A Visibly Extreme Jet Stream in Advance of Irma

On Tuesday, I wrote this blog about how Jet Stream behavior and related severe weather during summer of 2017 jibed with the findings of recent climate science. About how human-forced polar warming appears to be impacting extreme summer weather patterns by altering the upper level winds — with a particular focus on impacts to North America.

Yesterday, I looked at the upper level wind patterns running over North America in advance of Irma’s approach and saw this:

(Classic ridge-trough pattern like that identified by Dr Jennifer Francis and Dr Michael Mann. One that, according to their related research, increases the likelihood of certain kinds of extreme weather patterns and events. One that these scientists associate with polar warming set off by human-caused climate change. Image capture from 1500 UTC on September 6. Image source: Earth Nullschool.)

It’s a classic high amplitude wave form in the Jet Stream. One that shows an extremely deep trough digging all the way down to the Gulf Coast in the east and arching back up into a pointed ridge north of Alaska and into the Arctic Ocean in the west. This kind of high amplitude wave pattern is not typical. Or if such a pattern did appear in the past, it tended not to stick around for so long. But during this summer, such intense high amplitude ridges have been forming again and again over the west and such deep troughs have been forming again and again in the east.

New Precipitation and Temperature Extremes

The most apparent visible effect of this ridge-west — trough-east pattern has been to produce record heat, drought, and wildfires in the west and record rainfall in conjunction with an extremely stormy weather pattern in the south and east. You can plainly see this dipolar relationship in the precipitation and temperature anomaly maps provided by NOAA below:

These maps cover precipitation and temperature observations for the last 30 days compared to climatological averages. In the west we find that precipitation for large regions has been less than 10 percent of normal (less than 1/10th normal). Meanwhile temperatures in the west have ranged between 1 and 4 C above average. In the south and east, large regions have seen between 200 and 800 percent of typical precipitation amounts (2 to 8 times the norm). Temperatures, meanwhile have ranged between 1 and 3 C below average.

This is the very definition of heightened extremes. Looking at the prevalent upper level air pattern over the U.S. for the summer of 2017, it’s clear that south to north upper level winds pulling air up from the Equatorial zone toward the pole are facilitating one side of the extreme and that a countervailing upper level wind originating near the pole and running south toward the tropics is driving the opposite extreme.

Slowing Upper Level Winds in a North-South Orientation Weakens the Steering Currents

Unfortunately, prevalent and long lasting heat or heavy rainfall isn’t the only apparent impact of this new pattern. Another aspect of this extreme dipole is a weakening of the west to east steering currents that typically begin to pick up in a region between 25 and 30 degrees North Latitude and to intensify further beyond the 30 N line. This effect is due to the fact that upper level wind patterns are oriented more in a north-south (west) or south-north (east) direction and due to the fact that under such large Jet Stream meanders the upper level steering winds tend to slow down.

(It’s not just Harvey and Irma. Weak upper level steering currents are contributing to a long range potential that Jose might loop back to strike South Florida.)

For Hurricanes like Harvey and Irma, stronger west to east steering winds have had two protective effects for the United States. First, they have helped storms to keep moving — working to generally prevent the kind of long duration stall we saw that helped to produce such catastrophic flooding during Harvey. Second, they have tended to deflect storms away from the U.S. East Coast. And for Irma, what this means is that this storm is more likely to strike the U.S. East Coast if the upper level steering winds that would typically turn it to the east are weak.

This is a dynamic upstream aspect of human-forced polar warming. One that produces added extreme weather risks on top of those already generated by warming ocean waters — which increase peak potential storm intensity — and rising atmospheric water vapor — which helps to add latent heat, lift and related convective available potential energy that increases top limits for storm intensity and heavy rainfall.

And as we sit here hoping and praying that Irma will re-curve away from the U.S. east coast, we should consider how polar warming may be helping to make such a terrible strike more likely — increasing risks to so many people and to so much that we all hold dear.



Dr Jennifer Francis

GFS Model Runs illustrated by Earth Nullschool

Extreme Weather Events Linked to Climate Change’s Impact on Jet Stream

This is the Pattern Climate Scientists Warned us About


Hat tip to Scott

Hat tip to Wharf Rat


This is the Climate Pattern Scientists Warned Us About — Wildfires Approach 8 Million Acres in U.S. During Summer of Extreme Western Heat, Severe Eastern Storms

“If the same weather persists for weeks on end in one region, then sunny days can turn into a serious heat wave and drought, and lasting rains can lead to flooding.” — Dr. Stefan Rahmstorf.

“The warming of the Arctic, the polar amplification of warming, plays a key role here. The surface and lower atmosphere are warming more in the Arctic than anywhere else on the globe. That pattern projects onto the very temperature gradient profile that we identify as supporting atmospheric waveguide conditions.”Dr. Michael Mann.


To say that, for the U.S., it’s been hot out west and stormy in the east this summer is a bit of an understatement. For while the east has seen numerous storms producing local-to-national record rainfall amounts, the west has been baking under heatwaves that appear to have set off one of the worst years for wildfires nationally on record. This is an extreme summer weather pattern that recent scientific studies have linked to human-caused climate change.

(Severe western wildfires blanket northern U.S. under a massive plume of smoke. Image source: NASA Worldview.)

Last week, extreme heat baked the U.S. west coast. On Friday, San Francisco hit a record high of 106 degrees (F), striking up to 102 (F) on Saturday. Regions further inland near Eureka hit a Death Valley-like 115 F.  36 million Californians fell under a heat advisory as excessive heat warnings ranged on up the west coast through Oregon, Washington, and British Columbia.

The heat wave — which was just the most recent of many for the region this year — baked hills and valleys covered with new vegetation springing up after unusually heavy winter rains. Setting off a spree of wildfires that has seen very severe burn rates throughout summer.

Los Angeles County in Burbank experienced its largest fire on record Saturday as a massive blaze swept through the hills — igniting 7,000 acres before being tamped down by the oddly northward tracking remnants of a tropical storm drifting through the region on Sunday.

The fire spurred the response of 1,000 firefighters, forced 700 people to evacuate, closed route 210 for a time and consumed three homes. Assisted by the rains and moisture flowing off the remnants of Lidia, firefighters have now managed to contain 30 percent of this particular blaze. But with many more fires continuing to burn throughout the west, the region is far from out of the proverbial woods.

According to the National Interagency Fire Center, 70 large fires continue to burn in the western states of Montana, California, Oregon, and Washington. The vast majority of these fires remain uncontained. And at least two exceed 100,000 acres in size. Smoke from these fires has been cycling into the upper level winds for some time now — with most of the northern U.S. falling under a high altitude smoke plume (see top image above).

In total, more than 7,800,000 acres have burned so far in the U.S. this year. This represents the second worst fire year on record so far compared to the last ten years and may ultimately beat out 2006 as the second worst fire year ever recorded. By end 2006, 9 million total acres had burned. During the worst fire year for the U.S. — 2015 — 11 million acres burned in total. By this time during 2015, nearly 9 million acres had been consumed compared to 2017’s present total near 8 million acres.

These fires are occurring primarily in the west where a persistent high amplitude ridge in the Jet Stream has formed. This ridge keeps enabling heatwaves to bake the region and spike fire dangers. And it’s a weather feature that some scientists are saying is linked to human-caused climate change — which is causing the Arctic to warm, while pulling meridional south-to-north upper level winds into the polar zone and producing a wavier jet stream during extreme weather patterns.

(A study produced by a team of scientists including Dr. Michael Mann in March linked extreme summer weather patterns to polar warming and a wavier jet stream.)

The net effect is to create a kind of Halo of Storms and Heatwaves over the middle and upper latitude regions of the world. Earlier this year, The Scientific American noted:

What we think happens is that when there is a ridge forming in a location where Arctic warming can intensify it, that makes the ridge strong and builds it even farther northward. It creates an even bigger wave in the jet stream. You get a stronger ridge over western North America and a stronger southward dip that is farther toward eastern North America.

A subsequent scientific study lead by Dr. Michael Mann and presented in March of this year found that:

… analysis of both historical model simulations and observational surface temperature data, strongly suggests that anthropogenic warming is impacting the zonal mean temperature profile in a manner conducive to wave resonance and a consequent increase in persistent weather extremes in the boreal summer.

And this is exactly what we’ve seen over the U.S. this summer. A stronger than normal ridge in the west fueling record heatwaves and wildfires and a stronger than normal trough in the east fueling more extreme storms. This is a pattern of juxtapposed extremes. One that appears to be fueled by climate change related factors.


NASA Worldview

National Interagency Fire Center

Largest Wildfire in Los Angeles History Burns Amid Record-Setting Heat

The Arctic is Getting Crazy

Extreme Weather Events Linked to Climate Change’s Influence on the Jet Stream

A Halo of Storms and Heatwaves

Arctic Air Temperatures are Set to Hit 35 to 55 F Above Average by Thursday — Out of Season Sea Ice Melt Possible, Again

“It looks like a triple whammy – a warm ocean, a warm atmosphere, and a wind pattern all working against the ice in the Arctic.”NSIDC director Mark Serreze.

“Unfortunately, Arctic sea ice extent growth has once again slowed this week…”Zack Labe

“Huge surface air temperature anomalies over the Arctic this working week… over 25C warmer than average in parts.” — James Warner


This year, it’s a challenge to find a time when the Arctic Ocean has ever represented anything resembling normalcy. Record low sea ice extent values have occurred for more than 50 percent of days measured. And well above average temperatures have invaded the Arctic during winter, spring, and fall. With another huge wave of ridiculous warmth building up over eastern Siberia this week, the hits just keep on coming.

Major Warming Over Siberia, Chukchi and East Siberian Seas 

The present big warm air invasion has its origins in the Pacific Ocean. There, a large high pressure system over the Bering Sea is facing off with a strong low moving up across Kamchatka. Running between the two is a powerful south-to-north wind pattern.


(A major warm wind invasion of the Arctic on Thursday is originating in the subtropical Pacific. A ridge in the Jet Stream extending all the way to the North Pole is pulling this big bulge of warm air north. As a result, extreme temperature departures and out of season sea ice melt for the impacted zones are likely. Image source: Earth Nullschool.)

As we can see in the image above, the flood of warm air has its origin around the 30 north latitude line. It flows directly over hundreds of miles of ocean, at times reaching a storm-force intensity near 70 mph. As it crosses into Siberia, the wind slows down. But it inexorably continues north, ever north — driven on by a serious pulse of atmospheric steam. By early Thursday, the leading edge of this warm air outburst from the Pacific side will have crossed the Pole and led to a flushing of Central Arctic air out into the Barents Sea and North Atlantic (you can view an animation of the predicted warm air pulse here).

This strong northward flood of warmth from the Pacific is running up under an extreme high amplitude wave in the Jet Stream that is bellowing out into the Arctic Ocean through the Bering and Chukchi seas. At its peak northward extent, the big Jet Stream wave is predicted to look something like this. And it is this severe contortion in the upper level wind pattern that has enabled this most recent extreme warm wind event to occur.

This pattern is now in the process of injecting above-freezing air temperatures into Eastern Siberia. By tomorrow, the warm air mass will encounter the coastal regions of the Chukchi and East Siberian seas. There, it will push temperatures as high as 2.5 C  (37 F) over zones that typically see readings in the -20s to -30s (Celsius). As a result, temperatures will range between 20 and 30 C (35 to 55 F) or more above average for many locations.


(Climate Reanalyzer has added a new color — white — for tracking extreme departures in temperature. In the positive anomaly column, we find departures hitting 30 C, or 54 F, above average for regions of East Siberia and the local Arctic Ocean.)

To be clear, these temperatures are highly abnormal. If a similar temperature departure happened in Gaithersburg, Maryland on December 8, it would produce 80 to 100 degree (F) readings. Of course, this anomaly is not happening in Gaithersburg. Due to a global warming related process called polar amplification in which the poles are more sensitive to alterations in rising greenhouse gas levels (due to fossil fuel and related emissions), extreme temperature anomalies tend to occur at the poles as rates of relative warming are 2-3 times faster in those regions. And the factors that we observe associated with this new Arctic warm wind event — powerful south-to-north meridional air flows coupled with extreme high amplitude waves in the Jet Stream — are also evidence of a number of weird new atmospheric circulation patterns that can tend to pop up as polar amplification intensifies.

Warm Winds May Cause Unprecedented Back-to-Back Fall Sea Ice Melt

The Pacific side of the Arctic has already been gaining heat ahead of the oncoming warm wind event over the past few days. And what we have seen, as a result, is a pretty severe loss of ice in the Chukchi Sea during early December. To be very clear, Arctic sea ice should be advancing at this time of year. But what we see in the image below (provided by A-Team over at the Arctic Sea Ice Forum) is advance followed by retreat as the warm wind event starts to ramp up.


(Ice refreeze in the Chukchi advances until it is rolled back by the most recent onrush of warm air flowing in from the Pacific. Image provided by A-Team at Neven’s Arctic Sea Ice Forum.)

Of course, the retreat seen above has occurred before the main force of warm southerly winds — due to hit the Arctic Ocean region by tomorrow. So the risks for continued losses in the Chukchi extend for at least the next few days. Losses there could be offset by large enough gains elsewhere to continue an overall seasonal freeze trend. But so far, with abnormal warmth also periodically building in over the near-Svalbard region and with Hudson Bay refreeze continuing to lag, that does not appear to be happening.

Looking at the larger monitors, we also find that, as happened during October and November, the pace of overall sea ice growth has stalled. According to JAXA, over the past 4 days, sea ice extent has only grown by 50,000 square kilometers. During a typical similar four day period for this time of year, growth would tend to average around 400,000 to 500,000 square kilometers. And with values at current record low levels, the inertial impetus for ice growth would be higher. That is, unless the climate state of the Arctic has radically changed — which appears to be the case.


(According to JAXA, Arctic sea ice extent has again hit a plateau when it should be freezing — this time at around 10 million square kilometers. As sea ice follows that line, record lows are again deepening — hitting near 750,000 square kilometers below previous lows for the day in 2006. Considering the fact that another major warming event is building into the Arctic Ocean, this plateau could again tip into melt as happened during the middle of November. Image source: JAXA.)

During mid November, a period of unprecedented warming produced an almost unprecedented period of fall melt. A similar November melt occurred during 2013. But the amount of melt then was smaller. And that melt did not occur at a time when Arctic sea ice values were at new record lows — as they were throughout the entire month during 2016. Similarly, during October, abnormally warm conditions produced an odd re-freeze plateau similar to the one we are now experiencing.

Given current conditions, there’s a risk that we could see a December melt event following the November melt event. For the amount of heat hitting the Pacific side of the Arctic is predicted to fall far outside of normal temperature ranges. And, barring major refreeze on the Atlantic side, we are at a rather higher risk of seeing the present plateau in sea ice values carry on for a number of days.


The National Snow and Ice Data Center

Earth Nullschool

Climate Reanalyzer

The Arctic Sea Ice Forum


Sea Ice Extent Hit Record Lows in November

Dr Jennifer Francis on Jet Stream Changes

Hat tip to John Allen

Hat tip to Neven

Hat tip to A-Team

Hat tip to Ryan in New England

As a Titanic El Nino Begins to Fade, What Fresh Trouble Will a Record Warm World Bring?

Today the globe is feeling quite a bit of backlash from a human-warmed sea surface and atmosphere. As it ends up, Dr. Kevin Trenberth was right. Deep ocean warming set off by heat-trapping fossil fuel emissions and building up through the first two decades of the 21st Century did re-surge from the depths to haunt us in 2014, 2015 and 2016. In that wrenching global climate system shift to the hot side of natural variability, a titanic El Nino emerged. It was one of the top three strongest such events in the modern record. One that by NOAA’s measure appears to have tied the extreme event of 1998 at its peak intensity.

ONI sea surface temperature anomalies in Nino 3.4

(Sea surface temperature departure from average in the benchmark Nino 3.4 zone shows surface ocean heat anomalies for the 2015-2016 El Nino equaled peak 1997-1998 values. Image source: NOAA/CPC.)

Expected Heat, Drought, and Storms Together With a Few Ominous Surprises

This event did push the world into extreme warmth even as predicted related severe weather flared in some of the typical regions. Annual average global temperatures rocketed to about 1.06 C above 1880s baselines during 2015 even as monthly departures hit 1.2 to 1.3 C or more higher than the same benchmark during December and January.

Amidst this great upheaval of global heat, the world also experienced yet one more wave of freak droughts (this time over Northern South America, the Caribbean, large swaths of Africa and Southeast Asia), heat-related mass casualty events, floods, and strongest hurricanes on record. Arctic and global sea ice measures are once again plunging to new record lows. A global coral bleaching event, perhaps the worst such instance ever experienced, was also set in motion.

The predicted patterns and potential worse-case events (such as heatwave mass casualties, coral bleaching, and sea ice loss) were also contrasted by a number of surprises. The first and perhaps most ominous was the failure of El Nino to bust the California drought. Though the West Coast of the US did experience a number of storms, the pattern was more typical of normal Winter moisture for the Northwestern US even as drought continued throughout the Southwest.  Moisture instead tended to split fire-hose fashion — with storms either cycling northward into Alaska, the Aleutians, or the Bering Sea, or south over Southern Mexico or Central America, up across the Gulf and on out into a particularly severe storm zone forming in the North Atlantic.

30 day precipitation anomaly shows southwest drought continuing

(Over the last 30 days the southwest drought re-emerged as a blocking pattern again began to take hold over Western North America and the Eastern Pacific. Image source: NOAA/CPC.)

This continued loss of moisture for the US Southwest despite a record El Nino is particularly apparent in the Climate Prediction Center’s most recent precipitation anomaly measure for the last 30 days. Here we find that large parts of Central and Southern California have received just 10 to 50 percent of typical rainfall for this period. Coupled with 1-3 C above average temperatures for the month, this loss of rainfall during what would typically be California’s wettest period has come as a disappointment to many who were hoping a strong El Nino would help break the state out of a crippling drought. Now, the window for late Winter and early Spring rains is starting to close even as the blocking pattern appears to be strongly re-established in both the present weather pattern and in the forecast model runs.

But perhaps the biggest surprise coming from this El Nino year was a set of weather events in the North Atlantic that were likely more related to climate change. There, severe storms hammered a flood-beleaguered UK as a greatly distorted Jet Stream heaved Equatorial heat and moisture northward — rushing it up over a ridiculously warm and apparently backed-up Gulf Stream before slamming it on into a likely Greenland ice melt-outflow related cool pool. There the heat and moisture collided with cold to produce the epic storms that then vented their fury upon the UK.

Warm Arctic Storm

(December 29th saw temperatures rise above freezing at the North Pole — the first time temperatures have warmed so much for this high Arctic region so late in the year. Image source: Earth Nullschool.)

During one such event, a daisy chain of heavy-hitting North Atlantic lows hurled high winds, heavy rains and epic surf at the UK even as the meridional flow set up by these powerful beasts shoved above-freezing temperatures all the way to the North Pole during late December. Yet one more unprecedented and unexpected event during a record warm year. One that looks more like a human forced warming which has overcome the traditional influences of El Nino, rather than an El Nino related impact in itself.

As El Nino Fades, Equatorial Heat Tends to Move Pole-ward

Though we may see these two events — the failure of El Nino to provide heavy rains to the US West Coast, and the massive northward pulses of storms, heat and moisture hitting the North Atlantic — as unrelated, the twain patterns appear to be linked to an ongoing polar amplification. Overall, heat within the Arctic has tended to weaken the Northern Hemisphere Jet Stream over these two zones. And even during El Nino, when the Jet would have typically strengthened, we have continued to see high amplitude wave patterns forming over these regions.

But as El Nino weakens and the Equator cools, the Jet Stream would tend to slow even more. Such an atmospheric state would tend to further exaggerate already significant Jet Stream wave patterns — transferring still more low-Latitude heat poleward. In addition, the ocean gyres tend to speed up as El Nino fades or transitions to La Nina. The result is an amplified pulse of warmer waters emerging from southern Latitudes and entering the Arctic.

It’s for these combined reasons — tendency to amplify south to north atmospheric heat transfer into the Arctic post El Nino and tendency to flush warmer waters toward Arctic Ocean zones during the same period that it appears we are entering a high risk time for potential new sea ice melts and possible related Greenland land ice melts during 2016 and 2017.

Hot Blobs

(Northeastern Pacific Hot Blob remains at high intensity even as its size is predicted to expand through July. Meanwhile, very warm sea surface temperatures are predicted to remain in place off the Eastern Seaboard. The net effect of these two hot blobs may be to shove the Jet Stream far northward over North America during the summer of 2016 — potentially increasing the risk of widespread and potentially record heat and drought. Predicted very warm sea surfaces in the region of the Barents and Greenland seas — in excess of 3 C above average for a large region — is also cause for concern. This is not only due to risk for sea ice loss through this zone, but also due to its potential to set off blocking pattern and heat dome formation over Eastern Europe and Western Russia. Image source: NOAA/CFS.)

In addition, we are at serious risk of seeing the high amplitude blocks and wave patterns re-establish and persist, especially in the zone over Western North America were a related Northeastern Pacific Hot Blob is expected to restrengthen as El Nino fades. In fact, large regions of the US may fall under record to near record heat and drought this summer due to the combined influences of two very warm ocean zones surrounding her shores. Models now indicate a particular late spring drought risk for the Great Lakes region as well as an extended period of far above average temperatures for pretty much all of the Continental US during summer. Meanwhile, predicted above average spring-time precipitation for the Southwest appears less and less likely to emerge.

Finally, extreme above average sea surface temperatures are predicted to intensify over the Barents and Greenland seas through to end of Summer 2016. This is an area to watch. The added ocean heat would tend to pull the Jet Stream northward over Eastern Europe and Western Russia — generating risk of heatwaves and drought for this region even as Central Asia fell under risk of floods. Long range CFS precipitation and temperature model runs for Europe have not yet picked up this risk. However, given the intensity of heat predicted for Barents sea surfaces and the related tendency of warmth over oceans and in the far north to influence the formation of blocking patterns, heat domes, and high amplitude troughs, it’s worth keeping a weather eye on the situation.

El Nino to Weaken and Then Return; or is a Shift to La Nina Now Under Way?

Related to a polar and ocean warming-enhanced tendency to generate high amplitude Jet Stream waves — as well as associated persistent heatwaves, droughts, and floods — is the heat balance of the Equatorial Pacific. Strong El Ninos, or even a tendency to remain in or near an El Nino state, has historically aided in the breaking of new record global high temperatures when linking up to the greenhouse gas warming trend. Meanwhile, the shift toward La Nina has tended to enhance a range of global heating related issues including record rainfall events and large injections of heat toward the poles in the drop off from El Nino to La Nina.

The cause for increased risk of major precipitation events is due to the fact that El Nino is providing a massive moisture bleed into the atmosphere at times of peak intensity. With the current El Nino topping out near record levels and with global temperatures at above 1 C higher than 1880s averages, global atmospheric moisture levels are hitting new record highs at this time. If global temperatures subsequently drop by around 0.1 to 0.2 C during a transition into La Nina (into a range about 0.9 to 0.8 C hotter than 1880s values) then the atmosphere will be unable to keep a larger portion of that extra moisture in suspension and it will fall out as precipitation — primarily wringing out where the major trough zones tend to set up. We should be very clear here in saying that the drought risk related to a global warming intensification of ridge and heat dome formation is not reduced during such instances — just that the risk of extreme precipitation events is enhanced.

Russian Heatwave Pakistan Floods Jet Stream

(During 2011, as the 2010 El Nino faded into La Nina conditions, a high amplitude wave in the Jet Stream set off record heat, drought and wildfires over Russia even as Pakistan was hit by a month-long deluge that was the worst rainfall event for the region in the last 1,000 years. La Nina’s tendency to wring excess water out of the atmosphere can enhance the risk for such events to occur in a warming climate state. Image source: NASA.)

As for risks to sea ice, we’ve provided some of the explanation above. However, it’s also worth noting that the mobility of heat poleward tends to be enhanced during the periods when El Nino drops off toward La Nina. During these times, Equatorial heat tends to propagate in wave fashion toward the Poles — especially toward the Northern Hemisphere Pole which has already lost its strong Jet Stream protection warding away warm air invasions.

These two factors are major issues when considering whether La Nina or an ENSO Nuetral state will appear post El Nino during 2016. But there is a third — rate of global temperature rise. Though the primary driver of global warming is a massive human fossil fuel emission, the response of the world ocean system can significantly wag the rate of atmospheric temperature increases on a decadal time scale. If the ocean tendency is for La Nina, this would tend to somewhat suppress the overall decadal rate of temperature increase — and we saw this during the 2000s. But if the ocean tendency is to produce El Ninos (in a switch to a positive Pacific Decadal Oscillation, as appears to be happening now), then the overall pace of global atmospheric temperature increase would tend to be enhanced.

La Nina Emerges

( IRI/CPC consensus model runs show a drop off to a weak La Nina by late in the year. However, CFS model runs [image below] have shown a tendency to predict a resurgence of El Nino conditions by Fall. Image source: NOAA/CPC.)

To this point we find that the official model forecast consensus published by NOAA (IRI/CPC figure above) shows a transition to ENSO neutral states by May, June, and July which then proceeds on to a very weak La Nina by Fall. In such a drop off, we would likely still see record global high temperatures during the period of 2016 (in the range of 1.03 to 1.15 C above 1880s values).

However, the late 2016 and 2017 tendency for temperatures to recede from new record highs would be somewhat enhanced (likely dropping below the 1 C above 1880s mark in 2017 or 2018 before again making a challenge to the 2015-2016 record with the potential formation of a new El Nino in the 3-5 year time-frame of 2019 through 2021). It’s worth noting that this scenario shows an increased risk of a stronger warm air pulse heading toward the Northern Polar zone together with added fuel for extreme precipitation events as global temperatures would tend to drop off more swiftly from late 2015 and early 2016 peaks.

El Nino Continues

(CFSv2 model run — shows El Nino continuing on through the end of 2016. Over recent months, the CFSv2 series has shown a high accuracy. However, NOAA’s current forecast preference is for the IRI model set predictions [previous image above]. Image source: NOAA/CPC.)

In contrast, the CFSv2 model forecast from NOAA (above image) shows El Nino only weakening through to July and then re-strengthening in the October-November time-frame. This CFS model scenario would result in higher atmospheric temperatures in 2016 — practically guaranteeing a lock on an unprecedented three back-to-back-to-back record warm years for 2014, 2015, and 2016. But such a scenario — implying that the Pacific Ocean had entered a new period of El Nino tendency — would also tend to keep atmospheric temperatures nearer to the newly established record highs.

Under the CFSv2 scenario, we may expect annual average global temperatures to rise as high as 1.08 to 1.2 C above 1880s values during 2016 (a very extreme departure and one uncomfortably close to the 1.5 C warming mark). These extreme values would, perhaps, recede to around between 0.9 and 1.1 C during 2017 so long as the second El Nino pulse did not remain in place for too long. However, if the bounce back toward El Nino conditions was strong enough in late 2016, there would be an outside chance that the globe may experience not 3, but an absolutely obnoxious 4 back-to-back record warm years.

NASA temperature trend

(During 2015 global annual temperature rocketed to above 1 C hotter than 1880s values. There’s at least an even chance that 2016 will be hotter still. Considering the considerable heating tendency imposed by a fossil fuel-forced warming of the world, how much worse can it get during the 21st Century’s second decade? Image source: NASA GISS.)

Meanwhile, the warm air pulse heading toward the poles may be somewhat muted under this scenario. A statement that should be qualified by the fact that we’ve already seen a substantial amount of El Nino heat heading poleward during the present event. In addition, potentially heavy rainfall events may not receive the added oomph of a decent global temperature drop to wring out more moisture. A statement that requires the further qualification that overall atmospheric moisture loading is enhanced by rising global temperatures — so comparatively less heavy rainfall is a relative term here.

At this time, NOAA favors a transition to La Nina forecast stating:

“A transition to ENSO-neutral is likely during late Northern Hemisphere spring or early summer 2016, with a possible transition to La Nina conditions by fall.”

However, it’s worth re-iterating that the CFSv2 model forecasts have been quite accurate in predicting the path of the current record El Nino to date.




Hothouse Mass Casualty Event Strike Eqypt

Southern Hemisphere’s Strongest Storm on Record

Punishing Four Season Storm Grips US

A Monster Arctic Melt Season May Have Already Begun

Deep Ocean Warming is Coming Back to Haunt Us

Warm Arctic Storm to Unfreeze the North Pole

More Signs of Gulf Stream Slowdown as Floods Devastate Cumbria England

Deconstruction of Asia’s Wild Weather

Hat tip to Caroline


Sea Ice Death Spiral Continues — Start of 2016 Sees Arctic Ocean Ice Hitting New Record Lows

In January, Arctic sea ice extent hit a new record average low for the month. Meanwhile, during the first days of February, both Arctic sea ice extent and area hit new daily record lows even as global sea ice area also entered the second lowest range ever recorded. And so it seems that the sea ice death spiral of a record warm world continues.

January lowest sea ice on record

(According to the National Snow and Ice Data Center, Arctic sea ice extent averages were the lowest on record for the month of January since at least 1979. The new low beats out 2011, continuing an ongoing decadal January decline of about 420,000 square kilometers every ten years. Image souce: NSIDC.)

But before we go more into the new spate of record low Arctic and global sea ice measures, it’s important to consider the context — our world has not seen the current level of heat forcing from greenhouse gasses (CO2 + methane + NOx + other greenhouse gasses) in the atmosphere since about 15 million years ago. It’s an unprecedented amount of hothouse potential that is having equally unprecedented results.

Unprecedented Volume of Heat Trapping Gasses Drives Raging Atmospheric and Ocean Warming

About 50 billion tons of CO2 equivalent from all those greenhouse gasses hit the Earth’s atmosphere each year these days. In vast part driven by industrial fossil fuel burning and extraction, this unconscionable, monstrous, and difficult-to-imagine accumulation of heat-trapping vapors is pushing the world to warm up at an unprecedented rate. A pace that is now at least 20 times faster than the widespread warming that occurred at the end of the last ice age.

Temperatures above 80 North

(It’s likely been a record warm start of the year for the Arctic above the 80 degree North Latitude Line. Temperatures in that high Arctic region have tended well outside the 2 standard deviation range and have hit above the record line on numerous occasions. Image source: NSIDC.)

Back then, it took about 2,500 years for the Earth’s atmosphere to heat by 1 degree Celsius for a total of a 4 C temperature increase over 10,000 years. By just this past year, in 2015, fossil fuel burning had managed to do more in 135 years than what an Earth System rising up out of an ice age did in all of two and one half millenia. For 2015 hit a new record high of about 1.1 C above 1880s averages in all the major global temperature monitors (NASA, NOAA, JMA, UK MET Office). It’s amazing, crazy, terrifying to think about. The end of the last glacial period was a great upheaval that violently re-shaped our world. And fossil fuel industry is running a similar, if much more dangerous, geological process in fast forward by pumping out heat trapping gasses at a rate at least six times faster than anything seen in all of Earth’s history.

Yet as amazing as the current rate of atmospheric warming is, it’s just the thin lens through which a vast amount of heat is transferring into the world’s ocean systems. In fact, according to Peter Gleckler, an oceanographer at the Lawrence Livermore National Laboratory “Ninety, perhaps 95 percent of the accumulated heat is in the oceans.”

Arctic Sea Ice Concentration January

(What was possibly the warmest January on record for the Arctic contributed to major sea ice losses in almost all of the major ice formation basins. Image source: NSIDC.)

And all that extra heat doesn’t just sit there. It goes to work transforming water to water vapor — shoving atmospheric moisture content 7 percent higher for each degree Celsius of warming even as it amps up the rate at which water evaporates from the Earth’s surface or falls down in the form of precipitation. Perhaps still more ominously, this heat goes to work melting the great white ice coverings it comes into contact with at the shoreline and upon the ocean surface.

Arctic Sea Ice Hits New Record Lows For January Through Early February

For 2016, that heat has led to new record lows in Arctic sea ice extent and area even as it has pushed global sea ice coverage within striking distance of a scant range never before seen in the whole of the modern era. New record daily lows for sea ice extent — now an almost annual occurrence for at least some time during the calendar year — are now also being breached.

Arctic Sea ice area new record lows

(Arctic sea ice area explores new record low territory on January 29 through 31 of 2016. Image source: Cryosphere Today.)

In the major monitors, Arctic sea ice extent hit a new record low average for the month of January, 2016. This average included a number of record daily lows early in the month even as the entire monitor held within 1st to 3rd lowest on record for each day throughout January. Record daily lows were again breached in the NSIDC measure on January 29th. A streak that continued on through February 1st with totals hitting 13.911 million square kilometers for the day. That’s 119,000 square kilometers below the previous record daily low for February 1 set in 2011 at 14.030 million square kilometers or a region of ice lost below the previous minimum extent slightly larger than the State of Virginia.

Arctic sea ice area as recorded by Cryosphere Today (see graphic above) followed a similar record low range through the end of January. By January 31st, the most recent date in the measure, Arctic sea ice area had hit 12.27 million square kilometers or about 61,000 square kilometers below the previous record daily low for sea ice area set during 2006.


(A very warm Arctic during January of 2016 likely contributed to shoving the global sea ice area measure into striking distance of new record lows by early February. Image source: Pogoda i Klimat. Data Source: Cryosphere Today.)

Also disturbing is the fact that global sea ice area — which has shown consistent losses over time — has also now come within striking distance of new record lows. The Cryosphere Today monitor now shows global sea ice area in the range of 14.5 million square kilometers or just above previous record lows set during 2006 for this time of year.

Conditions In Context — Amazing Sea Surface Temperature Anomalies, Major Winter Warm-ups Hit Sea Ice Hard

Arctic sea ice area negative anomaly is now in the range of -1.23 million square kilometers. With Antarctic sea ice at around 200,000 square kilometers below average, it’s pretty clear that the bulk of current global sea ice losses are now ongoing in the Arctic.

Warm ocean waters, especially in the Barents Sea and the Greenland Strait are likely major contributors to record low sea ice extents during recent weeks. These sea surface temperatures now show between 1 and an amazing 8 C above average reading in the NOAA sea surface temperature anomaly map below.

NOAA Sea surface temperature anomalies

(Sea surface temperatures are in the range of 4-8 degrees Celsius or 7-14 degrees Fahrenheit above average near sections of sea ice in the Northern Barents Sea. These very warm sea surfaces continue to suppress refreeze and provide melt pressure on into early February. Image source: NOAA.)

Such amazingly warm waters likely helped contribute to major atmospheric warming events in the high north over the past two months including one above freezing event at the North Pole during late December and another near freezing event for the same region during late January, likely added to the overall melt pressure. The very warm water in the Barents likely helped to enable the observed warm air slots that formed north of Svalbard and on toward the North Pole on numerous occasions.

Over the next seven days, Arctic air temperatures are expected to range about 1 C above average — as opposed to the 2-3 C above average range seen during the past month. This slight cooling may allow for a more rapid freezing of some regions including the Sea of Okhotsk. But overall warm waters and airs along the sea ice edge in the Bering and Barents should continue to suppress major ice formation there. By the second week of February, risk increases that high amplitude Jet Stream waves will deliver another burst of warm air to the far Northern Latitudes, potentially continuing the trend of extreme above average atmospheric temperatures in the region of the Arctic Ocean during 2016.






Arctic Sea Ice Graphs

The Arctic Sea Ice Blog

This is Where 90 Percent of Global Warming is Going

CO2 Rising Ten Times Faster Than PETM


Cryosphere Today

Pogoda i Klimat

%d bloggers like this: