Arctic Methane Alert — Ramp-Up at Numerous Reporting Stations Shows Signature of an Amplifying Feedback

Over the past few months, reporting stations around the Arctic have shown a ramping rate of atmospheric methane accumulation. The curves in the graphs are steepening, hinting at a growing release of methane from a warming Arctic environment.

*   *   *   *

Alert, Canada Methane June 1 2015

(Alert, Canada methane graph shows atmospheric methane increases in the range of 20 parts per billion in just one year. This rate of increase is 2-3 times the global average for the past five years. A skyrocketing rate of increase. Image source: NOAA ESRL.)

A Massive Thawing Carbon Store in the Far North

The science is pretty settled. There’s a massive store of ancient carbon now thawing in the Arctic.

In the land-based permafrost alone, this store is in the range of 1.3 billion tons — or nearly double the volume in the atmosphere right now. Arctic Ocean methane hydrates in the East Siberian Arctic Shelf add another 500 billion tons. A rather vulnerable store that does not include hundreds of billions of additional tons of carbon in the deeper methane hydrates around the Arctic in places like the Gakkel Ridge, in the Deep Waters off Svalbard, or in the Nares Strait. Massive carbon stores of high global warming potential gas locked in frozen ground or in ice structure upon or beneath the sea bed.

But now human beings — through fossil fuel emissions — are dumping heat trapping gasses into the atmosphere at an unprecedented rate. These gasses are most efficient at trapping heat in the colder, darker regions of the world. And, due to a combination of massive Northern Hemisphere burning, and release from the Arctic carbon stores themselves, the highest concentrations of greenhouse gasses can be found exactly where they are needed least — in the world’s far northern zones .

Arctic Overburden May 29

(The Arctic consistently shows an overburden of methane gas — both at the ground and upper levels of the atmosphere as seen in this METOP graphic from May 29. Such an overburden is but one of many proxy indicators of a ramping rate of release.)

This accumulation and overburden of heat trapping gasses is causing the Arctic to rapidly warm. A rate of warming (now at half a degree Celsius per decade for most regions) that is providing a heat forcing pushing the ancient carbon stores to release. A heat forcing now greater than at any time in the past 150,000 years (and likely more due to the fact that the Eemian Arctic was rather cool overall). A heat forcing rapidly ramping toward at least a range not seen since major glaciation began in the Northern Hemisphere 2-3 million years ago.

The problem for science, then, is two-fold. First, as oceans warm and permafrost thaws, how rapidly will the carbon stores release? And, second, how much of that carbon store will release as CO2, and how much will release as methane? From the point of view of global warming, both CO2 and Methane emissions feedback is a bad outcome of human-forced warming. But methane, which has a global warming potential of between 25 and 120 times CO2 over human-relevant timescales, has a real potential to make an already bad human heating of the Earth System much, much worse.

Methane Bubbles in Thermokarst Lake

(Image source via Science 2.0.)

Most Arctic Reporting Stations Show Rapid Ramping of Methane Gas Accumulation

For this reason, monitoring methane gas accumulation in the Arctic is a key feature of global climate change risk analysis. If the Arctic shows a spiking rate of methane accumulation, then the carbon stores are more susceptible to rapid release of potent heat trapping gasses and we are facing a high urgency situation in need of rapid global response.

Over the past decade, the Arctic has shown numerous isolated or regional spikes to very high methane levels with an overall continued accumulation within the atmosphere. The Arctic also displayed a major overburden of both methane and CO2 — proxy indications of local carbon store feedbacks already ongoing on a minor-to-moderate scale. This combination of overburden and spikes provided a troubling context, especially when adding in observations of methane store release through thermokarst lakes and, later, blow-holes in locations like Yamal, Russia. But up until last year, we had not seen a third, and more troubling, indicator — the ramping rates of atmospheric methane accumulation that would be an early warning that the Arctic carbon store was indeed starting to blow its stack.

But now, that signal is starting to show up at almost every Arctic reporting station. A steepening curve in the Arctic atmospheric methane graphs. A signal we really, really don’t want to be bearing witness to:

Barrow Methane June 1 2015Alert, Canada Methane June 1 2015

Summit Greenland Methane June 1 2015Svalbard Methane June 1 2015

(Major reporting stations from Svalbard to Barrow show a ramping atmospheric methane accumulation [Click on individual images to expand]. It’s a signal that is yet one more indicator of an amplifying methane and greenhouse gas feedback to human warming now going on in the Arctic. Images provided by NOAA ESRL.)

Now, it seems, at the very least, we are witnessing a spike in Arctic atmospheric methane accumulation. Let’s hope it’s just a spike and not the start of another ugly exponential curve associated with human-forced atmospheric warming. But if we are witnessing the early ramp of such a curve, we should be clear that we are now in the context of a worst-case climate change scenario.

Hot-Button Topic of Critical Importance

For years, conjecture over the possible rate of Arctic Methane release in a human-warmed Arctic has been the source of extreme scientific and media-based controversy. Major oil companies have used the issue as an excuse to continue fossil fuel burning (irresponsibly spreading the meme — ‘we’re screwed, so we may as well just keep burning anyway’). Major climate scientists and related media outlets have sought to tamp down concern over large-scale methane release by issuing articles with titles like ‘Apocalypse Not’ with many generally insisting that there is practically zero likelihood of a large-scale methane release or major amplifying feedback. Meanwhile, the observational studies have continued to indicate risk of at least moderate and possibly strong methane feedback in an age of rapid human heating of the Arctic environment (studies like this recent paper which observed microbes tripling the rate of methane gas release in thermokarst lakes as a response to Arctic temperature increase.) Finally, a group of very concerned observational scientists like Natalia Shakhova, Igor Simeletov and Peter Wadhams have warned that a large-scale methane release is likely imminent and begs a major response from the global community (sadly, many of these proposed responses have come in the form of geo-engineering — methods which are far less likely to succeed and far more likely to generate unforeseen and highly disruptive consequences than simple cessation of human fossil fuel emission and a transition to carbon-negative civilizations).

Mauna Loa Methane June 1 2015

(Mauna Loa methane measure through June 1, 2015 shows that lower Latitude regions are also starting to follow a ramping rate of increase. Image source: NOAA ESRL.)

All this controversy aside, what we observe now is the following:

  1. Arctic methane and CO2 overburden — proxy indication of environmental release.
  2. Increasing rates of release, indications of increasing release, or possibly increasing release from single sources such as thermokarst lakes, peat bogs, wildfires, and sea bed hydrates and submerged tundra.
  3. A multiplication of observed or discovered methane release sources — thermokarst lakes, methane blow holes, wildfires etc.
  4. A ramping rate of atmospheric methane accumulation at reporting stations throughout the Arctic (most but not all stations).
  5. A ramping rate of atmospheric methane accumulation from global proxy monitors like Mauna Loa and in the global atmospheric average.

Together, these observations represent a troubling trend that, should it continue, will be proceeding along or near a worst-case climate sensitivity track. As such, these new ramping rates of increase in Arctic atmospheric monitors are a very unfortunate indicator.

Links:

NOAA ESRL

NOAA OSPO

Arctic Methane Skyrocketing

Microbes in Thermokarst Lakes Increase Methane Generation with Warming

Arctic Sea Ice Melt, Methane Release Shows Amplifying Feedback to Human-Caused Climate Change

 

Advertisements

Mauna Loa Methane Measure Shows Rising Rates of Increase Through End 2014

Mauna Loa Methane early December

(Atmospheric methane levels as measured at the Mauna Loa Observatory. Image source: NOAA/ESRL.)

Atmospheric methane levels as measured by the Mauna Loa Observatory (MLO) showed a continued steepening rate of increase through late 2014 — featuring one rather troubling spike late last month.

The measure, which has been recording atmospheric methane levels since the middle of the 20th Century, continued to ramp higher with readings hitting an average of 1850 parts per billion by late November.

Notably, this increase is at a faster pace than yearly averages for all of the last decade.

In addition, a single spike to 1910 parts per billion took place last month. This large departure of 60 parts per billion above the average was somewhat unusual for the Mauna Loa measure. The collection site is rather far from human or Arctic emissions sources which makes it less likely to feature anomalous spikes due to local influences. This particular spike also represents the largest single departure from the base line measure since 1984 (when the ESRL record begins).

Overall drivers of the more recent increase in global methane levels beginning around 2007 come from an increase in human emissions (likely due to rising rates of fossil fuel exploitation — primarily through hydrofracking and coal mining) as well as what appears to also be an increase in Arctic emissions. Large methane sources in Siberia, over the East Siberian Arctic Shelf, in the Laptev Sea, the Nares Strait, and west of Svalbard have been observed in both satellite monitors and through observations taken by scientists and researchers on the ground. Overall, a significant overburden of greenhouse gasses centers on the Arctic and appears to be enhanced by local carbon (methane and CO2) sources in the region.

More comprehensive measurements of methane releases over Alaska (according to NASA JPL), on the other hand, have not yet shown methane release departures above the global norm for land areas. But the observational record for Alaska composes just one year (2012), so there is no way to yet determine if permafrost carbon and methane releases from the tundra in that region increased to achieve their current rates. It is worth noting generally that the terrestrial zone for Alaska and its off shore region are not, as yet, major carbon release hot spots.

Global Warming Potential at Least 20 Times CO2

Methane (CH4) is an important greenhouse gas due to the fact that its global warming potential (GWP) over short periods is much higher when compared to a similar volume of CO2 (most measures consider the GWP of methane to be 20 times that of a similar volume of CO2). That said, methane’s residence time in the atmosphere is much shorter than CO2 and CO2 volumes are much larger. So CO2 is considered to be a more important gas when it comes to long term climate change. Nonetheless, CH4 increases since the start of the industrial revolution put it as the #2 gas now forcing the world to warm.

Very large outbursts of CH4 from the global carbon store (including terrestrial and ocean stores) during the Permian and PETM are hypothesized to have set off very rapid increases in global temperature. For some prominent researchers, this potential hazard is seen to be very low under current warming conditions. Others, however, seem very concerned that a rapid methane outburst under the very fast rate of human warming could be a tipping point we are fast approaching.

Observations in a Murky Scientific Context

It is important to note that the current profile of atmospheric methane increase does not yet look like one of catastrophic release. Instead, what we see is an overall ramping up of atmospheric levels.

The issue of catastrophic release potential — raised by Peter Wadhams, the Arctic Methane Emergency Group, and Dr. Simeletov and Shakhova among others — is not one that is certain or settled in the science.

As an example, Dr. Shakhova identifies a substantial but non-catastrophic 17 megaton atmospheric release from the East Siberian Arctic Shelf (equal to about 8 percent of the human emission and a substantial increase from a previous estimate of 8 megatons per year in 2010) as currently ongoing. However, both Simeletov and Shakhova have been the object of criticism due to their identification of a risk of a 3.5 gigaton per year methane release should all the East Siberian Arctic Shelf methane hot spots become active. Such a release would, in one year, nearly double the amount of all methane currently in the atmosphere (5 gigatons).

Dr. Peter Wadhams, another Arctic expert, has also received criticism for his assessment that a 50 gigaton release from the large subsea Arctic methane stores could be possible as sea ice retreat spurs Arctic Ocean sea floors to warm.

Other scientists such as GISS lead Gavin Schmidt and prominent Earth Systems modeler David Archer have noted that such very large releases aren’t currently likely. They point to natural traps that tend to tamp down sea based release rates (sometimes stopping as much as 90 percent of a destabilized methane source from hitting the atmosphere). They also note that current warming has probably not yet exceeded levels seen during the Eemian (130,000 years ago) and no large methane releases were observed at that time from Arctic carbon stores like the ESAS. They tend to take the view that any increasing rate of release coming from Arctic methane stores in particular and Arctic carbon stores in general will be very slow — so slow as to not be a significant amplifier of human warming (less than 5 percent) this century.

In general, between these two rather extreme and increasingly polarized views on Arctic methane, there appears to be very little in the way of middle ground. Although, a loosely related survey of permafrost carbon experts found a consensus opinion that the total carbon emission (including CO2 and methane) from land based tundra alone would equal between 10 and 35 percent of the current annual human emission by the end of this Century. It’s worth noting that this survey assessment does not include potential releases from the submerged permafrost in the ESAS or releases from other global carbon stores as a result of human warming.

The current rapid pace of human-caused warming — heating some regions of the Arctic as fast as 0.5 to 1 C per decade — also caused some of Archer and Schmidt’s scientific forebears, particularly James Hansen, to be rather less dismissive of the potential for a significant release from global methane stores, especially those in the Arctic. In any case, current human greenhouse gas emissions of nearly 50 gigatons CO2e each year are now in the process of pushing global temperatures past Eemian thresholds. An excession likely to elevate Anthropocene temperatures beyond all Eemian estimates before the mid 2030s under current rates of global greenhouse gas emissions and expected increases in fossil fuel burning.

So it is in this murky scientific context that we must interpret risks involving a continuing and apparently ramping rate of atmospheric methane increase. And what we can say with certainty is that there is little evidence that we are now hitting an exponential rise in global atmospheric methane levels. But that there is some evidence that a risk for such an event is real and requires much more detailed research and public dissemination of information to put what are some very valid concerns to rest.

Links:

NOAA ESRL

Alaska Methane Survey by JPL

Like a Volcano Slowly Awakening at the Top of our Earth: From Baffin Bay to the Laptev Sea, Arctic Methane Monster Releases Troubling Outbursts

The most dangerous of volcanoes have a number of identifiable behaviors.

They tend to lay dormant for hundreds, thousands, or tens of thousands of years. Then, slowly, as heat and pressure beneath the Earth builds, they begin to awaken. First they tremble a bit. Then they emit a growing volume of noxious gas. Then, they begin a series of mini-outbursts in an ever more violent build-up to an explosive and destructive grand eruption.

The lost residents of Pompeii, were they here today, could tell us what such an event is like.

Now consider that a volcano-like thing also exists beneath the world’s frozen oceans and lands near the roof of our world. A thing that probably hasn’t erupted in over 45 million years. A thing that has had this immense period of time in which to build up an enormous highly toxic and explosive reserve of frozen and sequestered methane. A thing that is at least as large as the boundary circumscribed by the Arctic Circle. A vast and extraordinarily dangerous monster of a thing. A kind of climate super-volcano.

AIRS_Methane

(Initial methane out-gassing shows a tell-tale methane overburden in the troposphere near Arctic ocean and tundra methane sources in 2011. Just one of many signs of what may be a very large, impending methane eruption. Image source: NASA/AIRS.)

For ever since the Earth began its long fall into cooling at the end of the Eocene, methane has been freezing at the bottom of the world’s oceans, sequestering in the frozen earth. As world land and ocean temperatures fell, the methane formed into clathrates or was bound up in organic permafrost and was, ever-after, locked away. There it lay patiently, waiting for the time when it would be, once again, disturbed by a return to warmth.

And that time of dangerous and explosive reawakening, increasingly, seems to be now.

Footprint of the Vast Volcanic Monster: Shallow Seas, Deep Seas, Permafrost

Of these volatile methane concentrations, some of the most prolific and the most vulnerable reside in the Arctic. Some, which lay sequestered within the shallow sea bed near the East Siberian Arctic Shelf, have been the subject of much controversy during recent years. Scientists like Natalia Shakhova and Peter Wadhams have issued repeated warnings that these methane stores could be vulnerable to a rapid release as sea ice retreats and waters warm. It is estimated that as much as 1400 gigatons of methane lay sequestered under Arctic submarine permafrost in the ESAS. A massive store that, if disturbed even in part, could provide an immense amplifying feedback to human-caused warming.

But the Arctic submarine permafrost isn’t the only zone in which large volumes of methane lay hidden. The Amundsen Basin, one of the deepest trenches in the Arctic Ocean, in the Laptev Sea is a known emitter of methane from sub-sea sources. A region near Svalbard both stores and emits large volumes of methane. And, recently, high rates of methane release have been observed near Baffin Bay. A complete catalog of these stores has not been adequately assessed. But, in combination, it is likely that they at least approach the total volume of stores in the vulnerable East Siberian Arctic Shelf (ESAS) zone.

Ominous Rumblings from the Rapidly Warming Deeps

These stores are deeper beneath the ocean surface and so are not generally thought to be as vulnerable as the shallow sea reserves in the ESAS. But this thinking may be in error as Arctic waters display a temperature inversion in which surface waters near the ice pack are colder than deeper waters far below.

In addition, wide zones of deep water in the Arctic have displayed rapid warming over the past few decades. As an example, bottom waters in the Greenland Sea, an area between the east coast of Greenland, Iceland and Svalbard, were shown in a September 2013 study to be warming 10 times faster than the rest of the world’s deep ocean system. According to the report:

Recent warming of the Greenland Sea Deep Water is about ten times higher than warming rates estimated for the global ocean. Scientists analyzed temperature data from 1950 to 2010 in the abyssal Greenland Sea, which is an ocean area located just to the south of the Arctic Ocean.

Deep Water Warming in Greenland Sea

(Deep Water Warming in the Greenland Sea since 1950. Image source: Science Daily. Image credit: Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research.)

In other regions of the Arctic and through the rest of the global ocean system rapid ocean bottom warming has also been observed. Recent studies by Kevin Trenberth have found that heat accumulation in the deep ocean, during recent years, has outpaced that of warming at or near the surface. And because this warming occurs adjacent to frozen methane stores on or beneath the sea floor, it is a very, very dangerous development.

To the point of an observed rapid warming of the deep ocean, it is important to note that there are a number of mechanisms that transport heat into the abyss worldwide. But in the Arctic, this transfer system is amplified and particularly intense. Fresh, cold surface waters tend to deflect warmer, saltier waters funneling in from more southerly latitudes toward the Arctic Ocean bottom. As glacial ice melts in Greenland, as storms within the Arctic intensify and become more prevalent, and as fresh water runoff from the continents surrounding the Arctic basin increases, fresh water content at the surface grows and widens, creating a kind of fresh water wedge that expands southward and deflects warmer, saltier water toward the ocean bottom.

And there, the warmer waters can go to work releasing the massive volumes of methane stored in frozen clathrates near the ocean floor.

Large Mid-February Methane Belch

Methane released from deep water clathrate stores has a long journey before it reaches the atmosphere. The methane passes through the water column, where a portion of it oxidizes into CO2. Microbes near the methane source and throughout the water column devour a portion of the methane as an energy source. But eventually, if the pulse is large enough, the methane finds its way to the surface and releases. Such outbursts are, likely, only a fraction of the initial bottom release. So a large expulsion into the atmosphere may well be a hint that something even more powerful and energetic is going on down below.

Over the past decade, deep water regions have shown at least as much atmospheric venting as the East Siberian Arctic Shelf. And this year has been no exception with troubling outbursts continuing in a zone from Baffin Bay to Svalbard to the Laptev Sea. These outbursts have, in part, contributed to increasing atmospheric methane concentrations at a rate of around 7 parts per billion each year since 2007 after an 8 year period during which global methane levels had plateaued at around 1790 parts per billion. By comparison, pre-industrial global methane levels were around 750 parts per billion during the 1880s. Today, they average around 1835 ppb (Mauna Loa). Should very large outbursts emerge, the rate of atmospheric methane increase would be expected to dramatically steepen. And though we haven’t yet seen these kinds of outbursts, more minor, but still large and concerning, continue to occur with troubling frequency.

This past week, according reports from Methane Tracker and Sam Carana, two particularly large and troubling ocean to atmosphere methane outbursts were observed in this region — one over the Laptev Sea and the other over Baffin Bay. The Baffin Bay outburst occurred in a zone where water depths ranged from 1,000 to 2,500 meters (middle to deep ocean) and the Laptev outburst likely occurred from the deep waters and precipitous slopes of the Amundsen Basin which plunges as deep as 4,400 meters (extraordinarily deep ocean) and extends almost directly under the North Pole.

Methane belch

(Methane belching from Laptev Sea and Baffin Bay on February 22nd with highest reading spiking to 2383 ppb, about 500 ppb above the global average. Image source: Methane Tracker and Sam Carana. Data source: composite methane data collection from SIO, NOAA ESRL, U.S. Navy, GEBCO. )

From these outbursts, 10,000 foot methane concentrations of 2383 ppb were observed. These readings are about 500 ppb higher than the global average and represent an extraordinary local spike for the Arctic.

The outbursts occurred in a region where the fresh water wedge was most recently active — areas where sea ice keeps expanding then melting and retreating as warmer, saltier waters encroach. Regions where the warmer water column would be continuously flushed toward ocean bottom zones containing methane hydrates.

If we were to continue with the volcano analogy, we could well consider the most recent Laptev and Baffin Bay outbursts to be a series of minor but intensifying eruptions. The most recent in a string of troubling and increasingly more volatile activity from the methane volcano rumbling at the top of our planet.

Links:

Deep Greenland Sea is Warming Faster than the World Ocean

Global Heating Accelerates, Deep Ocean Warming the Fastest, What Does it Mean for Methane Hydrates?

Methane Tracker

NOAA ESRL

Massive Methane Concentrations over Laptev Sea

2013 4th Hottest Year on Record, Deep Ocean Warming Fastest

Triggers to Release the Methane Monster, Deep Ocean Warming, Sea Ice Melt, Sea Level Rise and the Fresh Water Wedge

Methane Emissions From ESAS Occurring at Twice the Expected Rate

The Arctic Methane Monster Stirs

Beneath the Cracking, Melting Ice, The Arctic Methane Monster Continues it Ominous Rumblings

Top Scientists Speak Out On Growing Risk of Methane Emergency

With the Arctic warming so rapidly, risk of a large methane release is a considerable and growing problem. Estimates are that more than 2,000 gigatons of the stuff lay trapped in northern hemisphere permafrost or locked in methane stores called clathrates on the bottom of the shallow Arctic Ocean. As human caused climate change drives rapid sea ice retreat, the ocean warms and mechanical action mixes the water, transporting more and more heat down to the seabed, destabilizing the frozen methane. As the snow line retreats in the warming climate, more permafrost is also laid bear, amplifying the release of land-based methane stores.

On the East Siberian Arctic shelf, a vulnerable region of the Arctic Ocean, perhaps 500 gigatons of methane and methane clathrate rest on or just beneath the sea bed. If just 1% of the  methane store in this single region were released, atmospheric methane would double.

Over the past few years, growing evidence has been accumulated that methane emissions from the Arctic permafrost and seabed are increasing. The East Siberian Arctic shelf produced vast methane emitting formations as large as 1 kilometer in diameter during 2011. Such releases are a potential sign of growing destabilization in the region. And since any major release of Arctic methane would provide a catastrophic amplifying feedback to human caused global warming, concern is growing that we are at increasing risk for just such an event.

In the above video, James Hansen, head of NASA’s GISS division, Natalia Shakhova, a scientist at the International Arctic Research Center, Peter Wadhams, a Professor at Cambridge and resident Arctic sea ice expert, and David Wasdell, a prominent environmentalist, discuss the dangers of Arctic methane release. Hansen and Wadhams are both very heavy hitters and bear listening to. Shakhova is doing cutting-edge research in the field and serves as a witness to the dangerous trend that is unfolding. And Wasdell rounds the discussion out by providing the ecological and climate context in which a large methane release may occur.

The problem is certainly very, very serious and we urgently need to reduce carbon emissions to reduce the risk of a large and catastrophic release.

To follow atmospheric methane, take a look at NOAA’s carbon gasses tracker at Barrow Alaska (CO2, methane, CFCs, etc):

http://www.esrl.noaa.gov/gmd/dv/iadv/graph.php?code=BRW&program=ccgg&type=ts

Links:

https://robertscribbler.wordpress.com/2012/10/26/human-co2-emissions-continue-to-play-russian-roulette-with-clathrate-gun-new-study-shows-east-coast-hydrates-destabilizing/

http://neven1.typepad.com/blog/

http://neven1.typepad.com/files/overshooting-limits-gwj.doc

Striking the Arctic Match: “Ice Melt Like Adding 20 Years of CO2 Emissions.”

According to reports from BBC, Climate Progress, and The Arctic Ice Blog, sea ice scientist Professor Peter Wadhams of Cambridge University recently made a pivotal announcement on the state of Arctic sea ice. In an interview to the BBC, Wadhams noted that Arctic sea ice was ‘headed for oblivion’ within ten years and that the added heat absorbed by the darker Arctic Ocean was like adding ’20 years of CO2′ emissions.

Wadhams has been studying sea ice for decades. His research has provided pivotal insight to the Arctic environment. Back in 1996, Wadhams compiled observations from vessels, including navy submarines, operating in the Arctic to determine that sea ice volume had fallen by 40% by 1996. Today, sea ice volume has fallen 78% percent from volume observations in 1979.

Wadhams said the following to BBC:

“Thirty years ago there was typically about eight million square kilometres of ice left in the Arctic in the summer, and by 2007 that had halved, it had gone down to about four million, and this year it has gone down below that.”

“The volume of ice in the summer is only a quarter of what it was 30 years ago and that’s really the prelude to this final collapse.”

“Over that 1% of the Earth’s surface you are replacing a bright surface which reflects nearly all of the radiation falling on it with a dark surface which absorbs nearly all. The difference, the extra radiation that’s absorbed is, from our calculations, the equivalent of about 20 years of additional CO2 being added by man.”

Wadhams, a Cambridge University expert, adds his voice to a growing number of scientists and researchers pointing toward an ice free Arctic sea within the next ten years. His detailed assertion about the added warming affect, however, is new. A roughly .3-.7 watt per meter squared of additional forcing over the entire surface of the globe is a lot of new heat to add to an already stressed climate system. But most of this heat is focusing in on the fragile and sensitive Arctic.

It has been known for years that loss of reflective sea ice would add a certain degree of forcing to global climate. Now, in addition to an ever-increasing volume of CO2 absorbing more and more heat, we have lost one of our heat deflector shields. The Arctic sea ice is simply turning from white to dark blue. And this results in more heat being caught by the sun.

Throughout the Arctic summer, the sun never sets. Instead, it beams light down 24 hours a day. This light now has a growing dark surface to capture it, turning it into more heat energy. According to Wadhams, this extra forcing is equal to another 20 years of human carbon emissions.

But the concerning thing about the Arctic is that so many feedbacks are set in place to enhance warming, should a net warming occur. Wadhams has illustrated the impact of sea ice loss. But the other feedbacks include loss of reflective snow cover, loss of reflective land ice in Greenland (already losing its reflectivity), and the heat-triggered release of carbon bound up in soil, tundra, and the Arctic sea bed.

Tipping all these feedbacks together would be like striking a match. They would dramatically amplify the effects of human-caused global warming, perhaps doubling it. Wadhams scientific validation of the problem of sea ice reflectivity loss is a critical step in understanding how a warming Arctic can make the problem of human caused warming much worse. But what is needed, is a comprehensive study of all Arctic feedbacks and their potential additions to global warming over the coming decades. A similar study of the Antarctic is probably needed as well.

That said, given the wealth of evidence already collected, it is becoming increasingly clear that amplifying feedbacks is a growing problem in the Arctic. That pushing the Arctic too far is already amplifying the force of human global warming.

For more information on the risks of amplifying feedbacks in the Arctic, take a look at this article.

Links:

Peter Wadhams CV

%d bloggers like this: