El Nino Update: Monster Kelvin Wave Continues to Emerge and Intensify

Monster Kelvin Wave

(Kevin Wave continues to strengthen and propagate across the Pacific Ocean. Image source: NOAA’s Climate Prediction Center.)

Record global temperatures, extraordinarily severe storms for the US West Coast and telegraphing on through the Central and Eastern US, a disruption of the Asian Monsoon and various regional growing seasons, record heat and drought in Northern Australia, severe drought and fires in the Amazon, the same throughout Eurasia and into the Siberian Arctic, another potential blow to Arctic sea ice. These and further extreme impacts are what could unfold if the extraordinarily powerful Kelvin Wave now racing toward the Pacific Ocean surface continues to disgorge its heat.

The most recent update from NOAA shows that the monster Kelvin Wave we reported on last week has continued to grow and intensify even as it shows no sign of slowing its rather ominous emergence from waters off the west coast of South America.

The pool of 4-6+ degree Celsius above average temperatures continues to widen and lengthen, now covering 85 degrees of longitude from 170 East to 105 West. Perhaps more disturbing is the fact that the zone of extreme 6+ C temperature anomalies has both widened and extended, covering about 50 degrees of longitude and swelling to a relative depth of about 30-40 meters. This is an extraordinarily intense temperature extreme that well exceeds those observed during the ramp-up to the record 1997-98 El Nino event.

Meanwhile, a smaller, but still disturbing, zone of 3-6+ C above average temperatures has now developed just 100 feet below the surface along a line near 100 degrees West Longitude. It is a very strong heat pulse, the head of the Kelvin Wave that by late March had pushed its nose up in the Eastern Equatorial Pacific.

Kelvin Wave Side Graph

(Deep, hot Pacific Ocean water continues to shift east. Image source: NOAA’s Climate Prediction Center.)

In the above NOAA graph we can see the hot, deep pool in the Western Pacific gradually flowing eastward, spreading out and shallowing as it begins to dump its heat content back into the atmosphere. A return of stored ocean heat that will, likely, spike global atmospheric temperature values all while sparking off a series of very extreme weather events.

Warm Storms Continuing to Pull Heat Eastward and Upward

The west-to-east progression and upwelling of Pacific Ocean heat is currently facilitated by low pressure systems lining up along the equator. The lows are fed by heat and evaporation bleeding off the Pacific Ocean surface. This heat enhances the formation of thunderstorms that join into larger, heat-driven cyclonic systems. The countervailing circulations of these systems act to slow the trade winds while allowing the hot pool to spread further and further east.

It is a pattern that tends to emerge at the beginning of most El Nino events. A self-reinforcing cycle that draws energy from ocean surface heat even as its intensity is enhanced more and more by heat transfer from the depths.

GFS Model North Pacific

(GFS model guidance through April 13 shows a persistent cyclone off New Guinea interrupting the trade winds — lower left — even as a long trough is predicted to form over the Eastern Pacific just north of the Equator — lower right. This pattern would tend to enhance the formation of El Nino conditions throughout the forecast period. Image source: NOAA)

It is the kind of cycle in which the excess Ocean heat, amplified by human-caused global warming, and long stored in the Pacific, as Dr. Kevin Trenberth well observed, may now be coming back to haunt us.

Conditions of a Human-Altered ENSO Cycle Compared to the Most Recent Warming at the End of the Last Ice Age

The La Nina to El Nino cycle (ENSO) is part of a larger ocean and air energy transfer pattern in which heat is periodically stored in the vast equatorial waters of the Pacific before being returned again to the atmosphere. In a normal climate state, this dance of heat energy between the airs and the waters would result in simple periodic variation appearing at the peak of either La Nina (atmospheric cool extreme) or El Nino (atmospheric warm extreme). But because human warming has now added a very strong and rapid heat forcing to this natural cycle of variability, La Nina periods have displayed slower rates of atmospheric warming (where they should have showed cooling) and El Nino periods have often resulted in temperatures spiking to new global records.

Natural variation, in this case, rests on a curve that we are forcing to bend inexorably upward.

Of the .8 degrees Celsius worth of annual global warming experienced since the 1880s, about .15 C, or nearly 20 percent of this warming, occurred during the powerful 1997-98 El Nino event in which vast amounts of stored ocean heat returned to the atmosphere. Since 1998, the Pacific Ocean has undergone a long period of La Nina events in which a large store of atmospheric heat was transferred to the global ocean system. But despite this enormous heat transfer, global temperatures continued to climb with new records achieved in 2005 and 2010 during relatively weak to moderate El Nino events.

For the currently emerging El Nino, all indications point toward it being as strong or stronger than the extraordinarily powerful 1997-98 El Nino, perhaps readying to raise global temperatures by another .15 C or more.

April 1 sea surface temperature anomaly

(April 1 Sea Surface Temperature Anomaly Map shows a band of 1-3 C above average temperatures covering the Equatorial Pacific. It’s a marked difference from the slightly cooler than average conditions that have dominated for much of the past year. Given the current Pacific Ocean weather context and the very strong Kelvin Wave lurking just beneath the surface, it appears to be the start of a powerful El Nino phase. Image source: NOAA/ESRL)

For context, the difference between the 1880s and the last ice age was about 4 degrees Celsius. A temperature change that took about 10,000 years to complete. The total current warming of .8 C is equal to about 20% of the difference between the 19th Century and an ice age, but on the side of hot. This warming occurred at extraordinary velocity, over the course of little more than a century. An extreme pace of warming now between 30 and 40 times faster than that at the end of the last ice age. A pace of global heat accumulation that has not been seen in at least 65 million years.

Under business as usual fossil fuel emissions, even that very rapid pace of warming could more than triple over the coming decades, producing a warming equivalent to what occurred during the end of the last ice age over the course of 10,000 years in less than 200. A disastrous pace that will wreck untold harm on the world’s weather systems, climates, ocean systems, geographies and ecologies should it emerge. A pace of warming that likely has no corollary even in the Permian Hot House Extinction Event of 250 million years ago.

In the current cycle of human warming, a strong El Nino can push that measure by as much as 5% or more in just a single year. So we may well see global average temperatures of 1 C higher than 1880s values by the end of 2014-2015 should the current and very powerful El Nino continue to emerge.

Links:

NOAA’s Climate Prediction Center

Monster El Nino Emerging in the Pacific

NOAA/GFS

NOAA/ESRL

Global Heating Accelerates, Deep Ocean Warming the Fastest, What Does it Mean for Methane Hydrates?

A Deadly Climb From Glaciation to Hothouse — Why the Permian Extinction is Pertinent to Human Warming

NOAA: El Nino is Coming, Extreme Weather, New Global High Temperature Records Likely to Follow

Advertisements

With Glaciers Undergoing Collapse, Sea Level Rise to Flood More Than 1,500 of Indonesia’s Islands, Capital City Over Next 50 Years

Indonesia_BMNG

(Satellite rendering of the vulnerable Indonesia Archipelago — a system composing 17,000 islands. Image source: Commons)

From a climate-wrecking human warming spurring the melting of glaciers and ice sheets to the thermal expansion of the world’s oceans, sea level rise, to some degree or another over the next century is a given. How rapid this expansion progresses and how much land it devours will ultimately depend upon the amount of heat trapping gas we belch into the atmosphere and how sensitive the Earth’s climate system is to our increasingly traumatic insults.

Current conservative assessments from the Intergovernmental Panel on Climate Change (IPCC) estimate a total of 90 centimeters (nearly 1 meter) additional sea level rise before the end of this century. Today’s rate of sea level rise gets us to about 30 centimeters over the same period, so the IPCC is projecting that the pace of rising seas will more than triple over the coming years and decades.

Sea level rise 1993 to 2014

(Global Sea Level Rise from 1993 to 2014. Image source: AVISO.)

Despite the fact that the rate of sea level rise and related glacial melt would have to rapidly uptick to meet the IPCC estimate, it remains a conservative case. Temperatures, over the next century under business as usual fossil fuel emissions or a moderate mitigation scenario, are likely to increase by between 5 and 9 degrees Celsius. This range of global heating is enough to eventually melt all or nearly all the glacial ice on Earth. So the heat forcing to the world’s glaciers is expected to be extreme, a blow at least equaling the temperature change between now and the last ice age. A temperature change that took 10,000 years to complete now crammed into an exceptionally brief period from 1880 to 2100.

Under such an outrageous pace of warming, a warming that could propel Earth to near Permian and PETM temperatures within 85 years, it is likely that the rate of sea level rise could be double or more that of IPCC predictions, possibly equaling or exceeding peak rates of sea level rise during the end of the last ice age at 10 feet per century. So the range of increase may well be between 1 and 3+ meters, making the IPCC case quite an underestimation if business as usual fossil fuel emissions continue.

survey_histogram1

(Survey of scientist projections of sea level rise in centimeters by 2100 under a high emissions scenario (RCP 8.5). Note that a majority of scientists project sea level rise in the range of 1 to 3 meters by 2100 with some scientists projecting as much as a 3 to 6 meter rise over the same period. Image source: Real Climate’s Excellent November Report on Sea Level Rise)

Stresses to glacial systems are already extreme even at the current human forcing of 400 ppm CO2, 1835 ppb methane, and at rising levels of a host of other greenhouse gasses. Current CO2 levels alone, during the Pliocene, were enough to establish seas as much as 75 feet higher than today. A fact that raises the question — if we already have 15-75 feet of sea level rise locked in, how swiftly will that rise occur? And the answer to that question depends on how rapidly the world’s largest glacial and ice sheet systems respond to human greenhouse gas forcing.

Very Large Glaciers Already on the Move

In a recent study one of the world’s largest ice sheets, the Pine Island Glacier, was found to be undergoing the first stages of an irreversible collapse. In other words, over the coming decades, the Pine Island Glacier (PIG) is due to complete an unstoppable slide into the Southern Ocean. And loss of the Pine Island Glacier alone commits the world to about 1 meter of additional sea level rise.

Unfortunately PIG is the first of many glacial systems from West Antarctica to Greenland that are likely to suffer the same fate. For from these vulnerable regions, mass losses from glacial melt have more than doubled over the past decade. In total, by 2008, about 90% of the world’s glaciers were in retreat. And since that time, warming has continued to advance with melt episodes becoming ever-more predominant.

Greenland melt lakes, dark snow, August 4, 2013.

Melt lakes, many larger than 5 kilometers across, form over Western Greenland, August 4, 2013. Summer of 2012 saw Greenland mass loss hit 600 cubic kilometers. Image source: Lance-Modis.

Greenland, for example, has exhibited increasingly severe melt stress over past summers with large stretches of lakes, many measuring 5-10 kilometers wide, forming over an ever-less-stable ice sheet. A towering ice sheet that boasts an average altitude of two kilometers, Greenland’s vast glacial system contains an immense volume of frozen water. But as great and mighty as this mountainous pile of ice may seem, human caused warming continues to deliver a series of ever-more damaging blows. By 2012  Greenland had experienced a record wasting with 97 percent of its surface area showing melt during July and over 600 cubic kilometers of ice lost throughout the entire year. Yet as warmth continues to advance poleward, the 2012 melt season is likely to seem tame with far greater annual losses in store.

So there are many reasons to believe the IPCC estimates for glacial melt rates and related sea level rise, as with Northern Hemisphere sea ice losses, are too conservative and that science, in general, is still coming to grips with a dramatic and geologically unprecedented pace of change. That said, even IPCC findings are becoming increasingly stark.

Indonesia to Lose 10% of its Islands by Mid-Century

For if only the very conservative IPCC estimates bear out, we are still likely to see dramatic loss of lands and displacement of human beings.

A glaring example appears in new report from Maplecroft’s Climate Change Vulnerability Index which found that more than 1,500 islands in Indonesia would disappear after just a half meter of sea level rise. The study also found that the same amount of sea level rise would flood up to half of the capital city of Jakarta. Meanwhile, the 90 centimeters of sea level rise projected by the IPCC for the end of this century would put 42 million people along the coastline at risk of losing their homes.

Ancha Srinivasan, principal climate change specialist with the Asian Development Bank (ADB) noted in an interview that:

This archipelago’s biggest threat is rising sea levels, where 42 million people living three kilometres from the coast are vulnerable if estimated sea level rise reaches up to 90 centimetres by the end of the century.

Indonesia is composed of over 17,000 islands, many of which are low lying or feature sprawling and vulnerable coast lines. It is located in a region of the world where ocean levels are among the most rapidly rising. It is among a growing number of islands and low-lying coastal regions that are under increasing threat from what would seem even a modest change in sea level.

But as we went at length to illustrate above, Indonesia and other regions may be lucky to see only a 90 centimeter rise. So these projected impacts, though seemingly stark, may be at the low end of what we are likely to experience. Add just one more meter and most of Jakarta is flooded while 42 million of Indonesia’s people are almost certain to be members of a vast global migration away from the world’s coastlines.

Links:

Indonesia Risks Losing 1,500 Islands by 2050

Indonesia: Rising Seas Threaten 1,500 Islands

Maplecroft’s Climate Change Vulnerability Index

AVISO

Real Climate’s Excellent November Report on Sea Level Rise

What does a World at 400 PPM CO2 Look Like?

Pine Island Glacier Undergoing Irreversible Collapse

The Pine Island Glacier

SkS Report on Glacier Retreat

The Greenland Ice Sheet

Greenland Experiences 97 Percent Surface Melt in July of 2012

IPCC Melt Predictions Left Behind By Arctic Death Spiral, Many Scientists Now Predict Ice Free Arctic in 3-20 Years, Rapid Melt from Greenland, West Antarctica Imminent

(IPCC graphic of Arctic sea ice change from 2006 to 2080-2100)

For sea ice melt trackers, 2007 was a long, long time ago. Things were quite a bit different then, before that record year obliterated all past records for sea ice loss and made projections like the one above seem silly and quaint. Since these predictions were made, we’ve lost nearly 2 million square kilometers of sea ice — an area nearly the size of Greenland and melt rates indicate an end to Arctic sea ice by late summer within the next decade.

If such an event were to occur, it will happen more than 60 years ahead of IPCC predictions. As an aside, it is worth noting that the graph doesn’t represent what a small remnant of sea ice will probably look like. The actual north pole will be free of ice and all that remains will huddle against the north of Greenland for protection and insulation from the insults of heat from all directions.

As the record melt season of 2012 has continued to progress, more and more Arctic scientists are validating a melt trend that is devastating the northern polar sea ice. PIOMAS has been collecting data that shows a potential for sea ice disintegration by end of summer within the next 5-10 years. And this summer a team of British researchers validated PIOMAS findings using satellite data. Then, Cambridge professor and sea ice expert Peter Wadhams made a stunning prediction that most sea ice could be gone by 2015.

Now, the Norwegian Polar Institute is chiming in. The Arctic sea-ice big melt of 2012 “has taken us by surprise and we must adjust our understanding of the system and we must adjust our science and we must adjust our feelings for the nature around us”, says Kim Holmen, NPI international director.

“As a scientist, I know that this is unprecedented in at least as much as 1,500 years. It is truly amazing – it is a huge dramatic change in the system”, noted NPI’s Dr Edmond Hansen. The melt is “not some short-lived phenomenon – this is an ongoing trend. You lose more and more ice and it is accelerating – you can just look at the graphs, the observations, and you can see what’s happening.”

What has happened is that nature is moving the goal posts faster than scientists can establish them.

The heat we are seeing doing work on the sea ice now. What will happen to it once it has finished with the sea ice? It’s not just going to sit there in the ocean for decades and centuries. It’s going to go right to work on Greenland. And we can see that happening now. According to scientific reports, the tipping point for Greenland ice melt is between .8 and 3.2 degrees Celsius above pre-industrial average. We are at .8 C now. And the forcing of human climate change keeps pushing that number higher.

This summer saw a massive new record melt for Greenland and it’s really just the beginning.

IPCC findings were for a very mild sea level increase for the 21rst Century. However, with the sea ice melting so fast and Greenland and West Antarctica next in the line of fire, it appears that these break-downs are more and more likely to occur sooner. Possibly starting within this decade and intensifying through mid century. It is more likely that a 2 meter rise or greater will occur before 2050, if greenhouse gas emissions aren’t dramatically brought into check. And based on where we are now, it would take a major effort to remove carbon from the atmosphere to prevent sea level rises in excess of 1 meter by end of century.

As we’ve noted in previous posts, a 365-405 ppm level of CO2 is enough to melt both Greenland and West Antarctica and raise sea levels up to 75 feet. We are in this range now. Yet with current emissions and amplifying feedbacks from traditional carbon sinks, it looks like we are on track for between 450 and 550 ppm CO2 by mid-century. At 550 ppm CO2, there is enough heat energy in the atmosphere to take out all the ice sheets.

This is a very powerful forcing that will almost surely have gone to work substantially softening Greenland and West Antarctica by the period of 2040-2060.

The goal posts are moving swiftly and it is fair to say that human-caused greenhouse gas emissions are both knocking Earth out of its comfortable homeostasis as well as knocking the once static and slow-seeming study of climate into a period of rapid change.

Links:

http://thinkprogress.org/climate/2012/09/13/841881/arctic-warning-as-the-system-changes-we-must-adjust-our-science/#comment-478091

%d bloggers like this: