary governor of climate. The reason? Large areas of open water in the Arctic and northern oceans are now subject to excess heating.

Take  a look at the map above and you will notice a large region of much warmer than average water located in the polar, Arctic, and high temperate zones. Almost the entire Arctic Ocean, the region of Hudson Bay, the Canadian Archipelago, the sea directly west of Greenland and the North Atlantic are all experiencing sea surface temperatures far exceeding the average range. A large area of the northern Pacific is also experiencing abnormally hot conditions. The abnormally high temperatures in these regions cover ocean areas as much as twice as large as the region typically affected by El Nino.

The change in heat distribution of these waters alters the circumpolar jet stream. It changes the path, location, duration and intensity of storms. It can make cool and wet periods last longer. It can make dry and hot periods also last longer. It is the main element influencing the blocking patterns that have been so prominent in weather events over the past decade and a half. Finally, it may eventually alter the turn of the northern hemisphere seasons. For as it intensifies, it has the ability to change winter into something that may be well unrecognizable from the seasons as they’ve existed over the 20th century.

This heating of the northern hemisphere land and water becomes a periodic event intensifying toward the end of summer. But it is the ability of this latent heat to melt ice, move air masses, cause huge swoops in the jet stream, alter the seasons, and extend the duration of weather events that may result in its over-shadowing the signal coming from El Nino and La Nina.

It is particularly worth noting that, despite La Nina being very strong over the end of 2010 and throughout 2011, 2010 was the hottest year on record and 2011 was the 9th hottest year on record and the hottest La Nina year on record. Usually, a powerful La Nina like the one occurring in 2011 would have pushed world temperatures dramatically down. But we still experienced a record year. Also, strong El Nino years have typically resulted in the world reaching new record high temperatures under global warming. Not so with 2010. That year was a year that transitioned from weak El Nino to strong La Nina. Yet temperatures were still high enough to break a new record.

What appears to be happening is that the global warming signal is becoming large enough to over-ride the signal coming from El Nino and La Nina. If we think of these two forces as wave patterns, the size of the human caused global warming wave is now large enough to confuse and dilute the, now smaller, El Nino, La Nina wave signal. This seems to be true, again, for 2012 where a strong La Nina is transitioning into a very weak El Nino. Yet all the recent months have been much hotter than the climatological average with June and July both being the 4th hottest on record.

And though it is likely that the strong La Nina influenced the Texas drought of 2011 and the 50 year drought of 2012, the fact that La Nina has faded while drought conditions have persisted should be a clear indicator that La Nina is no longer sitting in the driver’s seat.

The fact that human caused global warming is now the primary driver of extreme weather events has now been validated by many scientists. The IPCC, NOAA, and NASA have now all linked extreme weather to human caused global warming. In addition, Jennifer Francis and colleagues have also produced a report showing how loss of sea ice is driving the powerful blocking patterns we’ve seen linked to extreme weather events over the past two decades. So, moving forward, it will be important for weather forecasters to identify atmospheric changes due to human global warming if they are to accurately predict weather over extended periods in the future.

Links:

http://www.washingtonpost.com/opinions/climate-change-is-here–and-worse-than-we-thought/2012/08/03/6ae604c2-dd90-11e1-8e43-4a3c4375504a_story.html

http://www1.ncdc.noaa.gov/pub/data/cmb/bams-sotc/2011-peterson-et-al.pdf

 

Advertisements
%d bloggers like this: