NASA — World Just Had Seven Months Straight of Record-Shattering Global Heat

It’s not just that we’re seeing record global heat. It’s that 2016’s jump in global temperatures may be the biggest single-year spike ever recorded. It’s that the world may never again see annual temperatures below 1 C above preindustrial averages. And it’s that this high level of heat, and a related spiking of atmospheric greenhouse gasses due to fossil fuel emissions, is now enough to begin inflicting serious harm upon both the natural world and human civilization.

Seven Straight Months of Record Heat

Last month was the hottest April in the global climate record. Not only was it the hottest such month ever recorded — it smashed the previous record by the largest margin ever recorded. And this April has now become the seventh month in a row in an unbroken chain of record global heat.

Stephan Rahmstorf Temperature anomaly

(When graphed, this is what the hottest April on record looks like when compared to other Aprils. Note the sharp upward spike at the end of the long warming progression. Yeah, that’s for April of 2016. Image source: Dr. Stephan Rahmstorf. Data source: NASA GISS.)

According to NASA GISS, global temperatures in April were 1.11 degrees Celsius (C) hotter than its 20th Century baseline average. When compared to preindustrial readings (NASA 1880s), temperatures have globally heated by a total of +1.33 C. And that’s a really big jump in global heat, especially when one considers the context of the last seven months. When one looks at that, it appears that global temperatures are racing higher with a fearful speed.

About this raging pace of warming, Andy Pitman, director of the ARC Centre of Excellence for Climate System Science at the University of New South Wales in Australia recently noted in the Guardian:

“The interesting thing is the scale at which we’re breaking records. It’s clearly all heading in the wrong direction. Climate scientists have been warning about this since at least the 1980s. And it’s been bloody obvious since the 2000s.”

Record Atmospheric Carbon dioxide levels

(Record atmospheric carbon dioxide levels, as seen in this Sunday May 15 Copernicus Observatory graphic, are the primary force driving an amazing spike in global temperatures during 2016. Image source: The Copernicus Observatory.)

Though 2016 is likely to be a record hot year, overall readings have moderated somewhat since earlier this year as El Nino has begun to fade. But that doesn’t mean we’re out of the danger zone. Quite to the contrary, we’re racing toward climate thresholds at a never-before-seen pace. And that’s really worrisome. Peak monthly readings this year hit a ridiculous +1.55 C above 1880s averages at the height of El Nino during February. And April’s current monthly record is now tied with January of 2016 in the NASA measure. In total, the first four months of 2016 now average +1.43 C above 1880s baselines or uncomfortably close to the +1.5  C mark established by scientists as the first of many increasingly dangerous climate thresholds.

According to Pitman:

“The 1.5C target, it’s wishful thinking. I don’t know if you’d get 1.5C if you stopped emissions today. There’s inertia in the system. It’s [now] putting intense pressure on 2C.”

And when mainstream scientists start to say things like that, it’s really time for the rest of us to take notice.

A Record Hot World Made by Fossil Fuel Burning and Consistent With Scientific Predictions

Looking at where the globe warmed the most, we find greatest extreme temperature departures during April were again centered over the climatologically vulnerable Arctic. Alaska, Northwest Canada, the Beaufort Sea, a huge section of Central Siberia, the West Coast of Greenland, the Laptev and Kara Seas, and a section of North Africa all experienced monthly temperatures in the range of 4 to 6.5 degrees Celsius above average. Monthly ranges that are screaming-hot. A notably larger region experienced significant heat with temperatures ranging from 2-4 C above NASA’s 20th Century baseline. Overall, almost every region of the world experienced above average readings — with the noted exceptions linked to extreme trough zones related to climate change altered weather patterns and ocean cool pools induced by warming-related glacial melt.

Record Global Heat April

(NASA’s picture of a world with a severe and worsening fever during a record hot April of 2016. Image source: NASA GISS.)

These counter-trend regions include the Greenland melt zone of the North Atlantic cool pool, the trough zone over Hudson Bay, the trough zone over the Northwest Pacific, and the oceanic heat sink zone that is the stormy Southern Ocean. Observed amplification of warming in the Northern Polar Region together with formation of the North Atlantic cool pool and the activation of the heat sink zone in the Southern Ocean are all consistent with global warming related patterns predicted by climate models and resulting from human fossil fuel burning pushing atmospheric CO2 levels well above 400 parts per million during recent years.

Record Heat Spurs Unprecedented Climate Disasters

This pattern of record global heat has brought with it numerous climate change related disasters. Across the Equatorial regions of the world, drought and hunger crises have flared. These have grown particularly intense in Africa and Asia. In Africa, tens of millions of people are now on the verge of famine. In India, 330 million people are under water stress due to what is likely the worst drought that nation has ever experienced. Australia has seen 93 percent its Great Barrier Reef succumb to a heat-related coral bleaching. And since the ocean heat in that region of the world has tipped into a range that will force more and more frequent bleaching events, it’s questionable if the great reef will even survive the next few decades.

Pittman in the Guardian again:

“The thing that’s causing that warming, is going up and up and up. So the cool ocean temperatures we will get with a La Niña are warmer than we’d ever seen more than a few decades ago … This is a full-scale punching of the reef system on an ongoing basis with some occasionally really nasty kicks and it isn’t going to recover.”

In Florida, ocean acidification due to fossil fuel emissions is providing its own punches and kicks to that state’s largest coastal reef. A different effect from warming, acidification is a chemical change caused by ocean waters becoming over-burdened with carbon. Kind of like a constant acid rain on the reef that causes the limestone it’s made out of to dissolve.

And if the above impacts aren’t enough to keep you awake at night, unprecedented May wildfires also forced the emptying of an entire city in Canada. Islands around the world are being swallowed by rising oceans due to ice sheet melt and thermal expansion. Cities along the US Atlantic and Gulf Coasts are experiencing ever-worsening tidal flooding events. Glacial melt in Greenland and Antarctica is accelerating. And the Arctic sea ice is so thin and melting so fast that some are questioning if any of it will survive come September.

La Nina is Coming, But it Won’t Help Much

It’s worth noting that global atmospheric temperatures will temporarily cool down from 2016 peaks as La Nina is predicted to settle in by this Fall. However, greenhouse gasses are so high and Earth’s energy balance so intense that the global ocean, ice and atmospheric system is still accumulating heat at an unprecedented rate. As La Nina kicks in, this extra heat will mostly go into the oceans and the ice as the atmosphere cools down a little — preparing for the next big push as El Nino builds once more.


(Global warming spirals toward dangerous climate thresholds. Graphic by climate scientist Ed Hawkins.)

This natural variability-based shift toward La Nina shouldn’t really be looked at as good news. A massive plume of moisture has risen off the global oceans during the current heat spike and as global temperatures cool, there’s increasing risk of very large flood events of a kind we’re not really used to. La Nina also produces drought zones — in particular over an already-suffering California — and the added warming from rising global temperatures will add to drought intensity in such regions as well.

With global temperatures predicted to hit around 1.3 C above preindustrial averages for all of 2016, it’s doubtful that the world will ever even again see one year in which temperatures fall below the 1 C climate threshold. And that means faster glacial ice melt, worsening wildfires, more disruption to growing seasons and crops, more extreme storms and rainfall events, faster rates of sea level rise, expanding drought zones, more mass casualty inducing heatwaves, expanding ranges for tropical diseases, increasing ranges for harmful invasive species, and a plethora of other problems. Over recent years, we’ve tipped the scales into dangerous climate change. And with global temperatures increasing so rapidly, we’re getting into deeper and deeper trouble.

In the end, our best hope for abating these worsening conditions is to rapidly reduce global carbon emissions to zero or net negative. Until we do that, there’s going to be a ramping scale of worsening impacts coming on down the pipe.



Dr. Stephan Rahmstorf

April Breaks Global Temperature Record

The Copernicus Observatory

Ed Hawkins

Hat tip to Suzanne

Hat tip to Colorado Bob

Hat tip to DT Lange



The Roof is On Fire — Looks like February of 2016 Was 1.5 to 1.7 C Above 1880s Averages

Before we go on to explore this most recent and most extreme instance in a long string of record-shattering global temperatures, we should take a moment to credit our climate change denier ‘friends’ for what’s happening in the Earth System.

For decades now, a coalition of fossil fuel special interests, big money investors, related think tanks, and the vast majority of the republican party have fought stridently to prevent effective action to mitigate the worst effects of climate change. In their mad quest, they have attacked science, demonized leaders, gridlocked Congress, hobbled government, propped up failing fossil fuels, prevented or dismantled helpful regulation, turned the Supreme Court into a weapon against renewable energy solutions, and toppled industries that would have helped to reduce the damage.

Through these actions, they have been successful in preventing the necessary and rapid shift away from fossil fuel burning, halting a burgeoning American leadership in renewable energy, and in flooding the world with the low-cost coal, oil, and gas that is now so destructive to Earth System stability. Now, it appears that some of the more dangerous impacts of climate change are already locked in. So when history looks back and asks — why were we so stupid? We can honestly point our fingers to those ignoramuses and say ‘here were the infernal high priests who sacrificed a secure future and our children’s safety on the altar of their foolish pride.’

Worst Fears For Global Heating Realized

We knew there’d be trouble. We knew that human greenhouse gas emissions had loaded the world ocean up with heat. We knew that a record El Nino would blow a big chunk of that heat back into the atmosphere as it began to fade. And we knew that more global temperature records were on the way in late 2015 and early 2016. But I have to say that the early indications for February are just staggering.

Extreme Global Warming

(The GFS model shows temperatures averaged 1.01 C above the already significantly hotter than normal 1981-2010 baseline. Subsequent observations from separate sources have confirmed this dramatic February temperature spike. We await NASA, NOAA, and JMA observations for a final confirmation. But the trend in the data is amazingly clear. What we’re looking at is the hottest global temperatures since record keeping began by a long shot. Note that the highest temperature anomalies appear exactly where we don’t want them — the Arctic. Image source: GFS and M. J. Ventrice.)

Eric Holthaus and M. J. Ventrice on Monday were the first to give warning of an extreme spike in temperatures as recorded by the Global satellite record. A slew of media reports followed. But it wasn’t until today that we really began to get a clear look at the potential atmospheric damage.

Nick Stokes, a retired climate scientist and blogger over at Moyhu, published an analysis of the recently released preliminary data from NCAR and the indicator is just absolutely off the charts high. According to this analysis, February temperatures may have been as much as 1.44 C hotter than the 1951 to 1980 NASA baseline. Converting to departures from 1880s values, if these preliminary estimates prove correct, would put the GISS figure at an extreme 1.66 C hotter than 1880s levels for February. If GISS runs 0.1 C cooler than NCAR conversions, as it has over the past few months, then the 1880 to February 2016 temperature rise would be about 1.56 C. Both are insanely high jumps that hint 2016 could be quite a bit warmer than even 2015.

It’s worth noting that much of these record high global temperatures are centered on the Arctic — a region that is very sensitive to warming and one that has the potential to produce a number of dangerous amplifying feedbacks. So we could well characterize an impending record warm February as one in which much of the excess heat exploded into the Arctic. In other words — the global temperature anomaly graphs make it look like the world’s roof is on fire. That’s not literal. Much of the Arctic remains below freezing. But 10-12 C above average temperature anomalies for an entire month over large regions of the Arctic is a big deal. It means that large parts of the Arctic haven’t experienced anything approaching a real Arctic Winter this year.

Looks Like The 1.5 C Threshold Was Shattered in the Monthly Measure and We May Be Looking at 1.2 to 1.3 C+ Above 1880s For all of 2016

Putting these numbers into context, it looks like we may have already crossed the 1.5 C threshold above 1880s values in the monthly measure during February. This is entering a range of high risk for accelerating Arctic sea ice and snow melt, albedo loss, permafrost thaw and a number of other related amplifying feedbacks to a human-forced heating of our world. A set of changes that will likely add to the speed of an already rapid fossil fuel based warming. But we should be very clear that monthly departures are not annual departures and the yearly measure for 2016 is less likely to hit or exceed a 1.5 C departure. It’s fair to say, though, that 1.5 C annual departures are imminent and will likely appear within 5-20 years.

If we use the 1997-1998 El Nino year as a baseline, we find that global temperatures for that event peaked at around 1.1 C above 1880s averages during February. The year, however, came in at about 0.85 C above 1880s averages. Using a similar back of napkin analysis, and assuming 2016 will continue to see Equatorial sea surface temperatures continue to cool, we may be looking at a 1.2 to 1.3 C above 1880s average for this year.


(El Nino is cooling down. But will it continue to linger through 2016? Climate Prediction Center CFSv2 model ensembles seem to think so. The most recent run shows the current El Nino restrengthening through Fall of 2016. Such an event would tend to push global annual temperatures closer to the 1.5 C above 1880s threshold. It would also set in place the outside potential for another record warm year in 2017. It’s worth noting that the NOAA consensus is still for ENSO Neutral to weak La Nina conditions by Fall. Image source: NOAA’s Climate Prediction Center.)

NOAA is currently predicting that El Nino will transition to ENSO neutral or a weak la Nina by year end. However, some model runs show that El Nino never really ends for 2016. Instead, these models predict a weak to moderate El Nino come Fall. In 1998, a strong La Nina began to form — which would have helped to suppress atmospheric temperatures by year-end. The 2016 forecast, however, does not seem to indicate quite as much atmospheric cooling assistance coming from the world ocean system. So end 2016 annual averages may push closer to 1.3 C (or a bit higher) above 1880s levels.

We’ve Had This Warming in the System for a While, It was Just Hiding Out in the Oceans

One other bit of context we should be very clear on is that the Earth System has been living with the atmospheric heat we’re now seeing for a while. The oceans began a very rapid accumulation of heat due to greenhouse gas emissions forcing during the 2000s. A rate of heat accumulation in the world’s waters that has accelerated through to this year. This excess heat has already impacted the climate system by speeding the destabilization of glaciers in the basal zone in Greenland and Antarctica. And it has also contributed to new record global sea ice losses and is a likely source of reports from the world’s continental shelf zones that small but troubling clathrate instabilities have been observed.

Nature Global Ocean Heat Accumulation

(Global ocean heat accumulation has been on a high ramp since the late 1990s with 50 percent of the total heat accumulation occurring in the 18 years from 1997 though 2015. Since more than 90 percent of the greenhouse gas heat forcing ends up in the world ocean system, this particular measure is probably the most accurate picture of a rapidly warming world. Such a swift accumulation of heat in the world’s oceans guaranteed that the atmosphere would eventually respond. The real question now is — how fast and far? Image source: Nature.)

But pushing up atmospheric heating will have numerous additional impacts. It will put pressure on the surface regions of global glaciers — adding to the basal melt pressure jump we’ve already seen. It will further amplify the hydrological cycle — increasing the rates of evaporation and precipitation around the world and amplifying extreme droughts, wildfires and floods. It will increase peak global surface temperatures — thereby increasing the incidence of heatwave mass casualty events. It will provide more latent heat energy for storms — continuing to push up the threshold of peak intensity for these events. And it will help to accelerate the pace of regional changes to climate systems such as weather instability in the North Atlantic and increasing drought tendency in the US (especially the US Southwest).

Entering the Climate Change Danger Zone

The 1-2 C above 1880s temperatures range we are now entering is one in which dangerous climate changes will tend to grow more rapid and apparent. Such atmospheric heat has not been experienced on Earth in at least 150,000 years and the world then was a much different place than what human beings were used to in the 20th Century. However, the speed at which global temperatures are rising is much more rapid than anything seen during any interglacial period for the last 3 million years and is probably even more rapid than the warming seen during hothouse extinction events like the PETM and the Permian. This velocity of warming will almost certainly have added effects outside of the paleoclimate context.

Arctic Degree Days Below Zero Anomaly

(Anyone looking at the temperature anomaly graph on the top of this post can see that a disproportionate amount of the global temperature anomaly is showing up in the Arctic. But the region of the High North above the 80 degree Latitude line is among the regions experiencing global peak anomalies. There, degree days below freezing are at the lowest levels ever recorded — now hitting a -800 anomaly in the Arctic record. In plain terms — the less degree days below freezing the High Arctic experiences, the closer it is to melting. Image source: CIRES/NOAA.)

One final point to be clear on is then worth repeating. We, by listening to climate change deniers and letting them gum up the political and economic works, have probably already locked in some of the bad effects of climate change that could have been prevented. The time for pandering to these very foolish people is over. The time for foot-dragging and half-measures is now at an end. We need a very rapid response. A response that, at this point, is still being delayed by the fossil fuel industry and the climate change deniers who have abetted their belligerence.


The Old Normal is Now Gone


Hot, Hot, Hot

Michael J. Ventrice

No Winter for the Arctic in 2016

Big Jump in Surface and Satellite Temperature Measures

NOAA’s Climate Prediction Center

Industrial Era Global Ocean Heat Uptake Doubles in Recent Decades


Republican Governors Sue to Stop Clean Power Plan


A World Where Heat Haunts Us — 2015 May See Worst El Nino Ever as Global Temperatures Rocket Past 1 C Mark

It’s a world that’s adding more than 50 billion tons of carbon dioxide equivalent gasses to the atmosphere every single year. It’s a year where, according to Ralph Keeling, we are likely to never see atmospheric CO2 levels in the 300-399 parts per million range ever again in our lifetimes. And it’s a time when global temperatures are at their hottest ever recorded by human instruments — likely to hit a very dangerous range between  1 and 1.2 C hotter than 1880s averages during 2015 and 2016.

Tracking the 2 C limit

(As of August 2015, 12 month averages were in the range of 0.926 C below the so called ‘safe limit’ of 2 C warming since 1880. What may become the worst El Nino on record may combine with a growing overburden of human hothouse gasses to push global temperatures to within between 0.9 to 0.8 C of the +2 C limit during 2015 and 2016. For reference, the current pace of warming at approx 0.17 C per decade is more than 25 times faster than at the end of the last ice age. Image source: Skeptical Science.)

This is the context we all live in today. A world that’s sweltering in a toxic atmospheric stew of human hothouse gas emissions. But underneath that heat-amplifying context, the traditional ebb and flow of natural variability still has its own set of influences. And this year, the warm side of natural variability — in what may become the strongest El Nino ever recorded — is coming back to haunt us with a vengeance.

Previous Worst El Nino On Record

Forget the so called ‘2 C safe limit’ set by international government bodies for a moment and think about all the extreme weather, the droughts, the wildfires, the loss of access to water, the increasing rates of sea level rise, the increasing rates of glacial destabilization, and the rapid declines in ocean health that have all happened since 1997 — the previous worst El Nino year on record.

Back then, atmospheric CO2 levels had just breached the 360 parts per million mark. And, in that year a powerful El Nino — the peak of the natural variability hot side — shoved global temperatures into the range of 0.85 C above 1880s averages. It was the strongest El Nino ever recorded in the modern age. And it was occurring in a climate in which greenhouse gas concentrations were the highest seen in about 1 million years. It was a confluence of forces that propelled the Earth toward a new, more violent climate state. One not seen for millennia and one that was increasingly outside the ice-age and inter-glacial norm in which human beings evolved and learned to flourish.

Over the 2000s and early 2010s, despite a swing in atmospheric natural variability back toward ‘cool,’ negative PDO, conditions, global temperatures continued to climb. Greenhouse gasses were building up in the atmosphere at record rates. Rates about 6 times faster than during the Permian hothouse extinction event that wiped out 75 percent of life on land and more than 90 percent of life in the oceans. As a result, new global high temperature records were hit in 2005 and 2010 even as the oceans drew in a massive amount of atmospheric heat. Heat that, according to Dr, Kevin Trenberth, would again back up into the atmosphere as the natural limits for ocean heat uptake were eventually reached.

By 2014, as CO2 levels climbed into the 400 parts per million range and atmospheric heat uptake built, it appeared those limits had, indeed, been overwhelmed. Heat in the upper Equatorial Pacific Ocean began to spike as massive and powerful Kelvin Waves rippled across the world’s largest ocean, setting the stage for a new, monster El Nino. An El Nino that appeared to be building toward an event that would rival even the record 1997 El Nino.

2015 El Nino May Become Worst Ever Over Next Few Weeks

At first, the climb toward a record El Nino was slow. Even as ocean heat hit El Nino thresholds during the summer of 2014, the atmospheric response lagged — resulting in a steady climb into weak El Nino conditions through early 2015. Despite this slow advance, underlying conditions hinted at an extreme amount of available heat. The Oceanic hot pool was widespread and very intense — generating a heat bleed that pushed global atmospheric temperatures to new records for the year of 2014 and intensifying into 2015. By late Fall of 2015, atmospheric temperatures had rocketed into a range near 1.1 C above 1880s averages. But the top of the temperature spike was likely still to come.

For throughout October El Nino continued to strengthen, reaching a new height of 2.5 C above average in the benchmark Nino 3.4 zone last week. This temperature spike is comparable to a record in the same region at 2.7 C above average for peak weekly values during the 1997 El Nino.


(Setting up for a strongest El Nino on record? Global climate measures now show the Equatorial Pacific is becoming hot enough to challenge ocean surface temperature records previously set by the 1997 El Nino. If new record values are set, they could occur by early to mid November. Ocean temperature anomaly image source: Earth Nullschool.)

Unfortunately, heat continues to build in this benchmark region of the Pacific. A rudimentary grid analysis of ocean models and readings for this week indicate daily measures in the range of 2.5 to 2.8 C above average. Daily measures that show a consistent warming trend. A trend that, if it continues, is likely to push Nino 3.4 temperatures into a range comparable with or exceeding the 1997 El Nino high temperature mark by early-to-mid November.

In other words, the 2015 Monster El Nino event appears to be setting up to tie or beat the record-shattering 1997 El Nino over the next few weeks.

Max Temperature Spike is Coming

Regardless of whether we see the 1997 record shattered, it is likely that heat bleeding off the current Monster El Nino will continue to amplify atmospheric temperatures on through early Spring of 2016. What this means is that we haven’t seen the hottest global temperatures out of this event yet. Preliminary estimates for October are coming in the range of 1.1 to 1.3 C+ above 1880s values. Meanwhile, a peak in atmospheric temperature is likely to occur within 1-4 months after El Nino itself peaks. So though 2015 has been a record breaker so far, we may see global heat intensifying through to 2016 with new monthly temperatures testing never before seen ranges. This added heat provided from a Monster El Nino makes it a distinct possibility that we will see three back-to-back record hot years — 2014, 2015, and 2016.


Is This the Last Year Below 400 ppm CO2?

Global Development of Policy Regimes to Combat Climate Change

Deep Ocean Warming Coming Back to Haunt Us

Monster El Nino Emerging From the Depths


Skeptical Science

NOAA’s Weekly El Nino Report

Earth Nullschool

NASA: Monster El Nino + Climate Change Means ‘Not Normal’ Winter is On the Way

“Over North America, this winter will definitely not be normal. However, the climatic events of the past decade make ‘normal’ difficult to define.”  — Bill Patzert, climatologist at NASA’s JPL speaking in Earth Observatory today.


It’s official, as of this Monday’s weekly NOAA ENSO report, a still growing 2015 El Nino had taken yet one more step into monster event territory. Hitting a +1.5 C sea surface temperature anomaly in the benchmark Nino 3.4 zone over the period of July through September even as weekly values rocketed to an amazing +2.4 C above average, the 2015 El Nino heightened yet again — making a substantial jump in overall ocean heat content. But according to a recent report out of NASA’s Earth Observatory, it appears we’re just beginning to see the full potential of this thing.

As Big or Bigger in Ocean Heat Content Than 1997-1998

For the 2015 El Nino, an event that NASA scientists are now calling ‘too big to fail,’ appears bound to continue strengthening through late Fall and Early Winter. Growing into a climate and weather wrenching oceanic and atmospheric heavyweight that will significantly impact North American weather patterns during the Winter of 2015-2016. This extreme climate event — which is currently building to an extraordinary ocean heat content anomaly in the Central and Eastern Pacific — is now comparable to the top three strongest El Ninos on record. In other words, and according to NASA: “El Niño is strengthening and it looks a lot like the strong event that occurred in 1997–98.”

Sea surface height anomalies

(Sea surface height anomaly graphic provided by NASA shows a pattern very similar to 1997. Positive ocean surface height anomalies, indicated in red above, are the hallmark of an El Nino that is currently ranked among the top three strongest events observed for October. Image source: NASA.)

Ocean surface heights, as seen in the Earth Observatory graphic above, now show a pattern very similar to the monster 1997-1998 El Nino.

In a typical El Nino, Kelvin Waves transfer Equatorial Pacific Ocean heat from west to east which in turn sets off a rise in sea surface heights by thermally expanding the water column throughout the traditional Nino zones. And during the Fall of 2015 what we’re seeing is a big thermal and related ocean surface bulge swelling seas throughout the Eastern and Central Equatorial Pacific. To this point, Earth Observatory notes: “October sea level height anomalies show that 2015 is as big or bigger in heat content than 1997.”

Strong Westerly Wind Burst Lends More Energy to El Nino

Supporting NASA’s conclusions that El Nino intensity during 2015-2016 may hit near or beyond the top of the chart is a recent intensification of westerly winds over the Western Equatorial Pacific. Throughout 2014 and growing into 2015, these westerly wind bursts have fed El Nino by pushing warmer, Western Pacific waters eastward — thus increasing ocean heat content in the El Nino zone to near record levels.

Over the past week, another very strong westerly wind burst was again supplying El Nino with a warm water recharge. By tomorrow, the Global Forecast System model shows not one but four cyclones driving a strong westerly wind pattern from the Philippines all the way to the Date Line:


(Yet one more strong westerly wind burst is providing the already powerful 2015 El Nino with another boost. Note the extensive reverse trade wind pattern stretching all the way to the Date Line. Image source: Earth Nullschool.)

It’s a pretty significant westerly wind pattern — near to par with some of the related weather events (MJO) earlier this year that were among the strongest in the meteorological record. These winds will rise to near gale-force gusts in some regions and provide a dominant fetch from west to east across a 1,500 mile section of Pacific Ocean. According to NASA:

“This [weakening of the trades] should strengthen this El Niño. All multi-model averages predict a peak in late fall/early winter. The forecaster consensus unanimously favors a strong El Niño…Overall, there is an approximately 95 percent chance that El Niño will continue through Northern Hemisphere winter 2015–16.”

Not Normal Winter Weather on the Way

A typical powerful El Nino of this kind would tend to drive a very intense train of moisture into the West Coast of the US, make for a cool and very wet winter across the southern US, and drive warmer temperatures and drier conditions across the northern tier. Climatologists, however, are uncertain how interactions between the current powerful El Nino and a globally changing weather pattern set off by a human-forced warming of the atmosphere to 1 C above 1880s levels (or about 1/4th the difference between the 20th Century and the last ice age, but on the side of hot) will interact.

Very warm sea surface temperatures, likely due to both a climate change-forced heating of ocean surface waters and a weakening of the Gulf Stream, off the Eastern Seaboard hint that storms along the US East Coast and particularly for the US Southeast may hit extreme intensity if an El Nino associated trough digs in. Meanwhile extraordinarily intense sea surface temperature anomalies in the range of +2 to near +6 C above average off the US West Coast associated with a ‘hot blob’ that has lingered in this region for many seasons has caused some to question whether California will see the high intensity rainfall events typical of powerful El Ninos during the latter half of the 20th Century.


(Extreme sea surface temperatures off the US West Coast can generate a kind of atmospheric inertia in which high pressure systems tend to develop — deflecting or weakening storms moving across the meridional Pacific northward toward Canada, Alaska and even the Polar region. Alternatively, an El Nino strong enough to over-ride this ocean and atmospheric block is likely to generate some very extreme storms — spurring events possibly exceeding those in the modern climate record. Image source: Earth Nullschool.)

For the US West Coast, the region may be balancing on a razor’s edge. If El Nino is strong enough to overwhelm the atmospheric and ocean inertia generated by the hot blob, storms running into that region could be extremely intense. On the other hand, if the hot blob holds or deflects the moisture stream northward, California may not see a drought-busting delivery of rainfall (See Godzilla El Nino vs the Hot Blob).

To this point, we’ll leave Earth Observatory with the next to last word:

“[The] elements of our changing climate are too new to say with certainty what the winter will bring.”

A pretty significant statement when one begins to fully take in its meaning — that climate change may be starting to set weather forecasting out of the context of the latter 20th Century. That it’s NASA’s view that aspects of modern weather prediction for El Nino events may have already been set off kilter by ‘elements of our changing climate.’

New Global Temperature Records For 2015 Likely a Lock

But what we do know is that the ocean-to-atmosphere heat back-up generated by what could be a record El Nino, when combined with the enormous added heat forcing provided by human fossil fuel emissions, will almost certainly set new global high temperature records for 2015 and possibly for 2016. This, unfortunately, means that we’ve already started on a dangerous path toward the far more disruptive +1.5 and +2 C above 1880s benchmarks. A range that many scientists associate with a greatly increased risk of hitting climate tipping points.


Earth Observatory: El Nino Strengthening

Monster El Nino Emerging From the Depths

NOAA’s Weekly El Nino Report

Earth Nullschool

Godzilla El Nino vs the Hot Blob

Dr. Lenton’s (somewhat conservative) Exploration of Climate Tipping Points

Climate Change’s Hot Blob Still Blankets Northeastern Pacific

Halfway to 2 C

Nasty Signs North Atlantic Overturning Circulation is Weakening

No Pause — NASA Shows Human Hothouse Maintaining Record High Temperatures for 2015

GISS Pulse

(What 2015 temperatures would look like on the annual graph if the +0.79 C departure maintained throughout the present year. Problem is, there’s at least some risk warming could intensify. Image from Tamino’s recent blog post which, justifiably, rips the fussy math of Anthony Watts and ‘friends’ into tiny little pieces.)

It’s an El Nino year. It’s a year in which global CO2 averages are hitting above 400 parts per million for the first time in at least 3 million years. And it’s a year in which CO2 equivalent values for all greenhouse gasses (including methane, nitrogen compounds and other exotic heat trapping gasses) that humans have emitted are nearing 485 parts per million.

Added together — the equatorial Pacific Ocean taking a break in its duties as atmospheric heat sink (El Nino) combined with the immense volume of heat trapping gasses human beings have now loaded into the atmosphere — it’s more than enough to force global temperatures into territory likely not seen since the Eemian interglacial period 150,000 years ago.

Temperatures Continue March into Eemian Ranges

And NASA GISS, in its monthly report, is showing global temperatures that are edging into the Eemian range. First, April of 2015 came in at 0.75 Celsius (C) hotter than NASA’s global 20th Century benchmark (0.95 C hotter than 1880). This represents the second hottest value for April on record in the entire 135 year climate record, coming in just a bit cooler than the 0.83 C departure for 2010. Meanwhile, hindsight adjustments have found that the January-through-March period was warmer than earlier indicated — with new departures hitting +0.76 (Jan), +0.80 (Feb), and +0.85 (Mar).

Combined, the average of these first four months is +0.79 C above 20th Century measures. Or about +0.99 C above 1880s values. This puts us well outside the context of the 10,000 year period beginning at the end of the last ice age (Holocene) and edges us into a range more typical to the Eemian. A time when sea levels were between 6 and 8 meters (20-25 feet) higher than today.

Polar Amplification and the Greenland Cool Pool

Looking at the global temperature anomaly map provided by NASA, we can see where much of this extra heat accumulated throughout April:

Global Temps NASA April 2015

(NASA GISS global temperature anomalies map for April of 2015. Image source: NASA.)

Here we find that polar amplification for the upper Northern Hemisphere latitudes was continuing to hit high marks. Broad south-to-north wind flows over central Asia drove a powerful warming spanning up from Lake Baikal in Russia, on through Central Siberia, up over the Yamal region and into the High Arctic. Average temperatures for the month in this zone ranged from 2 C to as high as 6.9 C above average. Another zone of extreme warmth sprawled out over Western North America and into the Beaufort and Chukchi Sea regions. There, temperatures ranged between 1-4 C above 20th Century averages.

Other notable warm regions included the Equatorial Pacific — showing a band of 1-2 C departures in association with a developing El Nino — and the West Antarctic Peninsula, which saw heating in the range of 2-4 degrees Celsius above average for most of the month.

Overall, most of the globe showed above average readings with cool pools relegated to isolated regions. In particular, the distribution of cool temperatures near Greenland is somewhat disturbing. It’s an indication of increased glacial melt outflows from Greenland ice sheets into the North Atlantic. It’s also a validation of climate model analysis of human-caused global warming — which indicated cooling near Greenland due to a combination of ice sheet and ocean responses to heating the Earth-Ocean System. The ocean response — a dangerous slowing of Atlantic thermo-haline circulation — was also identified in a recent paper by Rahmstorf.

Zonal anomalies April of 2015

(NASA Latitudinal temperature anomalies again shows strength of Northern Hemisphere polar amplification. Image source: NASA.)

NASA zonal anomalies also continue to validate climate model predictions for human-caused warming. Here we find the predicted extreme polar amplification — more rapid warming of the Northern Hemisphere polar zone than the rest of the world — clearly indicated. There, in the 60-90 North Latitude zone we find temperatures ranging from 1-3.5 Celsius above the 20th Century global average. A rate of warming far exceeding any other region.

All other Latitudinal zones show about a +0.75 C above average temperature departure. The first noted exception is the heat sink in the Southern Ocean (at -0.5 to +0.5 C in this measure) which continues to uptake atmospheric heat, transfer it to the middle ocean and, by Ekman pumping through storm action, deliver it exactly where it is least needed — along the basal regions of various melting Antarctic ice shelves. The second is marked by a zone of March-April storm intensification along the Antarctic Continent and Southern Ocean boundary centering at 75 degrees South (-0.5 to -1 C).

Conditions in Context

Overall, temperatures at +0.99 degrees Celsius above 1880s averages for the first four months of 2015 should be cause for concern. We still have El Nino ramping up in the Pacific. And with some models showing the event could be quite powerful, the added boost to global heating we are seeing now could well ramp higher later this year. In addition, we are entering an Arctic melt season that is showing some risk of pushing Arctic sea ice into new record lows — at least early in the melt season. Such an event would further tilt the globe toward record heat by reducing ice-based light and heat reflectivity in the Arctic at times of 24 hour sunlight (May through July).

As such, there is risk that already record warming seen since 2014 and into 2015 could continue and, potentially, ramp higher through the end of this year.



Standing on the Shores of Disaster

A Faustian Bargain on the Short Road to Hell

Catch 22 No 1

Steaming Equatorial Pacific Sees Winds Blowing Toward Monster El Nino

World Ocean Heartbeat Fading

Onrush of Second Monster Kelvin Wave Raises Specter of 2015 Super El Nino

And so it appears we are living in a time of Monster Kelvin Waves — powerful confluences of Pacific Ocean heat running just beneath the surface — bringing with them the potential for both record global temperature spikes and strong, climate-wracking El Nino events.

*   *   *   *   *

Last year, a powerful pulse of sub-surface heat called a Kelvin Wave rippled across the Equatorial Pacific. It shoved sub-surface temperature anomalies into an extreme range of 6 degrees Celsius above average at a depth of 90-130 meters over an equatorial zone stretching out for hundreds of miles. Overall, this heat surge pushed anomalies below the rippling waves of the vast Equatorial Pacific from New Guinea to the Central American Coastline above 1.8 degrees C hotter than average.


(Building heat in Pacific Equatorial Surface waters on April 9 of 2015 — a sign of a massive pulse of hotter than normal water running at about 100 meters depth. A heat pulse that may be setting in place conditions for a powerful El Nino later this year. Image source: Earth Nullschool. Data Source: Global Forecast System Model.)

This immense heat pulse was enough to shove the equatorial region inexorably toward El Nino status. By September, mid-ocean values were hot enough to have reached the critical threshold of 0.5 C above surface value average. Perhaps more importantly, the Winter/Spring 2014 Kelvin Wave also contributed to record positive PDO values for the Pacific by December of 2014. A surface heat departure that was unprecedented to modern climates. Block-busting ocean warmth that almost certainly spurred 2014 global atmospheric temperatures to new all-time record highs in the current age of human warming.

Monster Kelvin Wave Redux

Now, a second, and equally strong monster Kelvin Wave is again rippling across the Pacific Ocean subsurface zone. A powerful pulse of heat that will reinforce the current weak, mid-ocean El Nino, lend energy to ridiculously warm Pacific Ocean sea surface states, and pave the way for a long-duration equatorial heat spike.

monster kelvin wave redux

(Monster Kelvin Wave Redux. A second powerful Kelvin Wave is surging across the Pacific Equatorial Subsurface zones, strengthing prospects for both a continued El Nino and for a record hot year in 2015. Image source: NOAA/CPC.)

As we can see in the NOAA CPC rendering above, the current Kelvin Wave is a massive and extraordinarily warm beast of a thing. It encompasses most of the thousands-miles broad Equatorial Pacific with its hottest zone peaking at 5-6 degrees Celsius above average temperatures — a region that stretches from near the Date Line all the way to just west of Central America. At +1.75 C for the entire below-surface equatorial region, the current Kelvin Wave is already approaching last year’s peak values. Values it may well exceed in the coming days.

Overall, the current Kelvin Wave seems to have more connection to the surface environment than last year’s powerful surge. A massive plug of Pacific Ocean heat readying to belch back into the atmosphere.

Some Models Show Potential For Super El Nino

Already, NOAA is upping its forecast chances for El Nino to continue through summer to 70 percent and is placing a greater than 60 percent chance that El Nino will stretch on through late autumn. An upshot from earlier predictions made just a little more than a month ago that El Nino formation for 2015 remained uncertain. Now, we have a rather high certainty that El Nino will continue throughout at least the next 4-6 months.

But perhaps more concerning is the fact that a strong El Nino is again starting to show up in some of the long range models. NOAA’s CFS ensemble shows El Nino continuing to steadily strengthen throughout 2015 reaching overall Nino 3.4 surface values above +2.1 C by October, November and December of this year:



(Top frame shows predicted sea surface temperature anomalies in the critical Nino 3.4 zone exceeding 2.2 C by late 2015. Such an event would be a monster to rival or possibly exceed 1998. The lower frame shows sea surface temperature departures for the entire globe. Note the seasonal spike of 2-3+ C above average for the Eastern Equatorial Pacific. Image Source: NOAA’s Seasonal Climate Forecast.)

The departures we see in this long range forecast are extraordinary — rivaling or possibly exceeding the intensity of the 1998 Super El Nino. An event of this kind would result in powerful ocean and atmospheric surface temperature spikes, catapulting us well beyond the climate range previously established by the 1998 event. Globally, we would be entering new, record hot territory, possibly approaching 1 C above 1880s values for the 2015-2016 period.

Troubling Situation With High Uncertainty

As such, we should consider this to be a troubling situation, in need of close, continued monitoring. To this point, it is worth noting that El Nino prediction during Spring is highly uncertain. Last year’s very strong Kelvin Wave also set off predictions for a moderate-to-strong El Nino event by summer-through-fall. Though El Nino did eventually emerge, it was weaker and later in coming than expected. Now, a new set of conditions is setting up similar, and perhaps, even more intense ocean and atmosphere heat potentials.

Though still uncertain, what we observe now are ocean conditions that raise potentials for both extreme El Nino and human-warming related weather. Powerful ocean heat pulses of the kind we observe now, when combined with an extraordinary human greenhouse gas heat forcing, also increases the likelihood of another record warm year. El Nino associated droughts and heatwaves — particularly for South America, India, Australia and Europe through Central Asia are at rising risk. In the event of mid-ocean El Nino, the risk increases that the 1200 year California drought will continue or even intensify. If the heat pulse shifts eastward, a switch to much heavier rainfall (potentially terribly heavy) could coincide with a breaking of the Ridiculously Resilient Ridge pattern that has warded moisture away from the US West Coast for nearly three years. Extra heat of this kind would also tend to enhance precipitation extremes — more rain when it does rain and far more intense drought in areas affected by heat and atmospheric ridging.

Given the patterns we have observed over the last year, we could expect worsening conditions for some regions (India, Australia, some sections of South America, Eastern Europe) and the potential for a shift from one extreme to the next for other regions (US West Coast). These potentials depend on the disposition and intensity of surface heat in the Pacific, which bears an even closer watch going forward.


NOAA’s Climate Prediction Center

NOAA’s April 9 El Nino Statement

NOAA’s Seasonal Climate Forecast

Earth Nullschool

Global Forecast System Model

Monster El Nino Emerging From the Depths?

Atmospheric Warming to Ramp up as PDO Swings Positive?

Buffalo’s Climate Change Driven Mega Snow-Flood

Earlier this week something rather interesting and disturbing happened to the Jet Stream.

In the extreme northwest, a large heat pool over Alaska and the Beaufort Sea in the Arctic Ocean kept temperatures in the range of 10 to 36 degrees Fahrenheit above average. To the south, a powerful super typhoon, gorged on Pacific Ocean waters ranging from 1-2 C hotter than normal, raced into the extratropical region of the Central and Northern Pacific. And to the north and east, the cold core that normally resides over the North Pole began slipping south.

Arctic Anomaly Map

(Massive warm air invasion of the Arctic earlier this week led to a major polar vortex disruption driving cold air out of the Arctic and setting off record snowfall in the region of Buffalo, New York. Image source: Climate Reanalyzer.)

As the supertyphoon’s remnants hit the warm weakness in the Jet Stream near Alaska, it bombed out into a monster extra-tropical low. This kicked warm air even further north, causing a whiplash in the Jet and driving the cold air core south over Canada.

Cold air rocketed down over the relatively warm waters of the Great Lakes. These waters, having soaked up the heat of yet another hotter than average American October and early November, squeezed an epic amount of moisture and storm feeding energy out into the air. Over the past two days, the result was as kind of thundersnow storm that parked itself in one location, dumping foot after foot of snow. By the time the final tally was counted this morning, as much as 8 feet had fallen over Buffalo New York. A record amount never before seen in so short a time span and yet so far ahead of winter.

More than seven deaths, multiple building collapses, a paralyzation of transportation, and extraordinary damages prompted the New York State governor to declare a state of emergency.

Yes, Climate Change Has Put the Weather on Steroids

All these events occurred in the context of a climate increasingly distorted by human-caused warming. The Northern Hemisphere during this week has averaged over 1 degree C hotter than normal. And the Arctic has averaged at around 2.5 degrees C hotter than normal.

In this mix of climate change driven extreme weather soup, that warming Arctic is critical. It provided the weakness in the Jet Stream for a supertyphoon’s remnants to exploit. It provided a wobbly polar vortex all too ready to make another charge south over North America. And the super-hot equatorial waters of the Pacific added yet more energy to this stoked and building climate fire.

Cold Snow to Turn to Warm Flood

But the tale of climate change driven extreme weather isn’t over by a long shot. The cold dipole which drove over the Great Lakes earlier this week was anything but stable. Now, warmth is surging north over the US heartland springing up from the hot pools of the Gulf of Mexico and the Eastern Pacific. It is producing a warm frontal boundary that is now driving across the US heartland. By Saturday and Sunday, it will dump a warming rain over Buffalo’s 7-8 feet of snowpack.

Temperatures are expected to climb into a much warmer than normal range of 50 degrees F by Saturday. By Sunday, the heat will build to 15-20 degrees above average reaching as high as 60 degrees F in the forecast.

Buffalo Warm Up

(Sunday GFS model forecast shows temperatures at +15 to +20 degrees Fahrenheit above average for the Buffalo region. The added high temperatures are expected to coincide with rainfall and potential major flooding from the melt of a massive 8 feet of snow in some areas. Image source: Climate Reanalyzer. Note that global temperatures in both maps are in the range of 0.39 to 0.51 C above the already hotter than normal 1979 to 2000 average.)

The snow pack is first expected to ripen, then flood away under the rising heat and a half inch to two inches of rainfall. The impact to Buffalo’s infrastructure could again be quite extraordinary. Between 9 and 15 inches worth of liquid water are locked in all that snow. Its sudden release into a landscape of clogged storm drains and choked roads is expected to provide an extraordinary flood risk. And massive piles of snow over buildings collecting more water will increase further risk of building collapse.

As of now, the National Weather Service has posted a Flood Watch — which means extreme conditions may begin in as little as six hours.

Conditions in Context

Radical swings between weather extremes like those experienced by Buffalo this week are exactly the type of climate alterations we would expect as a result of human caused warming. These impacts occur in the context of a world that is now experiencing its hottest year on record globally. A place of increasingly intense droughts, rainfall, and snowfall events. A world in which the Northern Hemisphere Jet Stream is increasingly distended as air over the Arctic warms much faster than the rest of the globe.

Such extremes in weather have been predicted by climate scientists to result from human-caused warming. And we are beginning to see the start, the milder outliers, of these predicted extremes set off by the human heat forcing now. Further heightening Arctic warming, or worse, increasing cold water outflows from melting ice sheets over Greenland, will almost certainly set off far more extreme weather than what we are seeing now.

Message to climate change deniers — this serves as a warning to you. Turn back.


Climate Reanalyzer

National Weather Service Flood Watch

Dr. Jennifer Francis on How Polar Amplification Mangles the Jet Stream

There’s Growing Evidence That Global Warming is Driving Crazy Winters

Flood, Roof Collapse Fears as Snows End for Buffalo

Global Sea Surface Temperatures Increase to Extraordinary +1.25 C Anomaly as El Nino Tightens Grip on Pacific

On May 22nd, 2014, global sea surface temperature anomalies spiked to an amazing +1.25 degrees Celsius above the, already warmer than normal, 1979 to 2000 average. This departure is about 1.7 degrees C above 1880 levels — an extraordinary reading that signals the world may well be entering a rapid warming phase.

SST anomaly May 22

(Global Sea Surface Temperature Anomalies per GFS Model on May 22, 2014. Image source: University of Maine.)

It is very rare that land or ocean surface temperatures spike to values above a +1 C anomaly in NOAA’s Global Forecast System model summary. Historically, both measures have slowly risen to about +.35 C above the 1979 to 2000 average and about +.8 C above 1880s values (land +1 C, ocean +.6 C). But since late April, sea surface temperatures have remained in a range of +1 C above 1979 to 2000 values — likely contributing to NOAA and NASA’s temperature indexes hitting first and second hottest in the climate record for the month. During May, ocean surface heating entrenched and expanded, progressing to a new high of +1.17 C last week. As of this week, values had exceeded +1.2 C and then rocketed on to a new extreme of +1.25 C (See Deep Ocean Warming is Coming Back to Haunt Us).

Should such trends continue, and with little more than a week left for this month, May of 2014 is likely to set a new record for global surface temperatures. And with El Nino continuing to tighten its grip on the Pacific, potentials for new all-time record high global temperatures for 2014 keep increasing.


(NOAA’s Climate Prediction Center found that April of 2014 tied April of 2010 as the hottest in the climate record. During this month, very few regions showed cooler than average conditions for the month while broad swaths of the globe were covered in warmer than average or record warmest temperatures. It is worth noting that 2010 was also an El Nino year. Image source: NCDC.)

Regions currently showing much warmer than normal sea surface temperatures include a broad swath of extreme +1 to +4 C readings from Baja California northwest toward the Bering Sea, an expansive zone of +1 to +3 C readings from the coast of southern South America and across the Pacific Ocean to New Zealand and Australia, almost the entire far South Atlantic between the East Coast of South America and the West Coast of Africa with very hot +1 to +4 C anomalies, almost the entire sea ice edge region in the Arctic with +1 to +4 C readings including a hot spot near the Nares Strait showing extraordinary +3 to +4 C departures, and two large areas of the Equatorial Pacific — one west of New Guinea and the Solomon Islands and the other off the West Coast of South America — showing +1 to +3.5 C departures.

Significant cooler than normal areas are confined to the Northwest Pacific and a stretch of the Gulf of Mexico off Texas. Another cool zone off of Greenland is likely the result of regional surface water cooling due to ongoing and increasing glacial melt, north wind bursts pushing sea ice out of Baffin Bay, and an expanding zone of fresh surface waters flowing from West Greenland into the North Atlantic.

Overall, the global ocean surface is very, very hot, likely near or above all-time record high temperature departures.

El Nino Continues to Tighten Grip on Pacific

Trends toward El Nino continued in the Pacific with the current strong, high-temperature Kelvin Wave persisting through its upwelling phase. By May 18, +3 C or higher temperatures had reached the surface off Western South America with +4, +5 and +6 C readings only about 25-60 meters below. Upwelling from 140 East Longitude to 130 West Longitude and down-welling off the coast of South America also continued to flatten the 20 C isotherm, providing a west-to-east pathway for warm water propagation.

Kelvin Wave May 18

(May 18 Kelvin Wave Monitoring by NOAA’s Climate Prediction Center.)

Over the past week, Nino zones showed either maintained temperatures, very slight cooling, or surface temperature increases. The Nino 4 zone in the Central Pacific remained at +0.8 C even as the key Nino 3.4 zone in the East-Central Pacific showed slight cooling to +0.4 C. Nino 3 in the Eastern Pacific continued to warm, hitting a +0.6 C positive anomaly. Meanwhile, readings directly off the coast of South America rose to a rather high value of +1.3 C.

Trade winds remained weak or ran west-to-east along the equator. Though no strong counter-trade west winds were visible over the past seven days, numerous areas of weak west winds emerged. Overall, the trades in this large zone were confused and erratic, harried by the development of low pressure system after low pressure system along the equator.

These conditions show an ongoing trend toward an ever-more-likely El Nino by Summer-to-Fall of this year. Sea surface and near surface heat content at high to very high levels during the ‘cool’ upwelling phase of the current Kelvin Wave hint at a Pacific Ocean prepping for a strong El Nino event should favorable weather conditions continue. Extraordinary global sea surface temperature departures in the draw up to this potentially severe event show how sensitive the global system is to any El Nino type warming or movement toward a change in Pacific Ocean temperature states.

In short, global temperatures appear to be on a hair trigger to rise.


University of Maine

Climate Prediction Center

Deep Ocean Warming is Coming Back to Haunt Us

NOAA’s National Climate Data Center

Deep Ocean Warming is Coming Back to Haunt Us: Record Warmth for 2014 Likely As Equatorial Heat Rises

As prominent ocean researcher and climate scientist Dr. Kevin Trenberth presciently noted during recent years — an observed spike in ocean heat content over the past decade may well be coming back to haunt us.

Earlier this year the most intense sub-sea Kelvin Wave on record raged across the Pacific Ocean. Driven eastward by a series of strong westerly wind bursts, it traveled just below the surface, running out to collide with South America. By April, it had arrived in the traditional El Nino spawning grounds of the Eastern Equatorial Pacific where it retained an extreme intensity. There it sprawled, snuffing off the cold deep water upwelling that over the past few years has kept surface water temperatures in this critical region slightly cooler than average.

And so, from late March through mid-May, the Eastern Pacific warmed.

A surface warm pool sprang off the back of this beast, growing even as it continued to gather heat, radiating it back into the atmosphere. By yesterday, temperature anomaly values over this growing region had increased to between 1 and 3 C above average with local spikes up to +3.9 C — a far above normal temperature departure for ocean surface waters, especially near the stable equator. But if trends hold, this is just the beginning. An early start to what could be a record-setting event.

Today's GFS Model Summary of Sea Surface Temp Anomalies

(Today’s GFS model summary of global sea surface temperature anomalies. See the mottled red just off South America? That’s the head of an extraordinarily strong and massive Kelvin Wave breaking the surface. Image source: University of Maine.)

Today’s GFS global ocean temperature anomaly map shows the entire Equatorial Pacific well in the El Nino range at +0.60 C. The strong +1 to +3 C or greater hot zone, shown in orange to deep-red, stretches from about 140 West to 80 West Latitude along the equator and shows continued slow intensification.

Note that global sea surface temperatures for today are at an extraordinary +1.12 C above already warm 1979 to 2000 values. This marks more than a week of 1 C or greater positive ocean surface temperature anomalies. The very definition of Trenberth’s ocean heat content coming back to haunt us.

The El Nino Clock Begins

Meanwhile, NOAA weekly anomaly readings also show continued progression toward surface warming. Overall, the Nino zone 4 in the Central Pacific was at +0.8 C, the Nino 3.4 zone in the East- Central Pacific +0.5 C, the Nino 3 zone in the Eastern Pacific +0.6 C, and the Nino 1+2 zone just off the coast of Equatorial South America a very high +1.2 C. Overall, this shows strong warming over the broad Nino sector with the key Nino 3.4 zone flipping into low El Nino levels this week.

The emergence of Nino 3.4 into +0.5 C or greater territory marks the start point for the NOAA El Nino clock. For NOAA to declare El Nino, the Nino 3.4 zone must remain at +0.5 C or above for multiple months running. And forecast models, at this time, show nearly an 80% likelihood of just such an event for 2014.

So this week’s readings represent the crossing of a new threshold toward El Nino and certainly warrant further tracking.

Monster Kelvin Wave in Not-so-Cool Phase

The extreme Kelvin wave that raged across the Pacific from February through April still appears monstrous even though it has now entered its supposedly cool, upwelling phase. Pressed against the coast of South America, the heat has deflected both upward and downward through the water column. The result is both a continued heating at the surface and a downward thrust of 1-2 C above average water temperatures into the 400 meter below surface zone. And so here we have a continued down-thrust of the 20 C isotherm, priming the Pacific for another west-to east rush of deep ocean heat later this year.

Monster Kelvin Wave May 8

(This is supposed to be the Kelvin Wave’s cool phase. It’s not looking very cool. Image source: NOAA.)

Overall, the still amazingly hot Kelvin Wave is upwelling. So it should also be cooling. And it has. A little. But what is extraordinary is the amount of heat it has retained even as it rises. Here we see an enormous slug of 5-6 + C above average water rising as high as 40 meters beneath the surface. Maintenance of this high heat content even while upwelling is an insane feat of heat propagation. Should these readings hit the surface, we really will be witnessing a monster event.

Already, the warming Eastern Pacific appears to be having a broader atmospheric affect. According to NASA, global surface temperatures spiked to their second highest level on record in April. Meanwhile, GFS model analysis shows May daily surface temperature values in the range of +0.7 to +1.0 C or higher above the 1950 to 1981 average globally. A continuation of these high temperatures would be enough to put May at first or second hottest on record and set a trend for 2014 to break global high temperature records last seen in 2010. So the early and not yet fully developed ocean surface heating we are seeing from our developing El Nino appears to have already come back to haunt us. But what we see now is minor compared to what could emerge.

With the sub-surface waters remaining so extraordinarily warm even through the upwelling/cool phase of the current Kelvin Wave, the Pacific is now primed for a second hot pulse to feed the monster now rising off South America. The new, reinforcing heat pulse will require another series of west wind back bursts at the surface between 160 East and 170 West Longitude to drive it. And atmospheric conditioning for the development of these winds appears well in play. Should it happen, we are likely to get a taste of what Dr. Trenberth really meant.

Dr. Trenberth Hints at PDO Flip

Along with these sobering thoughts, I leave you an excellent related interview Peter Sinclair conducted with Dr. Kevin Trenberth. In the interview, Trenberth predicts a + 0.2 to 0.3 C rise in global average temperatures due to Pacific Ocean surface heating and hints that a flip in the Pacific Decadal Oscillation (PDO) from its current cool (negative) phase to a new warm (positive phase) may well be underway. Such a flip would indeed mean that a rapid spike in global surface temperatures is in the offing:


University of Maine

Monster El Nino Rising From the Depths

NASA: April 2014 was Second Hottest on Record

Ocean Heat Anomaly Spikes to New Extreme High of +1.16 C Above Average on May 10, 2014

Forecast Models Show Nearly 80% Chance of El Nino in 2014

Kevin Trenberth on El Nino

NOAA’s Climate Prediction Center

Pacific Decadal Oscillation (PDO)




%d bloggers like this: