Ignoring the Arctic Methane Monster: Royal Society Goes Dark on Arctic Observational Science

Back in 2011, a team of Arctic researchers shocked the world when they announced the observation of 1 kilometer across methane plumes issuing from regions of the East Siberian Arctic Shelf. Indications were that this shallow sea might be vulnerable to large-scale release. And in the flurry of observations that followed, it was discovered, according to lead scientists Shakhova and Semiletov, that about 17 teragrams of methane was being emitted each year from this region (which exceeds the total amount of methane currently leaking from all the US’s wells, coal beds, and pipelines combined[14 teragrams]).

The methane emission had not reached catastrophic levels, but the rate of release was far greater than expected. So there was some cause for concern. Concern that this larger than expected release was part of a ramp-up to something worse. A kind of climate nightmare scenario that no-one likes talking about.

Methane Oct 9 2014

(NOAA METOP data captured by Sam Carana on October 9 of 2014 shows a strong methane spike in the range of 2562 parts per billion — more than 700 parts per billion above the global average. Spikes of this kind are now rather common in the METOP data. Note that the origins of high atmospheric methane readings are mostly concentrated in the far north — an indication of a local methane overburden. Though not signs of catastrophic release, these spikes present a troubling trend in the observational record that is an indicator of an increasing Arctic methane release. Links: NOAA OSPO and Arctic News.)

There was no direct evidence, yet, that these fears were in the process of being realized. But there was certainly enough to sharply raise concerns, to increase the observational wing of the science, and to discuss and debate the observational results in the larger scientific bodies.

Questions arose and were addressed. One — citing that perhaps this much methane had been releasing from the ESAS for centuries — was answered when researchers discovered new methane plumes in only recently submerged tundra. An indication that at least a subset of the plumes were recent.

Broader Arctic methane science outside the bounds of specific ESAS release, which had for years identified a risk that rapidly thawing tundra would add new volumes of methane and CO2 to the Arctic atmosphere, provided additional cause for worry. Paper after paper found rising methane emissions from thawing tundra — in lakes and heating peat bogs and in any zone where the soil was anaerobic and warming. NASA’s CARVE study found 150 kilometer regions of terrestrial tundra emitting plumes of methane into the atmosphere and a subsequent study by CARVE found that current models combined with spotty observational evidence couldn’t even pin down total methane emissions for the Arctic region.

It was a clear sign that both the observational science and the model science was not yet mature enough to make decisive conclusions about rates of Arctic methane release. Much less accurately predict what would happen in a future that included the likelihood of Arctic warming at a pace 30 times that seen during the end of the last ice age and a global carbon emission (from human fossil-fuel based industry) that is six times faster than at any time in Earth’s geological past.

Ramping methane

(Steadily ramping atmospheric methane concentrations since 2008 indicate an additional methane release substantial enough to overwhelm the OH sink and result in strong annual increases. Conversely, from the late 1990s to the mid 2000s methane sinks and sources had reached a balance with atmospheric levels plateauing at around 1790 parts per billion. Notably, 2013 to 2014 has shown the most rapid rate of annual increase for many decades in this ESRL data. Was this methane spike at least in part spurred by major reductions in Arctic Sea Ice and coincidentally powerful polar amplification occurring since 2005? Image source: NOAA ESRL.)

That said, concerns that releases from the broader Arctic environment would increase due to human heat forcing abounded. In 2011, a group of 41 Arctic researchers projected that Arctic carbon release would equal ten percent of the total human emission if rapid reduction of carbon emissions was undertaken as soon as possible. Under business as usual carbon emissions through 2100, the researchers suggested that the Arctic feedback would amplify to a size equaling 35% or more of the human emission. Enough to set off a runaway to a hothouse state even if all human emissions were to cease.

This summer seemed to raise concerns even further with the SWERUS C3 mission discovering very large methane plumes in the Laptev Sea. Strange, anomalous, methane blow holes that no-one ever imagined or predicted appeared in the Yamal region of Russia. And though the methane release from the individual holes was small when compared to the global methane flux, they provided yet more contextual evidence of an increasingly unstable Arctic, one that is finding more and more pathways for carbon release — some of them catastrophically explosive.

methane bubbles near the Laptev sea surface

(Methane bubbles near Laptev Sea surface as observed by the SWERUS C3 mission. Image source: SWERUS C3.)

Royal Society Goes Dark on Arctic Methane Observation

Now, as the SWERUS C3 mission has come to a close, something rather odd has happened.

A part of the SWERUS C3 mission, perhaps the most important part, was to collect observational information about methane release from the sea bed. Initial reports from the mission indicated at least what appeared to be an important discovery in the Laptev. The mission also spent quite a period moving through regions of the ESAS — where earlier large releases were observed. It was expected that the lead researchers – Shakhova and Semiletov would present their findings. And what better place than the upcoming Royal Society meeting on ‘Arctic sea ice reduction: the evidence, models, and global impacts (emphasis added)?’

As a critical heat-trapping feedback in the Arctic, one would expect that observations on the release of methane — which is at least 25 times more potent a heat trapping gas by volume than CO2 — would be a matter of some importance to the issue of Arctic sea ice reduction. And it appears that the scientific forum was open enough to the issue to include a model-based discussion of the subject by Dr. Gavin Schmidt. But with the failure of the Royal Society to invite Shakhova and Semiletov, a good portion of the observational science was simply excluded.

Modelers, instead, could have a discussion with themselves. And though I assume such a discussion was somewhat enlightening and probably more than a little reassuring, one wonders how much realistic grounding such a discussion can have without including the most recent observational findings for debate and analysis.

To this point, earlier this month, Dr. Shakhova made the following statement on behalf of herself and the 30 other scientists involved in her research:

October 4th, 2014
By mail and email

Dear Sir Paul Nurse,

We are pleased that the Royal Society recognizes the value of Arctic science and hosted an important scientific meeting last week, organized by Dr D. Feltham, Dr S. Bacon, Dr M. Brandon, and Professor Emeritus J. Hunt (

Our colleagues and we have been studying the East Siberian Arctic Shelf (ESAS) for more than 20 years and have detailed observational knowledge of changes occurring in this region, as documented by publications in leading journals such as Science, Nature, and Nature Geosciences. During these years, we performed more than 20 all-seasonal expeditions that allowed us to accumulate a large and comprehensive data set consisting of hydrological, biogeochemical, and geophysical data and providing a quality of coverage that is hard to achieve, even in more accessible areas of the World Ocean.

To date, we are the only scientists to have long-term observational data on methane in the ESAS. Despite peculiarities in regulation that limit access of foreign scientists to the Russian Exclusive Economic Zone, where the ESAS is located, over the years we have welcomed scientists from Sweden, the USA, The Netherlands, the UK, and other countries to work alongside us. A large international expedition performed in 2008 (ISSS-2008) was recognized as the best biogeochemical study of the IPY (2007-2008). The knowledge and experience we accumulated throughout these years of work laid the basis for an extensive Russian-Swedish expedition onboard I/B ODEN (SWERUS-3) that allowed more than 80 scientists from all over the world to collect more data from this unique area. The expedition was successfully concluded just a few days ago.

To our dismay, we were not invited to present our data at the Royal Society meeting. Furthermore, this week we discovered, via a twitter Storify summary (circulated by Dr. Brandon), that Dr. G. Schmidt was instead invited to discuss the methane issue and explicitly attacked our work using the model of another scholar, whose modelling effort is based on theoretical, untested assumptions having nothing to do with observations in the ESAS. While Dr. Schmidt has expertise in climate modelling, he is an expert neither on methane, nor on this region of the Arctic. Both scientists therefore have no observational knowledge on methane and associated processes in this area. Let us recall that your motto “Nullus in verba” was chosen by the founders of the Royal Society to express their resistance to the domination of authority; the principle so expressed requires all claims to be supported by facts that have been established by experiment. In our opinion, not only the words but also the actions of the organizers deliberately betrayed the principles of the Royal Society as expressed by the words “Nullus in verba.”

In addition, we would like to highlight the Anglo-American bias in the speaker list. It is worrisome that Russian scientific knowledge was missing, and therefore marginalized, despite a long history of outstanding Russian contributions to Arctic science. Being Russian scientists, we believe that prejudice against Russian science is currently growing due to political disagreements with the actions of the Russian government. This restricts our access to international scientific journals, which have become exceptionally demanding when it comes to publication of our work compared to the work of others on similar topics. We realize that the results of our work may interfere with the crucial interests of some powerful agencies and institutions; however, we believe that it was not the intent of the Royal Society to allow political considerations to override scientific integrity.

We understand that there can be scientific debate on this crucial topic as it relates to climate. However, it is biased to present only one side of the debate, the side based on theoretical assumptions and modelling. In our opinion, it was unfair to prevent us from presenting our more-than-decadal data, given that more than 200 scientists were invited to participate in debates. Furthermore, we are concerned that the Royal Society proceedings from this scientific meeting will be unbalanced to an unacceptable degree (which is what has happened on social media).

Consequently, we formally request the equal opportunity to present our data before you and other participants of this Royal Society meeting on the Arctic and that you as organizers refrain from producing any official proceedings before we are allowed to speak.

On behalf of more than 30 scientists,
Natalia Shakhova and Igor Semiletov

Which raises the question — if models aren’t being informed by current observation any longer, then what are they being informed by?

The exclusion also highlights a large and what appears to be growing rift between those who observe the Arctic system and some that model it. Concern for larger carbon release from the Arctic system appears to be steadily rising among Arctic observational specialists, while some modelers appear to have retreated into silos in an attempt to defend previous understandings that were based on earlier work. It would seem that the wiser move would be to attempt to incorporate new data into the models. But in some cases, this does not appear to be happening.

Sea ice vs model runs

(Arctic sea ice melt model runs were way off. Do we want to have a similar unpleasant surprise when it comes to methane release?)

In such cases, there is a high risk that a kind of institutional bias may form to delay the progress of the science. Such an instance would be tragic considering the dangers posed by the very rapid build-up of heat trapping gasses in the Earth’s atmosphere and the absolute necessity for swift and decisive action to prevent even broader-scale harm than we’ve already locked in. If we are misinformed of risk, even by those with the best of intentions, then we may grow complacent and fail to act soon enough on the basis of assurances that prove false at a later time.


Arctic News

The Distribution of Methane on Marine Arctic Shelves

Geophysical and Geochemical Evidence of Methane Release Over the East Siberian Arctic Shelf

Ebullition and Storm Induced Methane Release From East Siberian Arctic Shelf

High Risk of Permafrost Thaw


Arctic Sea Ice Melt, Methane Release, Shows Amplifying Feedbacks from Human-Caused Climate Change

Arctic Methane Monster Shortens Tail: ESAS Emitting Methane at Twice Expected Rate

Arctic Methane Monster Stirs: NASA’s CARVE Finds Plumes as Large as 150 Kilometers Across

Tracking the Footprints of the Arctic Methane Monster

The Arctic Methane Monster Exhales: Third Tundra Hole Discovered

When it Comes to the Arctic Methane Monster What We Don’t Know Really Could Kill Us

Methane and Frozen Ground


%d bloggers like this: