New Crack Found in Delaware-Sized Chunk of Larsen C Ice Shelf as it Heads Toward Southern Ocean

A 2,000 square mile section of the Larsen C Ice Shelf is hanging by a thread as it continues to drift toward the Weddell Sea.

(A second crack develops in Larsen C Ice Shelf. Image source: Project MIDAS.)

The break-off section represents fully 10 percent of all the ice contained in the Larsen C system. It has been divided from the larger ice shelf by a 180 kilometer long crack that began to develop in 2009 and that swiftly lengthened during recent years. Now only a 10 kilometer wide bridge links the breaking section to the larger ice shelf. And considering the enormous stresses now being placed on this break-off section it is expected to go at any time.

Since January, according to researchers at Project MIDAS, the large crack has been widening but its length growth has stalled. However, recent reports out this week from MIDAS found that a new crack had developed at the ice-bridge end of the break-off section. The new crack appears to be rounding the corner of the bridge to begin a quicker path to segmenting the massive ice berg away from Larsen C. A testament to the powerful forces that are inevitably forcing this enormous section of ice to relinquish its hold.

(Large section of Larsen C is moving far faster than the rest of the ice shelf toward the Southern Ocean. Image source: Project MIDAS.)

At issue is the fact that the break-off section is moving toward the Weddell Sea considerably faster than the rest of the Larsen C ice shelf. Much of this large section of ice is proceeding away from the Antarctic mainland at 3 meters per day. Surrounding sections of Larsen C are moving at only 1-2 meters per day. As a result, the toe end of the break-off mass is tipping out into Weddell’s waters and the crack separating it from Larsen C is widening.

It’s not really a question of if this massive block of ice will separate from Larsen C. More an issue of how soon.

Loss of so large a section of ice from Larsen C threatens the entire ice shelf’s stability. And some scientists are questioning whether the whole ice shelf will destabilize and eventually splinter — as happened to Larsen A and Larsen B during recent years.

(Rapid loss of buttressing ice shelves like Larsen C lock in higher and higher ranges for sea level rise. A worrying risk for rapid sea level rise occurs as global temperatures warm to between 1.5 and 2.5 C. A level we are fast approaching. Scientists like James Hansen identify a significant risk for multi-meter sea level rise this Century if 2 C warming thresholds are breached. Video Source: Carbon Freeze.)

Warming ocean waters due to human-forced climate change are the primary driver for loss of ice shelves around the world. These ice shelves hold back land glaciers — preventing them from more rapidly sliding into the world’s oceans. Larsen C alone holds back glaciers capable of lifting global ocean levels by 4 inches. But there are numerous such ice shelves and many are now facing thinning and increasing instability due to warming ocean waters. As a result, a growing number of scientists are concerned about the possibility for multi-meter sea level rise this Century if fossil fuel burning is not swiftly halted.

Links:

Project MIDAS

Carbon Freeze

Second Giant Crack Appears on Larsen C

Crack in Larsen C Forks

Larsen C Destabilization Could Trigger 4 Inch Sea Level Rise

Hat tip to June

Hat tip to Andy in San Diego

Another Blow to Antarctic Glacial Stability as Larsen C Ice Shelf Cracks Up

Larsen C rift

(Northern edge of Larsen C Ice Shelf is at significant risk of breaking off as a massive rift continues to open within it. The above image shows the rate of rift propagation since November of 2010. Image source: Cryosphere Discussions.)

There’s a 30 kilometer long and hundreds foot deep crack running through West Antarctica’s massive Larsen C ice shelf.

It’s a rift that now stretches from the Weddell Sea — where winds and currents have driven human-warmed ocean waters to up-well along the ocean-contacting faces of the great Antarctic ice sheets — and deep into the interior of this 49,000 square kilometer and 600 to 700 foot tall block of ancient, floating ice.

Over the past few years this rift has been rapidly advancing at a rate of about 2.5 kilometers each year.  Given that the rift has already traversed more than half of the Larsen C ice shelf calving face, a very large break-up could now occur at almost any time.

Larsen C Destabilizing

This evolving situation now threatens to destabilize the entire Larsen C ice shelf — resulting in major losses to a very large block of ice that has been a permanent feature of the Antarctic coastline since at least the last interglacial period 150,000 years ago. Such rapidly evolving risk was the subject of a February 5 communication by a group of glaciologists warning that “significant threats” to “Larsen C ice sheet stability” now existed.

The report notes:

In a change from the usual pattern, a northwards-propagating rift from Gipps Ice Rise has recently penetrated through the suture zone and is now more than halfway towards calving off a large section of the ice shelf (Figs. 1 and 2). The rate of propagation of this rift accelerated during 2014. When the next major calving event occurs, the Larsen C Ice Shelf is likely to lose around 10 % of its area to reach a new minimum both in terms of direct observations, and possibly since the last interglacial period (Hodgson et al.2006)

Connecticut-Sized Break-up Possible

Large ice shelf break-ups have been occurring along the Antarctic Peninsula since the 1970s. As human warming advanced and the heat sink of the southern Ocean increased bottom water temperatures along the Antarctic perimeter, many of the far northern ice shelves and an increasing number of ice bodies closer to the Antarctic interior have lost significant portions of their mass.

Now, Larsen C is at risk of an even worse break-up. For the predicted 10% loss to Larsen C would equate to about 5,000 square kilometers — or an area roughly the size of Connecticut — floating off into the Southern Ocean:

Section of Larsen C vulnerable to break-up

(Larsen C Ice Shelf map with the new rift indicated in red and the potential calving face outlined in blue. Note the previous calving fronts in 1975 and 1988. Image source: Cryosphere Discussions)

It would be yet one more major ice loss for the region, and perhaps a new record loss for an area that has frequently seen Rhode Island sized chunks of ice (around 1,000 square kilometers) break off into the warming world’s seas.

The report goes into further detail about the importance and vulnerability of Larsen C, stating:

The Larsen C Ice Shelf is the most northerly of the remaining major Antarctic Peninsula ice shelves and is vulnerable to changes both to ocean and atmospheric forcing (Holland et al., 2015). It is the largest ice shelf in the region and its loss would lead to a significant drawdown of ice from the Antarctic Peninsula Ice Sheet (APIS). There have been observations of widespread thinning (Shepherd et al., 2003; Pritchard et al., 2012; Holland et al., 2015), melt ponding in the northern inlets (Holland et al., 2011; Luckman et al., 2014), and a speed-up in ice flow (Khazendar et al., 2011), all processes which have been linked to former ice shelf collapses (e.g. van den Broeke, 2005).(Emphasis Added).

Conditions in Context

As mentioned above, during recent years we have seen numerous ice shelves and ice sheets begin to destabilize. In addition, two ice shelves — Larsen A and Larsen B have already completely disintegrated due to human-caused warming.

Larsen C may be most immediately at risk, but the leading edges of the Ronne-Filchner Ice Shelf, The Pine Island Glacier, The Ross Ice Shelf, and the Amery glacier have all shown rapid seaward acceleration. Further, various studies of these increasingly vulnerable ice shelves have shown substantial basal melt coincident with a floating of the ice sheets off grounding lines, leading to a retreat of the anchor points landward.

Major Antarctic Ice Shelves

(Antarctica’s major ice shelves. Image source: Commons.)

Sea-facing ice sheets and ice shelves serve to anchor the great interior glaciers of Antarctica. Loss or destabilization of these anchors would result in more and more rapid flow of land ice into the Southern Ocean. It is for this reason that the destabilization and shattering of ice shelves like Larsen C can have serious implications for the rate of sea level rise over the coming decades.

Overall, nearly 200 feet worth of sea level rise is locked in Antarctica’s glaciers and we are, through a heating of the world’s oceans, ice, and atmosphere, pushing these glaciers to melt and move in an ever-more dramatic and world-altering fashion.

Links:

Newly Developing Rift in Larsen C Ice Shelf Presents Significant Risk to Stability

Shrinking Ice Shelves and The Pine Island Glacier

Commons: The Larsen C Ice Shelf

Hat-tip to Colorado Bob

%d bloggers like this: