Wildfires in the Land of Frozen Ground — 1,000 Mile Long Pall of Smoke Blankets Burning Siberia

It’s another day in a record hot world. And in a few hours, just below the Arctic Circle in Siberia, the temperature is predicted to hit 33.2 C (or just shy of 92 degrees Fahrenheit). According to climate data reanalysis, that’s about 15-20 C above average for this time of year over a land filled with cold weather adapted boreal forests and covering ground that, just below the first few feet of duff, is supposed to be continuously frozen.


(33. 2 C [92F] temperatures run to within 3.7 degrees of Latitude south of the Arctic Circle [66 N]. These are readings in the range of 15-20 degrees Celsius above normal and are likely record ranges for the area. Nearby, enormous Siberian wildfires now burn. Image source: Earth Nullschool.)

All along the southern and western boundary of this region of extreme heat, very large wildfires now rage. Sparking near and to the east of Lake Baikal during early April, May and June, the fires have since run northbound. Now they visibly extend along an approximate 1,000 mile stretch of Central Siberia ranging as far north as the Arctic Circle itself.

As recently as June 25th, Russian authorities had indicated that around 390 square miles had burned along the southern edge of this zone in Buryatia alone. For other regions, the tally is apparently uncounted. An unreported number of firefighters are now engaged with these blazes and have currently been assisted by an additional 150 Russian Army personnel. The Interfax News Agency also reports that 11,000 personnel from the Russian Army are currently on standby to battle the massive fires, should the need arise.

Massive Siberian Wildfires June 30

(NASA’s LANCE-MODIS satellite shot for June 30, 2016 shows enormous smoke plumes rising up from intermittent wildfires apparently burning across an approximate 1,000 mile stretch of Central Siberia. For reference, right border of frame is approximately 1,200 miles.)

Today’s Siberia is a vast thawing land and armies of firefighters are now apparently necessary to stop or contain the blazes. Already interspersed with deep layers of peat, melting permafrost adds an additional peat-like fuel to this permafrost zone. When the peat and thawed permafrost does ignite, it generates a heavier smoke than a typical forest fire. This can result in very poor air quality and related incidents of sickness. During 2015, a choking smog related to peat fires forced an emergency response from Russian firefighters. The thick blanket of smoke currently covering Siberia (visible in the June 30 LANCE MODIS satellite shot above) now blankets mostly uninhabited regions. But the coverage and density of the smoke is no less impressive.

Peat and thawed permafrost fires have the potential to smolder over long periods, generating hotspots that can persist through Winter — emerging as new ignition sources with each passing Summer even as Arctic warming intensifies. During recent years, wildfires in the Siberian Arctic have been quite extensive. According to Greenpeace satellite analysis, 2015’s wildfires covered fully 8.5 million acres (or about 13,300 square miles). These reports conflict with the official numbers from Russia. Numbers Greenpeace indicates fall well below the actual total area burned.

(Wildfires erupt to the north and west of Lake Baikal in this June 27 rendering of the Japanese Himawari 8 satellite imagery.)

Thawing permafrost under warming Siberian temperatures not only generates fuel for these wildfires, it becomes an additional source of greenhouse gas emissions. And as the area of land wildfires burn in the Arctic expands together with the heat-pulse of human-forced warming, this amplifying feedback threatens to add to an already serious problem.


Earth Nullschool


Climate Reanalyzer

Russian Volunteers Seek a Foothold as Wildfires Rage in Siberia


Hat tip to Colorado Bob

Hat tip to Andy in San Diego

Hat tip to DT Lange


2 C Coming On Faster Than We Feared — Atmospheric Methane Spikes to Record 3096 Parts Per Billion

It’s essential that policymakers begin to seriously consider the possibility of a substantial permafrost carbon feedback to global warming. If they don’t, I suspect that down the road we’ll all be looking at the 2°C threshold in our rear-view mirror.Robert Max Holmes


Unraveling the global warming puzzle is simple at its face, complex when you pierce the surface.

We know that burning fossil fuels, that the activity of mining coal, fracking for gas, and drilling for oil all result in dangerous greenhouse gas emissions. We know that the vast majority of these warming gasses are coming from fossil fuel based sources. We know that, now, the burning and mining and fracking and drilling have pushed atmospheric CO2 above 405 parts per million and the global concentration of all CO2 equivalent gasses to an amazing 485 parts per million CO2e (levels not seen in at least 15 million years). And we know that the heat re-radiated by these gasses has warmed the world by about 1 C above 1880s levels — forcing weather patterns to change, seas to rise, ocean health to decline, and setting off a wave of die offs in the animal world while increasing the near-term risk of hunger, spreading tropical disease, and mass displacement in the human world.

Radiative Forcing

(Heat added to the Earth’s atmosphere by fossil fuel emitted gasses like CO2 and Methane are measured in watts per meter squared. A yardstick known as radiative forcing [RF]. In the above graph by IPCC, we can see the estimated levels of radiative forcing from each greenhouse gas and total net human heat forcing upon the Earth atmosphere as of 2011. It’s a measure that may also need to start adding in the RF of feedback greenhouse gasses as the 21st Century progresses. Image source: RealClimate.)

We know many of the names of these other gasses — methane, nitrous oxide, and chlorofluorocarbon. And some of the others — like sulfur hexaflouride — many of us haven’t yet heard of. But the big name, the primary warming agent, is carbon dioxide — responsible on its own for the majority of the overall heat forcing currently. A gas so important to long term warming that NASA has called it ‘the thermostat that controls Earth’s temperature.’

All this is pretty simple and straightforward. But it’s when we start looking at what are called amplifying feedbacks — the Earth System Sensitivity responses to human forced warming — that things really start to get dicey. And wrapped up in the Earth System Sensitivity equation is methane — a greenhouse gas with the ability to strongly influence global temperatures over rather short time-frames.

Methane Spikes to Over 3,000 parts per Billion

On February 20th, for about 12 hours, the NOAA METOP measure recorded a major atmospheric methane spike in the range of 3,096 parts per billion at 20,000 feet in altitude. This was the first time that any measure had recorded such a high methane spike and the first time any measure had exceeded the 3,000 parts per billion threshold. For context, just two years ago, a methane spike in the range of 2,660 parts per billion would have been significant. Now, we’re getting peak readings that are more than 400 parts per billion higher than that previous maximum threshold.

Metop methane

(METOP showed a record 3,096 parts per billion atmospheric methane spike on February 20 of 2016. Thus far, this was the largest such spike ever recorded in the NOAA measure. One that far exceeded a global atmospheric average of around 1830 parts per billion. Image source: NOAA/METOP.)

It’s a pretty ominous signal — especially when you consider the fact that global atmospheric methane averages are in the range of 1830 parts per billion. The recent major spike was about 1170 parts per billion higher. In other words — a pretty extraordinary excession. It’s evidence that the methane sources of the world are growing more vigorous in their output. And when you consider the fact that methane — on a molecule-by-molecule comparison to CO2 — traps about 80 times more heat over the decadal timescale, large additions of methane on top of an already dangerous CO2 forcing is certainly cause for some concern. An issue that may further speed the already rapid pace of human-forced warming such that we become at risk of hitting the 1.5 C and 2 C thresholds sooner than expected. Outcomes we should urgently be working to avoid — by cutting the human-based emission as rapidly as possible at this time.

The Usual Suspects — Fossil Fuel Based Activity

Perhaps still more concerning is the fact that we really don’t know exactly where this significant methane spike is coming from.

We do, however, have a long list of usual suspects. The first, of course, would be from any number of very large and dangerous fossil fuel emission sources. China, with its massive methane belching coal mines, gas infrastructure, and dirty coal burning facilities would be a prime suspect. Mongolia, where equally sprawling coal and gas facilities operate is another likely hot spot. Russia — with its vast and leaky oil and gas fields. The Middle East — which is choked with fossil fuel infrastructure. Europe — where many of Russia’s pipelines terminate and where many nations burn a high-methane brown coal. And the United States — where the geologically destructive practice of fracking has now also recently and greatly increased methane emissions.

Unusual Suspects — Permafrost and Clathrate Warmed by Fossil Fuel Emissions

Looking at the very low resolution METOP graphic above, we find a number of methane hot spots around the globe. And many of these hot spots do coincide with our usual suspects list. But others are well outside the range we would typically expect. Far up in the north. Over the tundra and the Arctic Ocean where few major fossil fuel burning or extraction facilities now exist. There, somewhat ironically, great piles of permafrost spreading over millions of square miles and sometimes mounding up as thick as two miles are thawing due a greenhouse gas heat forcing from fossil fuel burning often happening hundreds or thousands of miles away. This thawing permafrost is filled with organic material. And when freed of its icy prison it is exposed to the world’s elements and microbes. These forces then go to work turning the organic carbon in that permafrost into carbon dioxide and methane.

This is rather bad news. In total, more than 1,300 billion tons of carbon are locked away in the permafrost soils. And carbon emissions from permafrost make an already bad heat forcing coming from fossil fuel burning even worse.

Barrow methane

(Atmospheric methane levels as recorded by various reporting stations and global monitors have been rising more rapidly during recent years. In the Arctic, atmospheric readings have tended to remain above the global average — an indication that local emissions are generating an overburden for the region. Image source: NOAA ESRL.)

But if all the human emissions and potential permafrost emissions weren’t bad enough, we have one more major carbon source in the Arctic to consider — methane hydrate. A controversial potential methane release source to be certain. But a very large one that we would be remiss to ignore. Due to the fact that the Arctic has remained very cold overall for the past 3 million years of long ice ages and brief interglacials, this massive store of carbon has been given the opportunity to build up within the relatively shallow and now swiftly warming Arctic Ocean waters and even beneath large sections of now-thawing permafrost. Much of this carbon is in the form of the frozen ice-methane called hydrate. And as the Arctic Ocean warms and sea ice recedes to expose blue ocean to the heating of the sun’s rays for the first time in hundreds of thousands of years, there is concern among some scientists that a not insignificant amount of that submerged frozen methane will release, pass the ocean-atmosphere or thawing permafrost boundary, and add more heat forcing to the world’s atmosphere. The shallow sea of the East Siberian Arctic Shelf has been identified by some to contain as much as 500 billion tons of carbon in the form of frozen methane. And a fossil fueled heating of the Earth may be just now risking amplifying feedback level releases from this large clathrate store along with a number of other very large stores scattered all across the Arctic Ocean basin and on throughout the global ocean system.

A Clearer Picture? Or One Far More Complex?

So who among all the various suspects — usual and unusual — may be responsible for the record methane spike now showing up in the METOP measure?

Before we attempt to answer this question, let’s pull in another methane graphic — this one from the Copernicus Observatory:

Global Surface Methane Readings Copernicus

(The February 25 Copenicus methane graphic tracking surface methane readings gives a higher resolution indication of surface methane readings than the NOAA METOP measure. This second measure provides some confirmation of an Arctic methane overburden even as spike sources from human emissions become more readily apparent. Omnious spikes also apparently come from wildfires in the tropics and from regions in the Arctic near Yamal, Russia, Northern Scandinavia, the Barents and Kara seas. Image source: The Copernicus Observatory.)

Here we can see the range of surface methane readings according to Copernicus. A higher resolution image that may provide us with a better idea of the point-source location for daily global methane spikes. Here we see that the major methane sources are predominantly China, Russia, the Middle East, Europe, the United States, India, Indonesia, Fires in Africa and the Amazon, and, finally, the Arctic.

Though the Copernicus measure doesn’t show the same level of Arctic overburden as what has tended to show up in the METOP measure, it’s a confirmation that something in the near Arctic environment is generating local spikes in above 1940 parts per billion for large regions of this sensitive zone.

The Copernicus measure, as noted above, also shows that the human spikes are quite intense, remaining the dominant source of methane emissions globally despite a continued disturbing overburden in the Arctic. Spikes in Africa, the Amazon, and Indonesia also indicate that declining rain forests and related fires in these tropical zones are also probably providing an amplifying feedback to the overall human emission.

Given this month’s spikes and the overall disposition of surface methane readings around the globe, it does appear that the large human base methane emission is being enhanced by feedbacks from local emissions from carbon stores both in the tropics and in the Arctic. This enhancement signal, though somewhat smaller than the fossil fuel related signal in some measures, is concerning and hints that Robert Max Holmes’ warning at the top may be all-too-relevant. For Earth System feedbacks to massive and irresponsible fossil fuel emissions appear to already be starting to complicate our picture of a warming Earth.


CO2: The Thermostat That Controls Earth’s Temperature

Ominous Arctic Methane Spike Continues

Huge Methane Spike Coming from US Fracking

Methane Release From Frozen Permafrost Could Trigger Dangerous Global Warming

Concern over Catastrophic Methane Release

A4R Global Methane Tracking

The Copernicus Observatory




Hat Tip to Griffin

Permafrost Thaw Feedback To Blow Carbon Budget ‘Faster Than We Would Expect’

“Permafrost carbon emissions are likely to be felt over decades to centuries as northern regions warm, making climate change happen faster than we would expect based on projected emissions from human activities alone.” — Climate Change and the Permafrost Carbon Feedback

*    *    *    *

Soil Organic Carbon Store

(Extent of Northern Hemisphere 1 meter soil organic carbon store in the now thawing and burning permafrost. At about 1,000 billion tons, it’s more than enough to put a hefty strain on the IPCC’s remaining 275 billion ton carbon budget. Image source: Stockholm University.)

For a moment, let’s consider some rather difficult to deal with numbers —

790 billion tons — that’s the so-called ‘carbon budget’ the Intergovermental Panel on Climate Change (IPCC) estimates we need to stay within to prevent 2 degrees Celsius (3.6 degrees Fahrenheit) of warming in just this Century (note that current stated fossil fuel reserves hold enough carbon to exceed this budget many times over). It’s the level IPCC says we need to stay below to prevent ‘bad outcomes.’ A rate of warming that does not including later temperature increases in following centuries — which would be about double the 21st Century’s amount if global greenhouse gas levels managed to plateau and the global carbon stores remained on good behavior.

515 billion tons — that’s the amount of carbon humans have already emitted into the atmosphere. It leaves us with less than 275 billion tons remaining.

About 24 years — that’s how long it will take for humans to burn enough fossil fuels and emit enough carbon (at current and projected rates) to use up that ‘carbon budget.’ A break-neck pace of burning and dumping of carbon that is now probably about six times faster than at any time in the geological record. Faster than the atmospheric carbon accumulation during the last hothouse extinction — the PETM. Faster than during the worst hothouse mass extinction of all — the Permian.

Hitting Carbon Limits

Sound like we’re up against some hard limits? Well, we are. Because the above basically implies that human emissions would need to start falling dramatically now and get to near zero by 2050 to meet IPCC’s goal. A limit that, by itself, may have built in too much slack and may not have taken into account other responses from the Earth climate system.

Now let’s consider these new numbers from a recent permafrost study released earlier this month in the context of IPCC’s ‘carbon budget…’

0.6 degrees Celsius — that’s the pace at which the Arctic is warming each and every decade. According to the new study:

This is causing normally frozen ground to thaw — exposing substantial quantities of organic carbon to decomposition by soil microbes. This permafrost carbon is the remnant of plants and animals accumulated in perennially frozen soil over thousands of years, and the permafrost region contains twice as much carbon as there is currently in the atmosphere.

This amounts to about 1400 billion tons and around 1,000 billion tons in the shallow carbon store alone. A massive fireplug of carbon stored in thawing (and burning) land-based permafrost in the Northern Hemisphere at a shallow depth of zero to 3 meters. The new study expects 40 to 170 billion tons of this carbon store to release over the next 85 years. A further 120 to 300 billion tons could hit the atmosphere by 2300 if the ongoing thaw in the north continues.

model estimates of potential carbon release from permafrost

(Model estimates of potential carbon release from permafrost. Note that Pg carbon is roughly equivalent to gigatons of carbon. Image source: Climate Change and the Permafrost Carbon Feedback.)

So where does that leave our so-called carbon budget?

Averaging the report’s findings, we can add about 92 gigatons of baked-in feedback from the shallow permafrost zone alone and end up with 607 billion tons of carbon (human + expected permafrost). This leaves us with about 15 years before we are locked in to hit the ‘2 C limit’ of around 450 ppm CO2 by end Century (not considering a current 485 ppm CO2e level or end Century CO2e of 530 to 550 ppm when all other greenhouse gasses are added in).

In addition, the 120 to 300 billion additional tons from the shallow permafrost store expected to keep out-gassing through 2300 would ultimately result in a carbon pool that pushes atmospheric values up to 480-530 ppm CO2 (560 to 600 CO2e) and turns the ‘2 C limit’ into a 4-6 C (7.2 to 10.8 F) long term climate bake.

Carbon Debt With Compound Interest

Looking at the report’s numbers leaves us with the all-too-salient impression that we really don’t have a carbon budget at all. What we have is carbon bankruptcy. A carbon compounded debt shock enough to crack the whole of the Earth System carbon piggy bank and bleed out gigaton-sized carbon pennies for decades and centuries to come. And the new shallow permafrost carbon feedback estimate does not include the approximate 400 gigatons of carbon in the deep permafrost. Nor does it consider ocean carbon stores — which may provide their own carbon debt spiral. Nor does it include Antarctic carbon stores or a number of other possible stores that could be pushed out by heat stress.

Needless to say, some considered the news in the recent Nature Report ‘good.’ At least it didn’t identify a 50 gigaton methane release over one decade from the East Siberian Arctic Shelf as some other recent articles have considered. Some news reports even went so far as to call an approximate 92 gigaton release by 2100 (or a little more than 1 gigaton per year) from permafrost carbon ‘slow.’ The last hothouse extinction, the PETM, also saw similar ‘slow’ rates of release from the global carbon system. So, slow when compared to the raging 10 gigaton per year pace of current human emissions, but fast when compared to about practically anything else in geological history.

What the new report really means is that humans can’t afford to emit any more carbon. And what we need to be looking at now is a way to swiftly transition to a net carbon negative civilization — fast.

“This is not a minor feedback,” Kevin Schaefer, a prominent scientist from the National Snow and Ice Data Center said in a recent report on the new study’s findings. “… If you don’t account for it, you’ll overshoot this 2 degree target.”


Climate Change and the Permafrost Carbon Feedback

Thawing Permafrost — The Arctic’s Giant Carbon Release

Earth’s Natural Fridge is Turning into a Greenhouse Gas Machine

Bacteria Warm up the Permafrost

Stockholm University

Permafrost Feedback Update — Good News or Bad?

Unprecedented Early Start to ‘Perma-Burn’ Fire Season — Deadly Wildfires Rage Through Siberia on April 12

Permafrost. Ground frozen for millennia. An enormous deposit of organic carbon forming a thick, peat-like under-layer.

Forced to warm at an unprecedented rate through the massive burning of heat-trapping gasses by human beings, this layer is now rapidly thawing, providing an amazing source of heat and fuel for wildfire ignition.

Joe Romm over at Climate Progress has long called this region ‘Permamelt.’ But, with a doubling of the number of wildfires for the high Arctic and an extension of the permafrost fire season into early April this year, we may well consider this to be a zone of now, near permanent, burning — Permaburn.

*   *   *   *  *


(Massive outbreak of permafrost wildfires in Russia this week have left up to 34 villages in smoldering ruins. Image from Khakassia, Russia via The Siberian Times.)

For Khakassia, Russia the story this week has been one of unprecedented fire disaster.

Khakassia is located along a southern region of Siberia bordering northern Mongolia and Kazakhstan. It is an area that typically experiences cold temperatures — even in summer time. An area of frozen ground representing the southern boundary for Siberian permafrost. There, as with much of Siberia, temperatures have been forced to rapidly warm by human greenhouse gas emissions. And this added heat forcing has contributed to ever-more-powerful and extensive wildfires as the permafrost thawed — providing an ever-increasing volume of fuels for wildfires.

Last year, Siberian wildfires also came far too early — impacting a broad region near Lake Baikal, Russia during late April. But this year, the fires have come near the start of April. An extension of the burning season in Siberia inexorably toward the winter-spring boundary.

Khakassia Fires April 12 2015

(Extensive wildfires burn though Siberian Khakassia on April 12 of 2015. In the image, we can see down through a break in the cloud deck to view smoke plumes from scores of wildfires raging throughout the region. For reference, bottom edge of frame is 120 miles and the largest burn scars range from 3-5 miles across. As Siberian permafrost burn season progresses, we can expect fires that belch smoke plumes across the Northern Hemisphere emitting from burn scars as large as 30 miles or more across. Image source: LANCE MODIS.)

This weekend, temperatures in Khakassia soared to 25 degrees Celsius — 15-20 degrees Celsius above average for daytime temperatures in this region even during recent warmer years (1979-2000). A near 80 degree Fahrenheit reading that would be warm in summertime — but one that cropped up in early April as a result of powerful and hot south to north air flows transporting heat across Asia and into the Arctic. These flows wound through Central Asia, warming Khakassia to record temperatures in their inexorable surge toward the pole.

The heat over Khakassia rapidly thawed surface vegetation, extending warmth deep into the thawing permafrost layer. The result was an outbreak of massive wildfires. Beginning this weekend the blazes have, so far, raged through 34 villages and been blamed for 1300 destroyed homes, the loss of nearly 4000 herd animals, 900 human injuries and 20 deaths. Such a fierce and destructive fire outbreak during summer would have been unprecedented. For this kind of event to occur in April, at the edge of Siberian winter, is nothing short of outlandishly strange.

Russian authorities have blamed the fires on a combination of hot weather and human burning. It is a tradition for Russian farmers to burn to clear fields during this time of year. And it is this practice that media is focusing on. However, traditional burning during spring did not historically result in the kinds of massive blazes that ripped through Khakassia earlier this week. Russian farmers, in this case, are unwittingly flinging matches into a tinderbed of rapidly thawing compost. A pile of warming and chemically volatile peat-like perma-burn that is providing more and more fuel for intense fires.


Siberian Wildfires — 17 Killed and Hundreds Injured as Blazes Sweep Through Siberia

Fire Death Toll Rises to 15 in Khakassia as Republic Mourns

Siberia Ravaged by Forest Fires

Permamelt — Climate Progress

When April is the New July — Siberia’s Epic Wildfires Come Far too Early


Concern Over Catastrophic Methane Release — Overburden, Plumes, Eruptions, and Large Ocean Craters

The amount of methane in the Arctic hydrates alone is estimated as 400 times more than the global atmospheric CH4 burden. The question is timescale of the methane liberation: gradual, abrupt, or something in between. Satellite monitoring of methane over the Arctic Ocean is necessary. — Dr. Leonid Yerganov

*  *  *  *

Depending on who you listen to, it’s the end of the world, or it isn’t. A loud and lively debate that springs up in the media every time a new sign of potential methane instability or apparent increasing emission from methane stores is reported by Arctic observational science.

On one side of this debate are those declaring the apocalypse is nigh due to, what they think, is an inevitable catastrophic methane release driven by an unprecedentedly rapid human warming of the Arctic. A release large enough to wipe out global human civilization. These doomsayers are fueled by a number of scientists (usually Arctic observational specialists) who continue to express concern — due to an increasing number of troubling, if not yet catastrophic, rumblings coming from the Arctic carbon store. The Arctic is warming faster than it ever has, they accurately note. And this very rapid rate of warming is putting unprecedented and dangerous stresses on carbon stores, including methane, that have lain dormant for many millions of years. The risk of catastrophic release, therefore, is high enough to sound the alarm.

On the other side are a number of mainstream news outlets backed up by a group of established scientists. This group claims that there’s generally no reason to worry about a methane apocalypse. The methane releases so far are relatively small (on the global scale) and there are all sorts of reasons why future releases will be moderate, slow in coming, and non-catastrophic. The methane store most pointed toward by methane catastrophists — a frozen water methane known as hydrate — tends to self-regulate release, in most cases, acting as a kind of pressure valve that would tend to moderate emission rates and prevent instances of catastrophic eruption (Please see The Long Thaw).

A third group appears to have somewhat sidestepped an otherwise polarized discourse. Outlets like ThinkProgress and others have continued to quietly report observations without drawing conclusions, one way or the other, on the issue of near term methane apocalypse. They point, instead, to what are, admittedly, some rather odd and scary methane rumblings going on near the pole. Among this ‘middle ground’ group are a survey of about 100 researchers who’ve identified a likely carbon release (including both methane and CO2) from the Arctic equaling between 10 and 35 percent of the human emission by the end of this Century (Please see High Risk of Permafrost Thaw). It is a ‘middle ground’ that is troubling enough. For 10-35 percent of the human carbon emission coming from the Arctic is a massive release in the range of 1 to 3.5 gigatons of carbon (with a fraction as volatile methane). If such an emission does materialize, it will equal (on the low end) or exceed the annual rate of environmental carbon release last seen during the PETM — a hothouse extinction 55 million years ago that turned the oceans into killers and forced life on land to shrink in size and burrow to avoid the awful heat and stifling atmosphere of that age.

Regardless of where you stand in this discourse, the Arctic itself continues to provide cause for both debate and appropriate concern.

Methane Overburden

Barrow Methane

(Barrow surface methane observations by NOAA ESRL show methane readings that range about 60 ppb above the global average. Note the 50 ppb increase over the past decade coincident with numerous ‘outlier’ spikes [green cross hatches] from local sources. Image source: NOAA ESRL.)

Perhaps the most obvious sign that there’s something not quite right going on in the Arctic is a large overburden of both methane and CO2 in the region. Looking at NOAA’s ESRL site, we find that methane levels at Barrow, Alaska (one of just a handful of Arctic sensor stations in the ESRL network) are in the range of 1910 parts per billion. By comparison, NOAA’s Mauna Loa Station, on the edge of the tropics and well away from the polar overburden, records about 1850 parts per billion (ppb).

At current rates of atmospheric methane increase, it will take about 9 years for Mauna Loa to catch up to where Barrow is now. But by that time Barrow may be pushing 1970 ppb or more. In addition, all Arctic stations record numerous anomalous spikes in methane from local sources. The ESRL site lists these spikes as outliers. But, for all the ESRL reporting stations, the Arctic stations are the ones that host by far the most numerous such outliers. The local methane sources, therefore, appear to be quite active in the Arctic. An observation that polar scientist, Dr Jason Box, admits keeps him awake at night.


(Global distribution of methane averaged over 2011 by NASA/AIRS. Note the very high concentrations in the Arctic region. For this map, the highest concentrations occur in the Yedoma region of Russia, a region of multiplying methane emitting tundra melt and Thermokarst lakes [see below]. Image source: NASA/AIRS.)

Perhaps the most reliable way to sample the Arctic methane overburden is to get a full view of it through satellite sensors. The above NASA image taken in 2011 shows a massive methane overburden in the upper latitudes that slowly diffuses southward. Note the highest concentrations in this image are near the permafrost zones in Yedoma in northeastern Russia.

NOAA also provides its METOP array which frequently finds methane concentrations at above 2400 parts per billion at the 10,000 to 20,000 foot level in broad blankets over the Arctic region — especially in the months of September through November and then again in January. Again, these measures are the highest in any region of the globe and they occur directly over the Arctic.

Dr. Leonid Yurgonov uses the AIRS/AQUA satellite sensor to provide a record of Arctic methane overburden. One that is clearly visible here:


In the above image we see methane measurements at the 18,000 foot altitude above the Arctic and upper latitudes. The progression is from January of 2009 (furthest left) to January of 2013 (furthest right). Orange coloration represents methane readings in the range of 1850 to 1950 parts per billion. Deep red coloration is in the range of 2000 parts per billion. Note the shift from blues and yellows (1700-1800 ppb) to oranges and reds (1850-2000 ppb) during the five years from 2009 to 2013.

So not only does the AIRS sensor show overburden, but it also finds methane build-up over the period measured.

These combined measures alone provide more than enough evidence of a methane overburden in the far northern region together with a rate of buildup that maintains the overburden and leads the global methane measure. Cause for enough concern among Arctic researchers that they have tended to make statements like this:

The amount of methane in the Arctic hydrates alone is estimated as 400 times more than the global atmospheric CH4 burden! The question is timescale of the methane liberation: gradual, abrupt, or something in between. Satellite monitoring of methane over the Arctic Ocean is necessary! — Dr. Leonid Yurganov, AGU, 2012

Steady Increase So Far

But even if we do have both a buildup of methane in the polar region together with what looks like an ominous overburden, we should be quick to point out that the rate of increase, especially on the global scale, has been mostly steady so far.

Under any catastrophic methane release scenario, we would expect Arctic methane to rapidly jump higher, dragging the global measure along with it. In general, we’d expect almost all sensors to pick up the signal of an exponentially ramping curve. And we don’t see that as yet.

To this point, Dr. Yurganov’s statement from the 2012 AGU presentation is informative:

Current methane growth in the Arctic, including 2012, is gradual… If a sudden venting (bubbling) of methane would happen due to intense hydrates destruction, IASI would be able to detect it NRT.

Though there has been a bit of an uptick in global and Arctic methane increase rates during recent years, they have maintained about a 4-7 ppb annual increase since ending a decade-long pause from 1995 to 2005.

It is worth noting, however, that the global methane measure increasing at an exponential rate would be a trailing measure indicator — occurring only in the wake of any catastrophic or large-scale release. So, as a predictor, the global methane measure isn’t very useful.

Thermokarst Lakes 

Which brings us to the key question — what are the leading indicators of major methane releases or of catastrophic releases of the kind some have feared?

Since we have never directly observed one, and since large-scale or catastrophic releases are merely theoretical at this time, we can only point toward evidence of past large scale releases, and an ongoing, but apparently growing, smaller scale release happening now.

The first such related observation may well have come in the form of an increasing methane emission from Thermokarst Lakes. Thermokarst Lakes form when sections of permafrost thaw and collapse, creating a depression. In wet regions, water soon pools within these hollows. Organic material at the bottom of the pool is provided by thawing permafrost. In the anaerobic lake bottom environment, methane is generated as the organic material is broken down.

Over recent years, this increasingly widespread Thermokarst thaw and formation has resulted in a number of Arctic ‘fire lakes’ popping up — lakes whose methane emission is so great that bubble concentrations are high enough to burn. During winter, these bubbles are trapped beneath ice and when released, create an explosive mixture.

Thermokarst Lake

(Methane production in a thermokarst lake. Image source: The Royal Society.)

From the 1970s through the mid 2000s, it is estimated that some regions of the Arctic experienced as much as a 58 percent increase in methane release due to Thermokarst Lake formation alone. An important measure since a number of studies found that Thermokarst Lake formation was one of the primary drivers of methane release from the Arctic at the end of the last ice age.

But as a catastrophic release driver, Thermokarst Lake formation is relatively mild, even if it is capable of pushing Arctic methane release levels higher. As such, the next indicator — a discovery of large methane releases from the ocean floor in the Arctic — was somewhat more concerning.

Oceanic Plumes

For as of 2011 an expedition to the East Siberian Arctic Shelf (ESAS) found massive plumes of methane as large as 1 kilometer across emitting from the shallow sea bed region off Northeastern Siberia. The researchers, Shakhova and Similetov, seemed very concerned that this might be a sign of a potential impending large scale release on the order of 1 to possibly 50 gigatons. The methane stores for the ESAS alone were massive — in the range of hundreds of gigatons. So even a fractionally small release from this source could be devastating. For reference, a 1 gigaton release would more than double the annual methane release from all global human and natural sources. A 5 gigaton release, on its own, would be enough to more than double atmospheric methane concentrations. And since methane traps heat more than 20 times as efficiently as CO2 over a century time-scale, such a release would result in far more rapid warming than previously predicted by scientific bodies such as the IPCC. A very rapid rate of warming that would be extraordinarily difficult for human civilizations to adapt to.

Of course this announcement set off amazing controversy. We couldn’t be certain what the source of this methane was, some said. Was it submerged permafrost methane? Was it hydrate? Was it free gas methane? And how could we be certain that this release hasn’t been ongoing for some time?

If such a methane release was building up to a catastrophic event, what mechanism would be the cause? In other words, how might gigatons of methane suddenly blow up from the sea bed?


(Lower troposphere methane concentrations over the Kara, Laptev, and East Siberian Seas during September-November of 2009-2012 shows overburden in active oceanic release zones. Image source: Dr. Leonid Yurganov).

This point is worth a bit of further exploration. The issue is that the most unstable form of methane when warmed is the methane hydrate store mentioned above. Methane hydrate is a frozen combination of gas methane and water. It crystallizes into a kind of fire ice under high pressure and in low temperature environments. It typically forms about 200-600 feet below the sea bed as methane bubbling up from warmer regions below contacts seawater, high pressure and cold. If the layer is warmed under human heat forcing, the hydrate thaws releasing its gas. The gas now becomes stored in pockets under high pressure. The gas below pushes against the sea bed above and some of it bubbles out (and these releases are found in the large plumes along the ESAS and elsewhere). But most of it, so far, has remained entombed.

What, then, could cause the large stores of entombed gas releasing from destabilizing hydrate, to break through hundreds of feet of seabed — hitting first ocean water and then atmosphere?

Over the past four years conjecture over this issue has raged on. Swelling at points when Shakhova and Similetov would make a new announcement and then ebbing as a wave of reassurances would rush in from scientific critics and mainstream media.

By summer of 2014 a discovery of new, large-scale plumes in the Laptev Sea by the SWERUS C3 expedition set off another wave of media speculation and controversy. But as the dust settled it became clear that the Laptev sea floor had been added to the list of methane hot spots in the Arctic, following in the footsteps of the ESAS region as an area to watch for potential increasing rates of release.

Tundra Blowholes

In nature, gasses under high and increasing pressure often find pathways for escape. Typically, the escape is gradual — we see this in volcanic regions in the release of magma gasses through cracks in the earth and through vent pathways. And sometimes the escape is far more violent — with hot volcanic gasses blowing away even hill or mountainsides in spontaneous eruption, or bubbling out, en mass, through volcanic lakes to spill toxic plumes over a countryside.

The gas source in question for Arctic methane release — hydrate — is very large. Even at the low end, it is estimated that hundreds of gigatons of the stuff lay buried beneath frozen tundra ground or in ocean stores beneath the seabed. A gigaton is one billion tons. A billion tons of frozen hydrate would cover roughly one cubic kilometer. One cubic kilometer of a flammable gas under high pressure.

And in the Arctic, hundreds of billions of tons lay under rapidly warming permafrost both on land and in the submerged seabed.

Permafrost and Gas Hydrate Methane

(Graphic of permafrost and gas hydrate methane by Carolyn Ruppel. Note that 75 percent of the ESAS sea floor is in the range of 50 meters in depth or shallower and that buried hydrate deposits can be found in the range of 200-300 feet. Image source: Methane Hydrates and Contemporary Climate Change.)

As of 2011, some scientists were warning that we were seeing a slow release from some of this submerged hydrate store in the ESAS. By 2014, the potential slow release had expanded into the Laptev Sea.

But that year, 2014, also saw something else. A potential catastrophic release of methane. For in the frozen region of Yamal, Russia the earth near a remote Siberian village began to destabilize. Soon after, according to eyewitness accounts, the area began to smoke. Then, with a bright flash, the ground erupted.

When the smoke cleared, a massive crater was found where only flat, frozen tundra was there before. A giant plug of frozen earth had been ejected violently. And all that remained was an ominous gray-black crater.

Yamal crater

(Yamal Crater as seen from the air. Image source: The Siberian Times.)

Researchers investigating the crater found 10 percent atmospheric methane concentrations at its base.

Overall, it was estimated that about 11 tons of TNT equivalent explosive force was enough to remove this 100+ foot wide and 220 foot deep plug from the Earth. Exploding and burning methane in the range of about 10 tons would have been enough to generate the crater. Gas under high pressure in the hundred + ton range may have been able to explosively excavate this hole.

As a result, the amount of methane in question for this single event was relatively small, especially when one considers the hundreds of billions of tons in the still frozen store.

It appeared that the rapidly warming Yamal territory and a broad region of nearby Northwestern Siberia may be seeing tundra warming extending deep enough to begin to destabilize pockets of relic hydrate. The hydrate in some of these pockets was beginning to thaw and catastrophically erupt to the surface.

By early 2015 a total of seven primary craters and scores of secondary craters of this kind had been discovered throughout this section of Siberia. Local Russian authorities were very concerned — moving seismographs into the area to monitor ground stability in a region that includes one of their largest natural gas developments.

A large upheaval of this kind in the wrong place would easily rupture a pipeline or destroy sections of a gas production operation. But the deeper irony was that continued gas production in this region was contributing to a problem that may well be making the ground far, far less stable and setting up the risk for even larger-scale eruptions.

For the Yamal crater wasn’t important due to the relative size of its methane release — the release was very small in the global context. A mere drop in an ocean of greenhouse gasses being emitted now by humans. It was important due to two other, and perhaps more stark, reasons.

The first was the very violent nature of its release — an eruption similar to that of a volcano — represented a severe geophysical upheaval that was all too likely triggered by a rapid human warming of the tundra. This kind of release, as the Russians in the region were quick to realize, represented a danger to both inhabitants and to infrastructure.

But the second reason is, perhaps, more important. It is the fact that the Yamal crater may well be evidence of the kind of mechanism for catastrophic methane release some of the more conservative scientists have been demanding. It’s possible, then, that the Yamal crater is in microcosm, what a truly catastrophic methane release might look like on the much larger scale. And the critical question to ask here is — could there be a connection between the methane blowholes we are now observing in the Arctic and a number of mysterious and gigantic craters discovered on the sea bed around the world?

Giant Craters on the Seabed

In 2013, marine geophysicist Dr Bryan Davy from GNS Science found what may be the world’s largest gas eruption craters on the seafloor about 310 miles east of Christchurch, New Zealand.

The craters, which the researchers called ‘pockmarks,’ formed in an active gas zone along the ocean bottom. They measured from 250 meters to 7 miles in diameter and about 300 feet deep. With the largest crater able to encompass all of lower Manhattan.

Giant Craters in the Seafloor off Christchurch New Zealand

(Giant craters off Christchurch New Zealand are thought to have formed due to large gas eruptions during previous episodes of sea bed warming. Could human warming set be setting off something similar for the Arctic? Image source: Mysterious Giant Crater Like Structure Found Near New Zealand.)

The craters are thought to have formed during ice ages when sea levels lowered off New Zealand causing the sea bed to warm and gas hydrate to thaw. Eventually, the gas is thought to have erupted into the surrounding water with a portion bubbling up into the atmosphere.

GEOMAR seismic records indicated active gas pockets beneath the crater zones. Dr Joerg Bialas, a GEOMAR scientist noted:

Gas release from the larger pockmarks may have been sudden and possibly even violent, with a massive volume being expelled into the ocean and atmosphere within hours or days.

The 300 foot depth of the craters touched the hydrate stability zone even as their large size indicated that massive pockets of the gas lifted away large sections of sea bed suddenly and violently. It’s the kind of rapid destabilized gas release that may well represent a worst-case Arctic warming scenario.

Cause for Appropriate Concern

So the question must be asked — is the Yamal crater physical validation of a catastrophic methane hydrate release mechanism that has circulated, as theory, through the geophysical sciences for decades? One that involves large eruptions that displace massive sections of earth and seabed during a violent release process. Are the Siberian methane blowholes smaller examples of what can happen on a much greater scale? And does the methane overburden in the Arctic, the documented increasing Thermokarst Lake release, the sea bed methane release in the Laptev and ESAS, and the new formation of methane blow holes in Yamal in the context of a rapidly warming Arctic tundra and sea bed (seeing unprecedented rates of warming) represent a growing risk for this kind of release?

Under even a ‘moderate’ 1 to 3.5 gigaton Arctic carbon release rate by end century given by the survey of 100 Arctic scientists, there will likely be more than enough potential freed methane to include large scale catastrophic releases similar to the kind seen off New Zealand and elsewhere (250 meter to 7 mile wide cratering events).

In this context, the issue is not one of ‘apocalypse now’ or ‘apocalypse not.’ That framing is all wrong. This issue is one of how much or how little geophysical upheaval and related methane release we will see — and how soon. One of how rapidly humans can stop making the situation even worse, by drawing down their own catastrophic emission rates as rapidly as possible.

There is, therefore, more than enough cause for appropriate concern and continued monitoring of what appears to be an ongoing destabilization of Arctic carbon stores — large enough to represent a variety of hazards both terrestrial and atmospheric.


High Risk of Permafrost Thaw



The Royal Society

Yedoma Thermokarst Lake Formation Increases Tundra Methane Release by 58 Percent

Methane Hydrates and Contemporary Climate Change

The Siberian Times

Meltfactor: Dragon’s Breath Hypothesis

AGU 2012 Meeting: Atmospheric Methane Over The Arctic Ocean

Mysterious Giant Crater Like Structure Found Near New Zealand

Scientific hat tips to Dr. Leonid Yerganov, Dr. Gavin Schmidt, Dr. David Archer, Dr. Igor Semiletov, Dr. Natalia Shakhova, Dr. Carolyn Ruppel, Dr. Jason Box, Dr. Peter Wadhams, Dr. Bryan Davy, Dr Joerg Bialas, SWERUS C3, GEOMAR and The Russian Center of Arctic Exploration

Siberian Permafrost Methane Shows Growing Eruption: Number of Global Warming-Induced Craters Now Estimated at 20-30

Siberian Crater Locations

(Siberian methane crater locations. In total, 7 methane blow holes with features similar to the Yamal Crater have now been discovered. Unofficial reports from observers on the ground have local scientists placing the likely count now at between 20-30 original craters with many more secondary craters. Image source: The Daily Mail.)

*   *   *   *   *

The ground smoked for hours. Then, with a great flash and an enormous boom, the land exploded. When the smoke cleared, all that was left was a great, black hole. Ejected earth lay scattered around it — sheer sides plunging into the permafrost like some gigantic, gaping gun barrel.

This was the scene last summer in Yamal, Siberia — a region of extreme northern Russia.

Mysterious Holes Emitting Methane Gas

Speculation about the cause of this mysterious hole became rampant. It looked like a sink hole, except for the ejected material surrounding it. Some said it was a pingo. But pingos weren’t known to form due to explosions.

Teams of scientists rapidly descended upon the hole. And there they found high readings of methane at the hole’s base — in the range of 10% concentration, which is a very explosive level for the gas. At the base of the hole they also found evidence of hydrate. A form of frozen water-methane that is quite unstable unless kept under high pressure and low temperature.

The initial conclusion of the Russian scientists was that relic hydrate sealed beneath the previously flooded Siberian permafrost had been destabilized. Eventually reaching an explosive concentration, it then erupted from the ground.

Discovery of this methane crater spurred a sweep of the area. Almost immediately, two other craters with similar features were discovered. And throughout fall and winter, both ground searches and satellite reconnaissance identified still more.

Methane blow hole lake surrounded by small craters

(Newly discovered methane blow-hole found by satellite observation. In the top frame we see tundra absent the newly formed hole. In the bottom frame, we find the hole forming a lake [B2] surrounded by 20 or more ‘baby craters.’ Image source: The Siberian Times.)

Now, according to recent reports in the Siberian Times, a total of seven craters with features similar to the Yamal eruption have been pinpointed by observers. Just one of these craters (shown above) hosted about 20 smaller ‘baby craters’ surrounding it. In this instance, a large methane store below the permafrost is thought to have explosively displaced a shot-gun pattern of frozen soil sections before filling with water.

Most of the craters, like the one above, were observed to rapidly fill with water even as they continued to emit methane. In many instances, the methane emission was visible as bubbles on the newly formed lake surface.

Bubbles from Methane Crater Lake

(Bubbles from suspected methane crater lake as seen by an observation aircraft. Image source: The Siberian Times.)

Additional reports from reindeer herders have led these same scientists to believe that in the range of 20-30 of these methane eruption holes are likely to exist in this region of Northwestern Siberia.

A Problem of Relic Hydrates Facing Rapid Warming

The fact that reindeer herders keep discovering new holes and that the first Yamal craters discovered earlier this year were recent events have led local scientists to believe that the eruptions are a new phenomena for Siberia. There, temperatures have warmed by a stunning 2 degrees Celsius within the mere span of 14 years. A very rapid rate of warming that is putting severe stress on the geophysical stability of this Arctic region.

Last night, as polar amplification again ramped up, we saw an example of this very rapid warming with locations in Yamal, Russia experiencing -3.1 C temperatures as of 1 AM Eastern Standard Time. A very warm measure for this region during winter time — representing an anomaly at least 20 degrees Celsius above average. For reference, North Texas, an area far south of the Arctic Circle, experienced similar readings (-3.4 C) at the same time:


(Side-by-side frames showing 1 AM EST temperatures in Yamal Russia [left frame] and North Texas, US [right frame]. Location in the frames is indicated by the small green circle. Temperature, wind speed and direction, and grid location are given in the lower left hand corner. Image source: Earth Nullschool. Data Source: Global Forecast Systems Model.)

In other words, it was colder in North Texas last night than it was in Yamal, Siberia near the 70 degree North Latitude line beside the Arctic Ocean.

This extremely rapid warming is thought by Russian scientists to have destabilized zones of relic hydrate trapped beneath the permafrost. There, the methane gas bonded with water to form a kind of methane ice.

Sandwiched beneath frozen permafrost, the hydrate remains stable so long as temperatures and pressures are relatively constant. Any increase in warmth — either through geological processes working below the hydrate, or from changes at the surface causing permafrost to melt and warmer, liquid water to contact the hydrate — would result in increased hydrate instability.

Yamal Crater Wall

(The Yamal Crater as seen by Russian Scientists who investigated the scene last summer. The crater’s structure and surrounding ejecta was indicative of an explosive outburst. Image source: The Siberian Times.)

In some cases, the gas would very rapidly liberate from its frozen traps forming increasingly high pressure pockets beneath the permafrost. If these pockets reach 10 percent methane concentration, they become very explosive and can be ignited when in contact with a catalyst or ignition source. The result, either due to very high pressure or ignition, is plugs of permafrost exploding from the ground as the gas erupts to the surface.

Conditions in Context

It is important to note that the amount of methane liberated by these initial eruption events is likely rather small — when considered on the global scale. However, what we see in Siberia now may be part of a growing and ominous trend.

First, we do not know the size of the potential methane store that could be liberated in such an explosive fashion. And the question must be asked — if we are looking at such rapid warming of methane hydrates in shallow sea and former shallow sea regions, what scale eruptions could we potentially experience in the future? Could very large sections of hydrate go critical? Areas possibly covering hundreds or thousands of square meters or more?

The Russian scientists seem very concerned. And, ironically, it is for the future safety of their oil and gas infrastructure, which sits atop what is potentially a rapidly destabilizing zone. A zone that could see explosive eruptions of the ground beneath pipes, equipment and extraction fields. (One would think that the Russians would also begin questioning the continued exploration and production of oil and gas considering its contribution to the dangers they are now identifying. But that level of wisdom appears absent in the recent assessments.)

Second, it appears that these methane eruptions provide pathways for ongoing release. Not all of the gas in the relic hydrate is initially liberated. And the structures that remain apparently release methane gas for some time — as is evidenced by continued high methane concentrations found at crater sites and by observed emissions from crater lake surfaces.

In essence, if this is a growing trend, then it is a rather unsettling one. Especially when one considers that it is just a single instance of many possible amplifying carbon feedbacks set off by a very rapid human warming. Particularly, the explosive land and ocean floor-altering nature of this specific carbon feedback makes it especially troubling. For it encompasses the very nature of a catastrophic upheaval.

In the end, the question must be asked — is Siberia sitting atop a methane volcano that is being prodded to rapid wakening by high-velocity human warming?


Dozens of New Craters Suspected in Northern Russia

Are Siberia’s Mysterious Craters Caused by Climate Change?

Earth Nullschool

Global Forecast Systems Model

More Siberian Craters Prompt Urgent Call For Investigation

Hat Tip to James Cole

Hat Tip to Wili

Hat Tip to Colorado Bob

The Keystone Pipeline, Arctic Methane Eruptions, and Why Human Fossil Fuel Burning Must Swiftly Halt

Human fossil fuel emissions heating the Earth’s airs, waters, and ice.

From historic droughts around the world and in places like California, Syria, Brazil and Iran to inexorably increasing glacial melt; from an expanding blight of fish killing and water poisoning algae blooms in lakes, rivers and oceans to a growing rash of global record rainfall events; and from record Arctic sea ice volume losses approaching 80 percent at the end of the summer of 2012 to a rapidly thawing permafrost zone explosively emitting an ever-increasing amount of methane and CO2, it’s already a disastrous train-wreck.

Since the 1880s, humans have emitted nearly 600 billion tons of carbon into the atmosphere. This vast emission has spiked atmospheric CO2 and CO2e (when all other heat trapping gasses are included) levels to above 400 parts per million and 481 parts per million respectively. According to climate sensitivity and paleoclimate science, these volumes are already enough to increase global temperatures by between 1.5 to 2 C this century and 3-4 C long term.

At the current carbon emissions rate of more than 10 billion tons each year and growing at around 2 percent, humans will have emitted a trillion tons of carbon by 2041. Under business as usual fossil fuel burning, more than 2.5 trillion tons of greenhouse gas trapping carbon will hit the atmosphere before the end of this century. It’s a terrible blow we will sorely want to avoid. And one we can only circumvent if we start working to radically curtail carbon emissions now.

Already, we can see instances of emissions-driven climate change and related harm. But what we see now is minor compared to what the future holds in store. We’ve warmed the Earth by more than 0.8 degrees Celsius since the 1880s, and if human emissions do not swiftly come to a halt, we could easily see warming of 4, 5, 7 C or more by the end of this century alone.

Probability of stabilizing below 2 C

(Probability of exceeding 2 C warming this Century [equilibrium climate sensitivity] given a certain level of human greenhouse gas forcing. Note that this study did not include feedbacks from Arctic carbon stores. Also note that current CO2 equivalent forcing without aerosols is around 481 CO2e and with the aerosol negative feedback is around 425 CO2e. Also note that equilibrium climate sensitivity is about half that implied by Earth Systems Sensitivity over the long term [many centuries]. For a final note, consider that the aerosol negative feedback is temporary. Image source: IPCC.)

What Does Warming Look Like If We Continue To Burn Fossil Fuels?

We talk about warming in terms of degrees Celsius and gigatons of carbon burned. But what does it all really mean?

Droughts rampaging through the lower to mid latitudes as the US, Southern Europe, India, the Middle East, Brazil, Australia, the Sahel and sections of China rapidly turn to desert. Stratified oceans turning into extinction engines for fish and marine life, fresh water poisoning due to toxic algae blooms, oceans emitting increasing volumes of poisonous hydrogen sulfide gas into the air. Fires the likes of which we have never seen in the far north as the permafrost burns and methane leaks and explodes from the thawing earth. Floods raging from an atmosphere whose moisture cycling has increased by 30 percent or more. Sea level rise rapid enough to swallow cities and coastlines over the course of decades. Devastating storms emerging from the regions closest to large glacial melt events bordering Greenland and West Antarctica. And all around, more and more people migrating, trying to find a place that is not being gobbled up by desert, incessantly burning, ravaged by storms, flooded, or poisoned by toxic air and water.

Very Large Algae Bloom Barents

(Very large bloom of micro-organisms north of Scandinavia in Arctic waters on August 14, 2014. Arctic waters are rich in nutrients. As they warm and as the sea ice retreats, larger areas are freed for invasion by major blooms of algae and other microbes. Large enough blooms can rob the ocean of oxygen, produce harmful toxins, result in large fish kills, and in the end create dangerous bottom conditions favoring microbial hydrogen sulfide production. Image source: LANCE-MODIS.)

That’s the dark future we inch closer to with every 0.1 C degree of further warming, with each additional megaton of fossil fuel and industrial carbon hitting the atmosphere.

And it is in this context that we must judge our actions and those of our leaders in reducing or in failing to reduce a nightmare that now grows in intensity with each passing year. A nightmare we create and continue to contribute to each time we light a fossil fuel driven fire.

Quibbling over Keystone Carbon Emissions When Tar Sands is the Real Issue

50 billion tons. That’s the amount of extractable, burnable carbon that likely sits beneath what were once the green forests of Alberta and are now little more than a sprawling waste of smoking pits covering tens of square miles. It’s more than 8 percent of the carbon we’ve already dumped into the atmosphere and it’s a volume of carbon we simply cannot afford to burn.

1.7 million barrels of crude oil per day now comes out of a place that Tolkien would likely describe as a mechanized orc warren. Keystone would boost that total to 2.2 million barrels per day, enrich the pit owners, and lay the groundwork for an ever-more-rapid exploitation of this dangerous pile of atmospheric heat-venom.

This week, a recent study out of Stockholm’s Environment Institute found that the pipeline itself would result in at least 4 times the carbon emissions currently estimated by the US State Department. This, well-duh, assessment, came as pit mining cheerleaders such as the American Petroleum Institute and Canadian Industry groups marshaled yet another effort to ram the pipeline through and boost global carbon emissions all in one go.


(Athabasca’s sprawling tar sands operation as seen from space in 2009. The brown ribbon cutting through center frame is the Athabasca river. Image source: NASA’s Earth Observatory.)

In the end, all fossil fuels are terrible, adding to the global nightmare described above. But tar sands are between 12 and 20 percent more carbon intensive than even regular oil, especially when burning of the, worse than coal, coke bi-product is taken into account.

Arctic Methane Explosions — A Result of Human Warming

On the other side of the Arctic from the smoking fossil fuel pits of Alberta, nature is in the process of excavating a new, and no less terrifying, kind of pit. For from the Siberian tundra this summer were discovered three gaping wounds in the earth. Black holes shaped by impressive charges of methane blasting up from beneath the thawing permafrost.

All around the holes were ejected material. A kind of reverse meteor strike or methane volcano in which frozen methane trapped in clathrate beneath the thawing permafrost warmed enough to destabilize. The thawed methane built up in pressure pockets 250 feet or more below ground. Eventually, the pressure became too great and the permafrost overburden erupted, ejecting both earth and methane into the air above.

Eyewitnesses described eruption scenes where the Earth at first began to smoke. The smoke continued to bleed from the ground. Then, there was a loud flash and bang. When the smoke cleared, the methane eruption craters were plainly visible — a rim of sloped and ejected earth surrounding a black, gun-barrel like structure tunneling deep into the ground.

Scientists investigating the sites of these explosions found methane readings of 9.8% at the bottoms of the holes. These are high enough levels to burn if exposed to an ignition source — an atmospheric reading 50,000 times the current and already highly elevated ‘normal’ level.

Russia Siberia Crater

(One of three freakish craters caused by eruptions of methane from Siberia’s thawing tundra. Image source: Moscow Times.)

The Arctic permafrost alone contains about 1.5 trillion tons of carbon. And when it thaws, a portion of that carbon is bound to be released. It will be broken down by microbes and turned into methane in wet soil. In drier soil, it will form a peat like underburden that will slowly release CO2 by decay or, in more violent instances, by burning in one of the ever more powerful wildfires raging through the Arctic during the increasingly hot summers.

Beneath the icy permafrost layer are pockets of frozen methane in the form of clathrates. These structures are not included in the 1.5 trillion ton carbon estimate for permafrost. They are an addition of likely billions more tons of carbon. And, this year, we can now see a physical mechanism for their continued release — warming and thaw of the permafrost overburden.

The Human-Arctic Feedback Link: Why We Absolutely Must Stop Burning Fossil Fuels, And Swiftly

It is estimated that 1.5-2 degrees Celsius worth of global warming (5-8 C Arctic warming) is enough to thaw all the permafrost and eventually release a substantial portion of the carbon stored in and beneath it. For the Arctic warms much faster than the globe as a whole. In tundra regions, rates of warming over the past three decades have been 0.5 degrees Celsius per decade or more. In the region where the methane craters were discovered, recent temperatures at 5 degrees Celsius above average, during summer heatwaves in 2013 and 2014, have been reported.

As a result of past and current human greenhouse gas emissions, we have already locked in a substantial and significant rate of Arctic carbon emission feedback. And the speed of the Arctic carbon store release will likely determine how rapidly and whether other global carbon stores also respond.

A 2011 survey of 41 Arctic researchers found that rapidly reducing human greenhouse emissions would limit the volume of carbon feedback from the Arctic to 10% of the annual current human emission (or about 1 billion tons of carbon per year) by the end of the 21rst Century, but continue that emission for centuries to come (current Arctic carbon emissions are likely in the range of 30 million tons of methane and 100 million tons of CO2 each year). This is bad news. For we have already burned enough fossil fuel to keep warming on the trajectory to hit 1.5 to 2.5 C this century and 3-5 C or somewhat more long term — a bad result, and one that would likely require extensive human deployment of atmospheric carbon capture technologies. But it is far better than the alternative.

For continued fossil fuel burning would be enough to force a release of Arctic carbon stores equal to 35% or more of the human annual emission, or about 3.5 to 4 gigatons of carbon each year. By itself, this emission would easily represent a mini-runaway pushing the business as usual burning level of 800 ppm CO2 and 1,000 ppm CO2e by end century to 1,400 ppm CO2 + over the course of centuries and likely resulting in 4-7 C + warming this century and 12-14 C + worth of warming long term. A hothouse extinction event to rival or potentially exceed the worst seen in the geological record.

We simply must stop fossil fuel burning as it risks triggering ever greater carbon releases from stores around the globe and especially in the Arctic. In this way, stopping fossil fuel burning or failing to stop that burning is directly related to the ferocity and intensity of the Earth systems response we set off. And halting the Keystone Pipeline is a good approach to curtailing future carbon emission increases. A good start to a long, hard road ahead.


World Food Security in the Cross-hairs of Human-Caused Climate Change

Nature: Human Warming Pushing Entire Greenland Ice Sheet Into the Ocean

A Song of Flood and Fire

Toledo Algae Bloom Still Ongoing

2012’s Realization of the End of Arctic Sea Ice

The Arctic Methane Monster Exhales: Third Tundra Crater Found

A Faustian Bargain on the Short Road to Hell: Living in a World at 480 CO2e

How Much Will Tar Sands Oil Add to Global Warming?

IPCC 4th Assessment Report


Terrible Thunderstorms of Fire

How Global Warming Wrecks the Jet Stream, Amps up the Hydrological Cycle

Impact of the Keystone XL Pipeline on Global Markets and Climate Change

NASA’s Earth Observatory

Moscow Times

The Really Scarey Thing About Those Jaw-Dropping Siberian Craters

Methane Flammability

Methane and Frozen Ground

High Risk of Permafrost Thaw



Is This the Compost Bomb’s Smoking Gun? Second Mysterious Hole Found in Yamal Russia

They call it ‘the end of the Earth.’

Yamal, Russia — a stretch of tundra flats and peat bogs stretching as far as the eye can see before terminating into the chill waters of the Kara. A rather stark and desolate place, one that was mostly unknown until a massive and strange hole appeared in the earth there last week. Since that time, the strange hole has been the butt of every kind of wild speculation and controversy.

Yamal Siberia

(MODIS satellite shot of Yamal Siberia — the peninsula located in center frame and recent site of mysterious holes that may have been caused by the catastrophic destabilization of thawing methane gas embedded in the permafrost. Image source: LANCE-MODIS.)

The hole itself was an alien feature. “We haven’t seen anything like this before,” would be an entirely accurate statement. All about the hole was a large pile of debris — overturned earth, huge chunks of soil piled up in a signature very familiar to the ejecta of a meteor impact crater.

Approaching the hole edge, we came to a gradual slope that proceeded downward for about 40 feet at about a 35 degree incline. Along the surface of this incline, both the unfrozen soil cap and the frozen permafrost were visible.

But it wasn’t until we hit the bottom edge of this incline that we encountered the strangest feature of all — a sheer cliff, rounded in a shape like the smooth bore of a gun, and plunging straight down through icy permafrost for about another hundred and twenty feet before revealing a basement cavern slowly filling with melt.

It’s a combination of features that appears to be one half impact crater and one half sink hole.

Russia Siberia Crater

(The freakish combination of features including apparent ejecta piled around a crater with a sheer tunnel coring 220 feet down. Image source: The Siberian Times)

One theory on the feature is that it might be a pingo — a melting of a permafrost water pocket left over by an ancient lake that was long ago buried by sediment. But a pingo would typically form in a manner similar to a sinkhole and would probably not have apparent ejected material piled around its mouth.

Another theory, advanced by Russian Arctic scientists, is that a pocket of gas beneath the permafrost spontaneously destabilized — either through chemical or physical processes. The destabilized gas then is thought to have violently blown away the surface layer “like the popping of a cork in a champagne bottle.”

The Compost Bomb

Key to the second theory is that thawing permafrost contains vast stores of volatile methane at various depths. The methane is either trapped in pockets encased in ice and soil or locked in a water lattice structure forming what is called methane hydrate. Both forms are unstable, though they are often buried beneath tens to hundreds of meters of permafrost. Researchers have remained unsure how rapidly this methane would release and its rate of release is key to how fast the world will warm this century in response to human-caused greenhouse gas heat forcing.

Over 1,400 gigatons of carbon are sequestered in the permafrost. Much of this immense store is biological material buried over the 2 million year span of below-freezing conditions dominating much of the Arctic region of our planet. During this time, gradual glacial advance and retreat froze and refroze the earth in layers entombing a vast load of the stuff. Now, human warming is beginning to unlock it.

Permafrost spans much of the Arctic, under-girding Siberia, far Northern Europe, the northern tiers of Canada, and most of Alaska. It also rests beneath a flooded zone called the East Siberian Arctic Shelf. Initial reports and research from these regions indicate an ongoing release of millions of tons of methane and CO2 annually. Bubbling seabed stores from the shallow East Siberian Arctic Shelf have caused some to speculate that releases of 1 billion tons to 50 billion tons of methane could be possible during the coming years and decades.

Tundra map NASA

(Is a sleeping dragon awakening in the Arctic? Map of wide expanse of permafrost containing 1,400 gigatons of carbon. Image provided by NASA’s CARVE methane research experiment which is now under the aegis of ABOVE.

Peter Wadhams, in an article for Nature last year, attempted to bracket the potential impacts of such large releases. In the article, Wadhams estimated that a 50 gigaton emission from the Arctic methane store over the next two decades would increase global temperatures by about 0.6 C above the current rate of warming and force temperatures through the 2 C barrier by 2035 (ironically, Michael Mann comes to the same conclusion without implicit inclusion of a powerful methane release). The costs in human lives and economic damage from such a release would be immense and it would risk further outbursts from the large and vulnerable carbon store.

And though the potential for such very large releases remain highly controversial among scientists, the massive pile of thawing permafrost carbon is an ominously large and unstable store facing off against an initial human warming that is more than six times faster than at any time during the geological past.

In the shadow of this emerging and hard to gauge threat, a term emerged to encapsulate the vast warming potential stored in permafrost, should it release and hit the atmosphere. The term — compost bomb — alludes to the risk involved in pushing the two-million-year-old Northern Hemisphere permafrost stores into rapid thaw.

Mystery Hole — A Smoking Gun?

With the spontaneous emergence of a strange hole that Russian scientists are linking to destabilized gas pockets within the permafrost due to thaw, it became possible that, yet one more, explosive mechanism for release had presented itself. And now, today, a second and similar hole has been discovered:

According to the Moscow Times:

“Global warming, causing an alarming melt in the ice under the soil, released gas causing an effect like the popping of a Champagne cork,” the news report said, citing an expert at the Subarctic Scientific Research Center.

The first hole is estimated to be about 50 meters wide and 70 meters deep, with water from melting permafrost cascading down its sides into the icy deposit below.

The second hole is “exactly” like the first one, but “much smaller,” local lawmaker Mikhail Lapsui told the Interfax-Ural news agency. “Inside the crater itself, snow can be seen. (emphasis added)”

And so, in the course of just one week, we have two very strange holes that Russian scientists are linking to destabilizing gas pockets beneath the thawing tundra. Smoking barrel of the compost bomb? Or as a commenter here called Colorado Bob puts it:

We’re going to see the tundra breaking out in these things like zits on a teenager.

Let’s hope these are mere sink-holes from collapsing ice pockets in the permafrost. Let’s hope there’s another explanation for what appears to be ejecta piled around these holes. Let’s hope that these ‘zits’ showing up in the Yamal permafrost remain local to the area. And let’s hope we don’t start seeing similar explosive outbursts from tundra in other regions, or worse, along the seabed of the East Siberian Arctic Shelf.

Lastly, let’s hope that any outbursts remain small in size and do not lift very large sections of land or submerged sea bed.

In any case, these initial reports are not promising and it appears we may both have a compost bomb smoking gun and a potential mechanism for rapid destabilization and explosive release of gas pockets deeply embedded in the frozen tundra all wrapped into one. Not very reassuring to say the least.


Mystery Behind Giant Hole Clearer as Second Hole Discovered

Now There Are Two Weird Holes in Siberia


The Siberian Times



Impacts of Large Releases from Monstrous Arctic Methane Stores

Far Worse Than Being Beaten With a Hockey Stick

Hat tip to todaysguestis

Hat tip to Colorado Bob




Arctic Methane From Tundra Could Add .4 to 1.5+ Degrees Fahrenheit to Human-Caused Warming

A recent paper in Nature Geoscience has shown that human caused warming could pump enough methane out of the Arctic tundra to raise the Earth’s temperature by between .4 and 1.5 degrees Fahrenheit. The paper, entitled Significant contribution to climate warming from the permafrost carbon feedback, showed that between 6 and 44 percent of all permafrost carbon could be emitted by 2100.

Since there’s more carbon in the permafrost than what has been historically emitted via fossil fuels, this number is large and very significant. The result of such an emission, even on the lower end, would be a significant contribution from nature to an already difficult to deal with man-made warming.

Research indicated that carbon emissions would be equal to between 40 and 100 additional parts per million CO2. However, a substantial portion of this increase would, initially, be methane, which, as a greenhouse gas, is 25 to 70 times stronger than CO2. This would seem to indicate that the researchers’ initial estimates of warming potential from permafrost carbon emission is low. And the researchers, themselves, admit their first estimates are conservative.

Perhaps, the most ominous outlook in the study is that it found that the amount of greenhouse gases to be emitted from permafrost over the next century largely cancel out carbon absorption by the oceans. Furthermore, the study did not take into account carbon emissions coming from methane hydrates in the ocean or from carbon sources in Antarctica once significant areas of that continent begin to thaw.

What this means is that, even were CO2 emissions to cease this decade, CO2 levels will likely remain above 400 ppm for as much as three hundred years. And this extended duration of high CO2 has substantial repercussions when it comes to the future shape of the world’s ice sheets and future ocean levels.

What this also means is that we are essentially locked in to melting Greenland and West Antarctica and to an additional 2-3 degrees Celsius warming now. Continued emissions via fossil fuels make the problem of global warming even worse. Andrew Skuce, in a recent response to this paper published in Skeptical Science noted:

“Unfortunately, there are several good reasons to consider the outlook in this study as rosy — as the authors themselves make clear. However, as bad and inevitable as they are, feedbacks from the permafrost are just the (de-)frosting on the fossil fuel cake that we are busy baking. It is still up to us to influence how severe climate change is going to be.”

Skuce is somewhat euphemistic and unclear in his assessment. I will not mince words. We are on track to a hotter world if we stop fossil fuel emissions now. Things are even hotter if we cut back fuel emissions soon. Continued fossil fuel emissions, without reductions, however, puts us on a short path to 1000 ppm CO2 by the end of this century. And that path is a short, hot road to hell.


%d bloggers like this: