A Monster 2016 Arctic Melt Season May Have Already Begun

“Hell is empty… all the devils are here.” William ShakespeareThe Tempest.

******

We have never seen heat like this before in the Arctic. Words whose meaning tends to blur due to the fact that, these days, such events keep happening over and over and over again.

Ever since at least the 1920s, the Arctic has been warming up due to a destructive and irresponsible human greenhouse gas emission. And, over recent years, the Arctic has been warming more and more rapidly as those dangerous emissions continued to build on into the 21st Century. Now the Earth has been shoved by those emissions into realms far outside her typical Holocene context. And it appears that the Winter of 2016, for the Arctic, has been the hottest such year during any period of human-based record-keeping and probably the hottest season the Arctic has experienced in at least 150,000 years.

Extreme Arctic heat February 22

(Climate Reanalyzer hits a stunning 7.06 C above the already hotter than normal 1979 to 2000 baseline for the entire region above the 66 North Latitude Line on February 22nd of 2016. It’s a very extreme temperature departure — one this particular analyst has never seen before in this record. For reference, a 3 C above baseline temperature departure for this region would be considered extraordinarily warm. What we see now is freakish, outlandish, odd, disturbing. Image source: Climate Reanalyzer.)

It’s just the most recent marker on a path toward an ever-worsening polar heat that is becoming all-the-more difficult to ignore or deny. For at current greenhouse gas levels, that polar zone is hurtling toward temperatures not seen in 15 million years. A heat pressure that will push for warming not seen in 20, 30, 50 million years or more, if a nightmarish fossil fuel burning continues.

Nothing in the recent geological past can compare to the danger we are now in the process of bringing to bear upon our world. Not the Great Flood. Not the end of the last ice age. Those were comfortable, normal cataclysms. Human beings and life on this world survived them. But the kind of geophysical changes we — meaning those of us who are forcing the rest of us to keep burning fossil fuels — are inflicting upon the Earth is something entirely new. Something far, far more deadly.

Extreme Arctic Heat Ramps Up Yet Again

At the start of 2016, we find ourselves experiencing a year during which our world is steepening its ramp-up toward this kind of catastrophic global heat. During January of 2016, the Arctic experienced its most extreme temperature departures ever recorded. February, it appears, was at least as bad. Today, daily temperature departures for the Arctic in the Climate Reanalyzer measure were a stunning +7.06 above an already hot 1979-to-2000 baseline (see graphic above).

To put this in perspective, a region larger than 30 million square kilometers or representing fully 6 percent of the Earth’s surface was more than 7 degrees Celsius hotter than average today. That’s an area more than three times larger than the United States including Alaska and Hawaii. A region of the world that includes a vast majority of the remaining frozen Northern Hemisphere land and sea ice. And since an extreme heatwave is typically defined as temperature departures at about 3 C above normal for an extended period of time over a large region — the Arctic appears to be experiencing some ridiculously unseasonable temperatures for this time of year.

80 North Temperature departures February 22 NOAA

(A seemingly unstoppable period of record warmth continues for the High Arctic on February 22nd. Readings for this zone have consistently remained in the warmest 15 percent of readings on up to record warmest readings for each day since January 1, 2016. Image source: NOAA.)

Above the 80 North Latitude line, departures were even more extreme — hitting about 13 C or about 23 F warmer than normal for the entire High Arctic surrounding the North Pole today (see above graphic). Temperatures that are more typical for late April or early May as we enter a time of year when this region of the Arctic is usually experiencing its coldest readings and sea ice extents would normally continue to build.

Unfortunately, today’s extreme heat was just an extension of amazing above average Arctic temperatures experienced there since late December. So what we are seeing is consistently severe Arctic warmth during a season that should be Winter, but that has taken on a character more similar to a typical Arctic Spring. Warmth that is now enough to have already propelled the Arctic into its warmest ever yearly temperatures when considering a count of below freezing degree days.

Arctic Degree Days Below Freezing Anomaly

(Degree Days below Freezing [or Freezing Degree Days, FDD] shows a 670 FDD departure below that seen during a typical year. If the current trend continues, the Arctic may see degree days below freezing lag by between 900 and 1,500 — knocking off about 15 to 25 percent of below freezing days from a typical Arctic year. Note that the departure line steepens rapidly after the first major warm wind event hits the Arctic during late December of 2015 — driving temperatures above freezing at the North Pole for the first time ever so late in the year. Image source: NOAA.)

Freezing degree-days (FDD) or thawing degree-days (TDD) are defined as departures of air temperature from 0 degrees Celsius. The less FDDs during an annual period, the warmer the Arctic has become. Under the current trend, the Arctic is now on track to hit between 15 and 25 percent less FDDs than it experiences during a typical year in 2016.

Looking at the above graph, what we see is an ongoing period in which Winter cold has been hollowed out by a series of warm air invasions rising up from the south. These warm wind events have tended to flow up through weaknesses in the Jet Stream that have recently begun to form over the warming Ocean zones of the Bering, Northeast Pacific, Barents, and Greenland seas. Still more recently, warm wind events have also propagated northward over Baffin Bay and Western Greenland — even shoving warm air into the ocean outlets of a typically frozen Hudson Bay.

Perhaps more starkly, we find a steepening in the rate of Freezing Degree Day loss following the freakish series of storms that drove the North Pole above Freezing during late December of 2015 — the latest during any year on record that the North Pole has experienced temperatures exceeding 0 C.

Arctic Sea Ice Declining Since February 9th

Overall, a rapid heat uptake by the world ocean system appears to be the primary current driver of extreme Arctic warming. Atmospheric heat from greenhouse gas warming swiftly transfers through the ocean surface and on into the depths. During recent decades, the world ocean system has taken in heat at a rate equal to the thermal output of between 4 and 5 Hiroshima-type bombs every second (with some individual years hitting a much higher rate of heat uptake).

Since thousands of meters of warming water insulates better than the land surface and diaphanous atmosphere, this added heat is distributed more evenly across the globe in the world ocean system. As such, ocean warming is a very efficient means of transferring heat to the Northern Hemisphere Pole in particular. The reason is that the Pole itself sits atop the warming and globally inter-connected Arctic Ocean. In addition, the warming surface waters, as noted above, provide pathways for warm, moist air invasions of the Arctic — especially during Winter.

For 2016, these kinds of heat transfers not only resulted in an extreme warming of airs over the Arctic, they have also shoved the Arctic sea ice into never-before-seen record lows for area and extent.

chart

(NSIDC shows Arctic sea ice entering a new record low extent range from February 2 through February 21 of 2016. A peak on February 9 and decline since concordant with record warmth building throughout the Arctic begs the question — did the sea ice melt season start on February 9th? Possible — but too early to call for now. Image source: NSIDC.)

Off and on throughout January, but more consistently since early February of 2016, Arctic sea ice has continued to hit new daily record lows. For Arctic sea ice extent, the record lows entered a streak that has now been unbroken since February 2nd. By the 21st, extent measures had hit 14.165 million square kilometers in the National Snow and Ice Data Center measure. That’s about 200,000 square kilometers below the previous record low extent value for the date set during 2006.

Perhaps more ominously, the current measure appears to have fallen off by about 50,000 square kilometers from a peak set on February 9th. And with such extreme heat driving into the Arctic over recent days, it appears that this departure gap could widen somewhat over the coming week.

Overall, radiation balance conditions for the Arctic are starting to change as well. The long polar night in the Arctic is beginning to recede. Sunlight is beginning to fall at very low angles over the sea ice, providing it with another nudge toward melting. Finally, the greatly withdrawn ice has uncovered more dark ocean surfaces that will, in turn, absorb more sunlight as the Arctic Winter proceeds on toward Spring.

With sea ice declining slightly since February 9, with record warmth already in place in the Arctic, and with the sun slowly beginning to provide its own melt pressure, it appears risks are high that we see a record early start to Arctic melt season. Seven day forecasts do show high Arctic temperature departures receding a bit from today’s peak at around 6-7 C above average to between 4 and 5 C above average by the start of next week. But heat at the ice edge in the Bering, Barents, Greenland Sea and Baffin Bay are all likely to continue to apply strong pressure on sea ice extent and area totals. In addition, recent fracturing within the Beaufort has generated a number of low albedo zones that will face a wave of unseasonable warmth riding up over Alaska during the coming days which will tend to slow rates of refreeze even as Western Alaska’s waters feel the heat pressure of off and on above freezing temperatures.

So it appears we may have already begun, in early February a melt season that will last through mid-to-late September. It’s too early to make the call conclusively, but the Arctic heat and melt trends necessary to set up just such an ominous event do appear to be in place at this time. In other words, “all the devils are here…”

Links:

Climate Reanalyzer

No Winter For the Arctic

The Keeling Curve

The Arctic Sea Ice Blog

NOAA: Mean 2 Meter Temperatures North of 80 North Latitude

NOAA: Frequently Asked Questions About the Arctic

Grasping at Uncorrected Straws

The Oceans Warmed by a Rate of 12 Hiroshima Bombs per Second in 2013

The Polar Science Center

Trends in CO2 Emissions

Warm Arctic Storm to Unfreeze the North Pole

Congress Members Call for Investigation of Shell over Climate Change Lies

Could Lawsuit Against Exxon Mobile Force Fossil Fuel Industry to Pay for Lies about Climate Change?

William Shakespeare Quotes

NSIDC

Hat Tip to Planet in Distress

Hat Tip to DT Lange

Advertisements

Sea Ice Death Spiral Continues — Start of 2016 Sees Arctic Ocean Ice Hitting New Record Lows

In January, Arctic sea ice extent hit a new record average low for the month. Meanwhile, during the first days of February, both Arctic sea ice extent and area hit new daily record lows even as global sea ice area also entered the second lowest range ever recorded. And so it seems that the sea ice death spiral of a record warm world continues.

January lowest sea ice on record

(According to the National Snow and Ice Data Center, Arctic sea ice extent averages were the lowest on record for the month of January since at least 1979. The new low beats out 2011, continuing an ongoing decadal January decline of about 420,000 square kilometers every ten years. Image souce: NSIDC.)

But before we go more into the new spate of record low Arctic and global sea ice measures, it’s important to consider the context — our world has not seen the current level of heat forcing from greenhouse gasses (CO2 + methane + NOx + other greenhouse gasses) in the atmosphere since about 15 million years ago. It’s an unprecedented amount of hothouse potential that is having equally unprecedented results.

Unprecedented Volume of Heat Trapping Gasses Drives Raging Atmospheric and Ocean Warming

About 50 billion tons of CO2 equivalent from all those greenhouse gasses hit the Earth’s atmosphere each year these days. In vast part driven by industrial fossil fuel burning and extraction, this unconscionable, monstrous, and difficult-to-imagine accumulation of heat-trapping vapors is pushing the world to warm up at an unprecedented rate. A pace that is now at least 20 times faster than the widespread warming that occurred at the end of the last ice age.

Temperatures above 80 North

(It’s likely been a record warm start of the year for the Arctic above the 80 degree North Latitude Line. Temperatures in that high Arctic region have tended well outside the 2 standard deviation range and have hit above the record line on numerous occasions. Image source: NSIDC.)

Back then, it took about 2,500 years for the Earth’s atmosphere to heat by 1 degree Celsius for a total of a 4 C temperature increase over 10,000 years. By just this past year, in 2015, fossil fuel burning had managed to do more in 135 years than what an Earth System rising up out of an ice age did in all of two and one half millenia. For 2015 hit a new record high of about 1.1 C above 1880s averages in all the major global temperature monitors (NASA, NOAA, JMA, UK MET Office). It’s amazing, crazy, terrifying to think about. The end of the last glacial period was a great upheaval that violently re-shaped our world. And fossil fuel industry is running a similar, if much more dangerous, geological process in fast forward by pumping out heat trapping gasses at a rate at least six times faster than anything seen in all of Earth’s history.

Yet as amazing as the current rate of atmospheric warming is, it’s just the thin lens through which a vast amount of heat is transferring into the world’s ocean systems. In fact, according to Peter Gleckler, an oceanographer at the Lawrence Livermore National Laboratory “Ninety, perhaps 95 percent of the accumulated heat is in the oceans.”

Arctic Sea Ice Concentration January

(What was possibly the warmest January on record for the Arctic contributed to major sea ice losses in almost all of the major ice formation basins. Image source: NSIDC.)

And all that extra heat doesn’t just sit there. It goes to work transforming water to water vapor — shoving atmospheric moisture content 7 percent higher for each degree Celsius of warming even as it amps up the rate at which water evaporates from the Earth’s surface or falls down in the form of precipitation. Perhaps still more ominously, this heat goes to work melting the great white ice coverings it comes into contact with at the shoreline and upon the ocean surface.

Arctic Sea Ice Hits New Record Lows For January Through Early February

For 2016, that heat has led to new record lows in Arctic sea ice extent and area even as it has pushed global sea ice coverage within striking distance of a scant range never before seen in the whole of the modern era. New record daily lows for sea ice extent — now an almost annual occurrence for at least some time during the calendar year — are now also being breached.

Arctic Sea ice area new record lows

(Arctic sea ice area explores new record low territory on January 29 through 31 of 2016. Image source: Cryosphere Today.)

In the major monitors, Arctic sea ice extent hit a new record low average for the month of January, 2016. This average included a number of record daily lows early in the month even as the entire monitor held within 1st to 3rd lowest on record for each day throughout January. Record daily lows were again breached in the NSIDC measure on January 29th. A streak that continued on through February 1st with totals hitting 13.911 million square kilometers for the day. That’s 119,000 square kilometers below the previous record daily low for February 1 set in 2011 at 14.030 million square kilometers or a region of ice lost below the previous minimum extent slightly larger than the State of Virginia.

Arctic sea ice area as recorded by Cryosphere Today (see graphic above) followed a similar record low range through the end of January. By January 31st, the most recent date in the measure, Arctic sea ice area had hit 12.27 million square kilometers or about 61,000 square kilometers below the previous record daily low for sea ice area set during 2006.

globalice

(A very warm Arctic during January of 2016 likely contributed to shoving the global sea ice area measure into striking distance of new record lows by early February. Image source: Pogoda i Klimat. Data Source: Cryosphere Today.)

Also disturbing is the fact that global sea ice area — which has shown consistent losses over time — has also now come within striking distance of new record lows. The Cryosphere Today monitor now shows global sea ice area in the range of 14.5 million square kilometers or just above previous record lows set during 2006 for this time of year.

Conditions In Context — Amazing Sea Surface Temperature Anomalies, Major Winter Warm-ups Hit Sea Ice Hard

Arctic sea ice area negative anomaly is now in the range of -1.23 million square kilometers. With Antarctic sea ice at around 200,000 square kilometers below average, it’s pretty clear that the bulk of current global sea ice losses are now ongoing in the Arctic.

Warm ocean waters, especially in the Barents Sea and the Greenland Strait are likely major contributors to record low sea ice extents during recent weeks. These sea surface temperatures now show between 1 and an amazing 8 C above average reading in the NOAA sea surface temperature anomaly map below.

NOAA Sea surface temperature anomalies

(Sea surface temperatures are in the range of 4-8 degrees Celsius or 7-14 degrees Fahrenheit above average near sections of sea ice in the Northern Barents Sea. These very warm sea surfaces continue to suppress refreeze and provide melt pressure on into early February. Image source: NOAA.)

Such amazingly warm waters likely helped contribute to major atmospheric warming events in the high north over the past two months including one above freezing event at the North Pole during late December and another near freezing event for the same region during late January, likely added to the overall melt pressure. The very warm water in the Barents likely helped to enable the observed warm air slots that formed north of Svalbard and on toward the North Pole on numerous occasions.

Over the next seven days, Arctic air temperatures are expected to range about 1 C above average — as opposed to the 2-3 C above average range seen during the past month. This slight cooling may allow for a more rapid freezing of some regions including the Sea of Okhotsk. But overall warm waters and airs along the sea ice edge in the Bering and Barents should continue to suppress major ice formation there. By the second week of February, risk increases that high amplitude Jet Stream waves will deliver another burst of warm air to the far Northern Latitudes, potentially continuing the trend of extreme above average atmospheric temperatures in the region of the Arctic Ocean during 2016.

 

 

Links:

NSIDC

NASA GISS

Arctic Sea Ice Graphs

The Arctic Sea Ice Blog

This is Where 90 Percent of Global Warming is Going

CO2 Rising Ten Times Faster Than PETM

NOAA

Cryosphere Today

Pogoda i Klimat

More Signs of Winter Arctic Melt — Icebergs are Showing up off Newfoundland in January

From pole to pole the ice is melting. Winter is retreating. And much of life and even the seasons themselves appear to have been thrown off-kilter. In the Southern Ocean near the Antarctic Peninsula, krill populations have dropped by more than 50 percent due to a shortening of the season in which sea ice forms. The North Pole now experiences near or above freezing temperature events during Winter with increasing frequency. Greenland appears to be undergoing melt episodes during Winter. And now, the iceberg season for Newfoundland is starting four months early.

******

Iceberg spotted off Bonavista in January

(This iceberg was spotted off the coast of Bonavista, Newfoundland on January 20, 2016. It’s the first iceberg of the year for Newfoundland. One that is appearing four months earlier than the typical iceberg season for this part of the world. Image source: Iceberg Spotter.)

During any normal year in the 20th Century, Newfoundland was a prime spot for viewing icebergs. Locked away in the sea ice for much of the Winter, these behemoths became liberated with the spring thaw. By April or May, they could at first be seen off the coast of Newfoundland as they made their trek out into the Atlantic Ocean along the currents running away from Baffin Bay and the West Coast of Greenland.

During a normal year, the sea ice begins its thaw in Baffin Bay along Greenland’s western coastal boundary by early to late April. A milder air flow along the northward progressing warm water current is enough to unlock some of the icebergs stranded within the sea ice and to send them cycling southward toward Newfoundland.

major iceburg drift patterns

(Icebergs typically originate from Greenland’s west coast and then cycle around Baffin Bay. Icebergs sighted off Newfoundland typically break away from the Baffin ice pack during Spring. This year, one got free of the ice in January. Image source: The Atlas of Canada.)

But this year, something odd and rather strange happened. During mid January, following a December in which Arctic sea ice extents were their fourth lowest on record, a period of unseasonable warmth settled in over Western Greenland. Warm, wet winds blew up over Greenland’s coastal mountain ranges and into Baffin Bay. These winds were ushered northward by both a very powerful North Atlantic storm track and by an anomalously warm termination of the Gulf Stream Current just south and east of Newfoundland.

By late last week, the remnants of a January Atlantic hurricane had been pulled into this warm storm generation zone just south of Greenland where it eventually unspooled over the frozen isle’s mountains even as it vented the last remainder of its fury on the iceberg outlets of Baffin Bay.

(Warm, tropical moisture associated with Hurricane Alex is pulled northward into Greenland and Baffin Bay in mid January. This heat and moist air delivery, associated with northward propagating warm winds along Western Greenland, appears to have had multiple wintertime melt impacts for this region of the Arctic. Video source: Hurricane Alex Transitioning to Post-Tropical.)

And all this heat and tropical weather aimed at Greenland and Baffin Bay during January appears to have had a pretty far-ranging impact. For not only have melt monitors over the Greenland Ice Sheet picked up a Winter melt signal. Not only has Disko and Uummannaq Bay been flushed clear of sea ice during Winter. Now, just a few days later, we see the first iceberg of a four month early start to typical iceberg season for Newfoundland. Yet one more well out of season impact during a Winter that really isn’t like any Winter that could be considered normal — at least for what human beings or the living creatures of this world are used to.

Links:

Mystery Beneath the Ice

Newfoundland Labrador Iceberg Facts

Warm Arctic Storm Brings Above Freezing Temperatures to the North Pole During Winter

Major Greenland Melt Event During Winter

NSIDC

The Atlas of Canada

Hat Tip to Colorado Bob

Hat Tip to Catherine Simpson

New Study — Risk of Significant Methane Release From East Siberian Arctic Shelf Still Growing

Large plumes of methane bubbling up from the Arctic Ocean sea-bed, saturating the water column, venting into the air, adding significantly more heat forcing to an already dangerous, fossil fuel-based, accumulation of greenhouse gasses in the Earth’s atmosphere. It’s a nightmare scenario. One in which human-forced warming, already at 1 C above 1880s levels, is further amplified through the feedback release of ancient carbon stored over the past 8 million years of Northern Hemisphere glaciation. And a recent study by the now famous Semiletov and Shakhova team provides still more reason for appropriate concern that such an event may be in the works.

ESAS methane release organic carbon store

(Shakhova and Semiletov’s new study produces an increasingly clear picture of a destabilizing organic carbon store beneath thawing permafrost in the East Siberian Arctic Shelf region. The above images show organic carbon concentration [left frame] and rate of release of methane in grams per square meter per day over observed regions. Image source: The Royal Society.)

*  *  *  *  *  *

By now, many of us are familiar with the controversy over the potential risks of significant-to-catastrophic methane release due to human-forced warming of the ArcticAn increasing number of observational specialists are pointing toward a risk that rapid human warming will set off the release of still more carbon in the Arctic. For some, this release is expected to be gradual. Others believe there’s enough risk of a rapid release to warrant an equally rapid emergency response.

But regardless of where you stand on the issue, new research coming to light from some of the Arctic’s top observational scientists more clearly describes what appears to be an increasingly dangerous situation.

Disintegrating Permafrost Cap in ESAS

At issue is the fact that, at the end of the last ice age, a great store of permafrost carbon was submerged as the Arctic Ocean rose. A low lying region containing about 500 billion tons of carbon as methane became inundated by the shallow sea that is the East Siberian Arctic Shelf (ESAS). The waters of this sea remained cold — below the freezing point of non-salt water in its lower reaches for most of the year. But, in some places, warmth invaded, and it is thought that small portions of the permafrost cap deteriorated.

In the near shore zones and in geologically active zones, methane conduits called taliks developed. And from these expanding taliks an increasing amount of methane bubbled to the surface.

Submerged Thermokarst Lake

(Ivashkina Lagoon was once a thermokarst lake. It has since been flooded by the Laptev Sea. For much of the time of inundation, the fresh water lake surface remained frozen. It is now thawing and releasing its organic carbon store as methane. Image source: The Royal Society.)

However, for the most part, the permafrost cap over the methane stores remained in tact — waiting to be rejuvenated by a new ice age. That is, until human industry belched billions of tons of carbon into the atmosphere, removing the possibility of a new ice age and forcing the world ocean and connecting Arctic Ocean to begin to warm in excess of peak Holocene temperatures. This warming, twice as fast in the Arctic as in the rest of the world, added still more heat pressure to the permafrost cap locking methane within the ESAS sea floor.

Now, more and more permafrost beneath the shallow ESAS waters is starting to thaw. And this, much more rapid than normal thaw is resulting in an increasing risk that methane stores beneath the permafrost cap will destabilize.

Shallow Waters, Geothermal Hot Spots, Taliks

Recent observational records by Dr. Natalia Shakhova and Dr. Igor Semiletov have found what they hypothesize to be an expanding array of methane vents in the East Siberian Arctic Shelf sea bed. According to their recent research, the vents appear to be growing more robust — bubbling up greater volumes of methane from a more vigorous and inter-connected network of channel beneath the thawing sea floor.

Atmospheric Methane September 6 2015

(Ever since 2005, atmospheric methane levels have again been on the rise. Much of this increase may be due to human emissions. However, an overburden of atmospheric methane and carbon dioxide in the Arctic zone hints that destabilizing carbon stores may also be adding substantial volumes of greenhouse gasses to the world’s airs. Image source: NOAA OSPO.)

Currently, according to Shakhova and Semiletov, methane emissions are most vigorous in the near-shore region of the ESAS and in the offshore slope region. Shakhova and Semiletov believe that near shore emissions are increasingly active due to rapid warming occurring there. Not only are the regional waters impacted by a rapidly warming Siberian land mass. They also see the flux of hotter waters from rivers issuing from the continent. As a result, the near shore region is most vulnerable to permafrost thaw and destabilization. In the slope zone, however, geological features are more active. These features provide a natural heat for the formation of taliks. And though most of this region was once frozen to the point that even geological activity did not result in methane venting, the now warming permafrost cap is generating weaker regions that natural geological heat can exploit to greater and greater degrees.

Sea Ice Melt, Storms, Heighten Methane Emissions

Ever since the mid 2000s Shakhova and Semiletov have observed what appears to be a generally heightened methane emission coming from the ESAS. Estimates for total release rates have doubled and then doubled again. By 2013, the scientists were estimating that 17 million tons of methane was venting from the ESAS sea surface each year.

The increased rate of methane release is not only due to permafrost thaw on the sea floor. It is also due to an increase in large polynyas in the ESAS during winter time as well as an overall increase in the area of open water that can be impacted by storms. An ice locked ESAS keeps more of its methane in the water column and gives the methane a longer period to be absorbed by the water or consumed by microbes. But as the ice recedes, more of the methane is able to break the surface and reach the airs above. In addition, ice free seas are more susceptible to the action of storms. Storms increase wave heights, increase the rate of breaking waves, and reduces ocean surface stratification. As a result methane moves more rapidly through the upper level water column and encounters a larger surface area from which to transfer from water to air.

An ice free ESAS is not only warmer, generating more destabilization forcing to the permafrost cap which locks in methane, it is also more and more devoid of the surface ice cap which acts as a secondary barrier to methane to air transfer.

Shakhova, Semiletov Recommend Adding ESAS Methane Release to Global Climate Models

Shakhova and Semiletov’s findings continue to compel them to issue warnings over the prospect of continuing increases in methane emissions from the ESAS and nearby seas. They conclude:

The observed range in CH4 emissions associated with different degrees of subsea permafrost disintegration implies substantial and potent emission enhancement in the ESAS as the process of subsea permafrost thawing progresses with time. While it is still unclear how quickly CH4 flux rates will change, the current process of Arctic warming and associated sea ice loss will accelerate this process. The potential for the release of substantial amounts of CH4 from the ESAS region has important implications not only for atmospheric CH4 concentrations but also, given CH4‘s potency as a greenhouse gas, for the global climate. Because the ESAS contains the largest and arguably most vulnerable stores of subsea CH4, inclusion of the ESAS source in global climate models should be considered a high priority.

Links:

The East Siberian Arctic Shelf: Further Assessment of Permafrost Related Fluxes and the Role of Sea Ice

Double the Rate of Methane Release From the Arctic Sea Floor

NOAA OSPO

Concern Over Arctic Methane Release

Threat of Permafrost Destabilization is ‘Real and Imminent’

 

10-15 Foot Waves Break Seawall at Barrow, Alaska

This is not something that is normal for typically ice-choked Barrow, Alaska. Today, 25 to 35 mile per hour winds and fetch-driven, 10-15 foot high waves are breaking through coastal barriers and flooding the streets and homes of a town that is used to far more placid seas.

Barrow Flooding

(Recently, Barrow city officials had a barrier of sand erected to protect structures from the newly ice liberated waters of the Beaufort Sea. Today, a strong coastal low pressure system’s surf smashed that barrier, flooded the coastal road, broke a channel through to an inland lake, and swamped numerous structures. Image source: Barrow Sea Ice Webcam.)

*    *    *    *    *

There’s been quite a lot of potential storm energy building in the Beaufort Sea this season. Nearby waters in the Chukchi have ranged between 3 and 5 degrees Celsius above average. Warmth, moisture and low pressure systems have flooded in from the Pacific off the back side of the Ridiculously Resilient Ridge to the south. It was a pool of warmth and heat just waiting for a trigger.

As August swung toward September, the near polar regions began to cool even as the Summer sun retreated. Temperature differentials between ice free sections of the Chukchi and Beaufort and remaining ice covered regions in the Central Arctic Basin hit new extremes. And, yesterday, a strong low pressure system began to develop off the Northern Alaskan coast (see video of yesterday’s building surf here).

image

(Fifteen foot waves north and west of Barrow, Alaska as detected by Earth Nullschool at 2:05 PM EST on August 27th. Image source: Earth Nullschool.)

In response, Alaska weather forecasters yesterday issued a High Surf Advisory. They probably should have issued a Coastal Flood Warning instead. For by today, the low had intensified to a 985 mb system. It has wrapped its left side in 35-45 mph winds and 10-15 foot seas. Seas that are now ripping large holes through coastal barriers erected to protect Barrow from a newly ice-liberated and storm-tossed Arctic Ocean.

High waves and surging seas are expected to persist, and possibly intensify, over the next 12-24 hours for Barrow. So currently observed coastal flooding may continue to worsen through tonight and tomorrow.

Coastlines Newly Vulnerable to Open Water Storms

The Northern Alaskan Coastlines, as with many Arctic shores, are used to typically placid or ice-locked waters. In the past, when sea ice dominated the Arctic Ocean during Summer, there were few open stretches of water available for a storm to generate fetch. Now, vast regions of Arctic Ocean remain open for long periods during July, August and September. In addition, with high amplitude waves in the Jet Stream delivering so much heat and moisture from more southerly regions, the late Summer and early Fall Arctic is increasingly primed for storms.

The result is strong storms running through open waters and generating powerful surf. Surf that is aimed at gently sloping beaches and low elevation coastlines with few natural barriers to protect against waves and storm surge. It’s a new vulnerability that today, for Barrow, resulted in a storm riled and ice free Arctic Ocean surging into streets, roadways and homes. Another climate change related situation that is new — if not at all normal.

Links:

Barrow Sea Ice Webcam

Earth Nullschool

High Surf Advisory For Barrow Alaska

Hat tip to Ryan in New England

Hat tip to Griffin

Hat tip to Timothy Chase (fetch discussion)

Fossil Fuel Ecocide Forces Starving Polar Bear to Hold Breath For Three Minutes in Seal Hunt

(A starving polar bear is forced to hold breath for a record three minutes in a failed hunt for seals.)

Like so many other innocent creatures on this planet, polar bears are facing ever-worsening life-threatening conditions due to the fossil fuel industry’s insistence to keep burning, and to keep us dependent on their horrific energy sources. The bears’ Arctic home has been transformed in ways that are profound and terrible. The sea ice they used for hunting grounds is greatly depleted. The seals they hunted for prey have ever-more-numerous avenues of escape into dark and warming waters.

It’s a merciless and terrible burning. One that encompasses many genocides together. Ecocide, ecological shock, growth shock, the sixth great extinction. All words to describe what we now watch. What fossil fuel industry influence is preventing us from stopping. But to the bears themselves, it’s a wrenching torture. A forced orphaning and starvation combined as the bears grow increasingly emaciated, weak, and desperate. Transformed into walking skeletal beings, they’re ghosting off toward the obliteration fossil fuel interests are sentencing them to.

(Plunging Arctic sea ice driven by Northern Hemisphere polar amplification is the chief agent of habitat loss and extinction pressure for polar bears. As you can see in the superbly rendered video above by Andy Robinson, the fall has been merciless and precipitous.)

To a climate change denier, the plight of these poor creatures is a subject of ridicule and derision. ‘Who cares about stupid bears’ is the rallying cry of heartless ignoramuses everywhere. They’d rather us be worried about our own petty day-to-day existences. The back and forth, stuck in traffic, want more money, pay less taxes, fear of far off ISIS daily grind of the right wing soundtrack. Or when the tinny siren song of that ever-more-stuffed-with-straw appeal fails it’s back to the old — pretend it’s not happening — trick. Starving polar bears so desperate that they’re now forced to hibernate in summer to conserve energy must be photo-shopped by some imaginary government agency after all, right?

Deny as deniers do, for the bears it’s all too real. For one bear in particular, recently filmed in the above video, it was a life and death struggle. Not some narcissist’s thrill like the needless poaching of innocent wild lions for blood-sport in Africa. No, for this bear, success in the hunt meant a continuation of blessed life. A second chance to keep going, to keep living in the great world. Failure meant weakness, fading, pain and death.

The bear, in dire need of food, was forced to hunt in a way it was not adapted to — by stalking in the water. It was forced, in desperation to swim toward near-water seals. And it was forced to hold its breath underwater. Hold it for longer than any polar bear ever witnessed. Hold it for a full 3 minutes where a mere 72 seconds was the previous record. It was as if the starved bear had been forced to perform impossible feats — or die. That’s the situation the callous greed and disregard of some have put them in. Do the impossible, or just die.

Gaunt and Emaciated Polar Bear that Broke Diving Record

(The gaunt, emaciated and obviously starving polar bear that broke the recent diving record in a photo by Rinie van Meurs. Image source: Meurs Study and The Weather Network.)

This bear’s struggle is not one occurring in isolation. It’s not just the struggle of a single individual. But the struggle of an entire race that is now being torn from the fabric of existence.

The cliche phrase to say at this time is that we are all responsible. That we all share the guilt. But it’s not true. In fact to say such a thing is a terrible lie providing an out for the real perpetrators of this egregious harm. There are some of us who want to change the bear’s situation. Some of us who want to improve its chances. Some of us who want to cut the destructive fossil fuel threads that bind the bear and us all to a terrible and ever worsening ecocide. The ones who want to help are not the problem. The ones attempting again and again to stop the ongoing damage are not the guilty party.

But the deniers and the fossil fuel industry the deniers wittingly or unwittingly serve are entirely different. They don’t care one whit about bears suffering an all-too-real existential crisis. And it seems they don’t care about their own children’s rising existential crisis either. They are the ones who deserve blame. For they are the authors of this great harm.

Links/Credits:

This one’s for Colorado Bob

Polar Bear Forced to Hold Breath for a Record Three Minutes

Record Breaking Polar Bear Spurs Climate Concerns

Food Situation so Bad, Polar Bears now Hibernate During Summer

Sea Ice Volume Decline By Andy Robinson

Greenland Melt Extent Breaks 50% on July 4; 2 Standard Deviation Line Shattered Yet Again

These days — in the age of the fossil-fueled hothouse — it’s never good news when a high pressure system forms over Greenland during Summer.

Human dumping of carbon into the atmosphere has forced warming over the last remaining great Northern Hemisphere ice sheet at a rate of about 0.5 degrees Celsius each decade. A constant rain of soot from human industry and from increasingly prevalent and intense Arctic wildfires has painted the ice sheet dark, lowering its ability to reflect 24 hours of incoming radiation from the Summer sun. And the result is that each Summer, when the skies clear and high pressure systems form over the ailing Greenland ice, you end up getting these huge surface melt spikes.

Greenland smoke

(Smoke from record Alaskan and Canadian wildfire outbreaks traverses Greenland and enters the North Atlantic on July 2 of 2015. Arctic wildfires are intensified by human-caused warming both through the mechanism of added heat and through the reintroduction of long sequestered carbon fuels through permafrost melt which aids in the initiation, intensification and extension of Arctic wildfire burn periods. In essence soil carbon in the form of thawed permafrost and related methane adds to boreal forest, tundra and bog as burn risks. Soot from these fires can then precipitates onto land and sea ice, reducing its ability to reflect the 24 hour Summer Arctic sun. Image source: LANCE MODIS.)

Generally a big melt spike can be defined as anything greater than 35 percent of Greenland ice surface area. And we’ve had quite a few of these abnormal events in recent years. The worst of which happened in mid Summer of 2012.

During late June and early July of that year, an extreme high amplitude Jet Stream wave generated very warm surface temperatures over the Greenland Ice Sheet. A very warm fog settled over the ice, eating away at it. By July 8th, more than 90 percent of the surface was melting — an event that hasn’t happened in Greenland for more than 100 years. June, July and August of 2013 and 2014 saw similar, though somewhat less intense, Greenland melt spikes. During those years the ice sheet experienced multiple days in which melt covered between 35 and 45 percent of its surface. And though these instances were not as intense as the unprecedented 2012 melting, they did traverse well beyond the 1981 to 2010 average line (an average that itself includes a rapid warming trend) to, in cases, exceed the upper 2 standard deviation margin.

Melting on Greenland surface 2014

(Record Greenland surface melt during 2012 compared to still strong surface melt years of 2013 and 2014. Image source: NSIDC.)

After record 2012 melt, surface melt for Greenland has remained abnormally high — indicating an increased likelihood that more near 100 percent surface melt summer days may not be too far off in the future. The post 2012 environment for Greenland has thus been a period of continued and heightened surface melt. One that appears to be in the process of building up to another big pulse.

50 Percent Melt Threshold Exceeded During July of 2015

The summer of 2015 marks a continuation and intensification of this ominous surface melt trend. After getting off to about an average melt start during April and May, June saw surface warmth build over the Greenland Ice Sheet with melt extents jumping to between 30 and 40 percent of surface area by mid-to-late month. Further warming coincided with massive Alaskan and Canadian wildfires injecting soot plumes into regional airspace and the building of a substantial high pressure ridge over Greenland. These factors helped enable further atmospheric and ice warming — shoving surface melt above the 50 percent line by July 4th.

Greenland melt extent 2015

(Major Greenland melt spike indicated on July 1-5 in the NSIDC surface melt extent graph. Image source: NSIDC.)

This puts 2015 Greenland surface melt in a range well above 2013 and 2014, with the first week of July already exceeding 2012 melt for that period.

Over the next seven days, models predict a larger warming of the overall Arctic environment even as a high pressure system and associated ridge remains entrenched across Greenland. This predicted weather pattern will tend to lock in significantly warmer than 20th Century average temperatures. That said, forecast highs do not yet indicate a substantial risk for a repeat of 2012’s near 100 percent surface melt. However, projected high temperatures do show some potential that melt percentages are likely to continue to range between 40 and 60 percent surface melt over coming days with the highest risk for melt spikes occurring on July 6th, 7th and 8th.

It is worth noting that we are now in the midst of a substantial Greenland melt spike, one that we’ll continue to monitor over coming days for further developments.

Links:

LANCE MODIS

NSIDC

Dark Snow

GFS Forecast Summary

Record Alaskan Wildfire Outbreak

Hat Tip to Wili

Hat Tip to Andy in San Diego

Hat Tip to Colorado Bob

Hat Tip to DT Lange

Hot Blob #2 Takes Aim at Sea Ice — Abnormally Warm Waters Invading the Arctic Through Bering and Chukchi

A lot of attention has been paid to a ‘Blob’ of unusual warmth at the ocean surface in the Northeastern Pacific. And for good reason, for that Blob of human-warmed water has had wide-ranging negative impacts on both weather and sea life. Now there’s a second hot Blob forming in the Bering and Chukchi seas. One that may also have some rather significant effects as the summer of 2015 continues.

Abnormally Warm Waters Running Toward the Sea Ice

Hot Blob #2 is a vast stretch of warm water covering the Bering and Chukchi seas between Alaska and Kamchatka (Neven, in his most recent sea ice summary, touched on this building warm water zone here). It encompasses surface waters in an usually frigid region that now feature temperatures ranging from 3 to 5.5 degrees Celsius above normal. Covering an area roughly 800 miles in diameter, this pool of outlandishly warm ocean waters is being fed by currents running up from the south and by heat bleeding off Alaskan and Siberian land masses. In this case, land masses that are also experiencing record heat.

image

(Hot Blob #2 forms in the Bering as its warm waters are swept north toward the Arctic sea ice pack. The above sea surface temperature anomaly map shows a broad stretch of much hotter than typical surface waters being pulled poleward by prevailing ocean currents. Image source: Earth Nullschool.)

Though the abnormal warmth is also likely fed by a powerful albedo switch from white, reflective sea ice, to dark, sunlight absorbing ocean, other factors associated with El Nino and related to the hot blob off the North American West Coast are also likely in play. And of particular interest in this present extreme hot water situation are currents flowing northward out of these warm pools and directly into the Arctic. Currents that have been eating away at the ice since winter.

One warm water bearing current — the Alaskan Coastal Current — runs directly out of the abnormally hot surface zone in the Northeastern Pacific (Blob #1). This current flows along the North American Continental Shelf, out past the Aleutian Island Chain and finally up into the Bering Sea. A second current — the Siberian Coastal Current — feeds into the Bering from the Asian Continental Shelf. These currents then combine and push Bering Sea waters on through the Bering Strait and up into the Chukchi Sea.

Algae bloom hot pool

(Algae blooms, like this one in the Chukchi Sea just south of the ice pack, have been a common feature of the Pacific Ocean hot pools. The warmer waters are a preferred environment for microbes which can see some amazingly rapid population explosions. If the blooms become too numerous they can rob the ocean surface waters of nutrients and die off en masse. The decay of dead masses of algae can then leech away the oceans’ life-giving oxygen, setting off and contributing to a chain of harmful ocean anoxia. In a warming world, this process, combined with disruption of ocean currents and the basic fact that warmer waters bear less oxygen in solution, is a major contributor to mass extinction events. Image source: LANCE MODIS.)

Northward propagation of these currents during spring and summer plays a critical role in the rate of sea ice recession in the Bering, Chukchi, Beaufort and East Siberian Seas. Waters warmed by the summer sun and by the more rapidly heating continents amplify in the Bering Strait before making contact with the sea ice and pushing it to melt and recede.

Impacts Already Visible Up the Coast

This year, waters in the Strait are extraordinarily warm — measuring 5.4 degrees above normal surface water temperatures. A plug of 5 C + above average water entering the Chukchi, Bering, Beaufort and East Siberian seas at a time when solar insolation is hitting peak intensity and during a period when nearby Arctic regions like Alaska are experiencing some of their hottest temperatures ever recorded. These waters, at temperatures in the range of 7-8 degrees Celsius, are warm enough to rapidly melt any ice they contact. And they’re flooding directly toward the ice pack.

Barrow Alaska

(Ice rapidly melting off of Barrow, Alaska on June 23, 2015. Ice is seen receding from the near shore zone even as the ice pack further out breaks into dark blue patches of open ocean. Image source: Barrow Ice Cam.)

Unusually warm surface water and air temperature impacts can already be seen further down the coast in places like Barrow, Alaska. Today, near shore sea ice dramatically melted and off-shore sea ice has retreated poleward — revealing the tell-tale blue of open ocean in the distance. An extreme one day change for Barrow sea ice, which only featured melt ponds and some near-shore melt 24 hours before.

Conditions, Model Runs Point Toward Substantial Thinning

Looking northward, we find ice pack conditions showing substantial thinning, significant melt pond formation over the surface ice and increasingly disassociated ice flows in the Beaufort, Chukchi, and East Siberian Seas. Near shore ice in the East Siberian Sea (ESS) has taken on a vivid blue or glassy appearance indicative of melt pond formation. Melt and compaction wedges have formed in the ESS along an axis pointing toward the pole. In the Chukchi, sea ice recession and thinning appear to be proceeding quite rapidly, while dispersing ice in the Beaufort is hitting warmer surface waters, fed by Mackenzie River outflow, and melting.

Navy ARCc Model Run

(The ARCc model run shows rapid thinning in the Beaufort, Chukchi and ESS through June 30. Image source: US Navy.)

The Navy’s ARCc historic and forecast model run for May 30 through June 30 shows rapid thinning of sea ice in the affected regions. The forecast run for the next seven days shows extreme thinning continuing through the ESS and Chukchi, with thicker ice in the Beaufort also experiencing substantial reductions (Note that the Navy’s GLBb model runs look even worse).

Overall, given the fact that storms are now ranging through substantial sections of the Arctic, pushing for more sea ice dispersal, losses will tend to show up more in the sea ice area and volume measures first. Dispersal will also tend to mute extent losses for a time. Given the delay in area and volume tracking, it’s likely that overall impacts to sea ice will tend to be muted in the measures over coming days with a clearer signal showing up by late June and early July. But despite these underlying and complicating weather conditions, the fact remains that a lot of unusually warm water is heading northward toward the ice, with likely greater impacts to follow.

Links:

Earth Nullschool

US Navy

Barrow Ice Cam

The Arctic Ice Blog

A Deadly Climb From Glaciation to Hothouse

Awakening the Horrors of the Ancient Hothouse — Hydrogen Sulfide in the World’s Warming Oceans

Hat Tip to Colorado Bob

Hat Tip to Ouse MD

Arctic Sea Ice Area Drops 340,000 Square Kilometers in Just One Day

Sea ice researchers like to talk a lot about what they call ‘Century Drops.’ Days when Arctic sea ice area or extent values fall more than 100,000 square kilometers. In the past, daily Century Drops were relatively rare — with steepest rates of loss occurring during late June through early August and featuring, perhaps, a handful of days in which 24 hour losses exceeded 100,000 square kilometers. But the record melt years of 2007 and 2012 showed a proliferation of daily drops that exceeded the 100,000 square kilometers daily threshold.

Well, a couple of days ago a three Century Drop showed up in the Cyrosphere Today measure. And it may just be something we’ve never seen before (UPDATE: actually the last time was 2008, see Neven’s comment below). At the least, it’s an event that’s pretty amazingly rare — or it should be, without the heat added to the Arctic by human fossil fuel emissions.

On Tuesday evening, the Cryosphere Today site showed Arctic sea ice at about 8,986,000 square kilometers. The next day the measure stood at about 8,646,000 square kilometers. That’s an extraordinary loss of 340,000 square kilometers in just one day.

chart(4)

(Cryosphere Today sea ice graph shows that losses basically went vertical on Tuesday, June 16. Image source: Cryosphere Today.)

340,000 square kilometers gone in a single 24 hour period. That’s an area of sea ice the size of the state of New Mexico gone in a single day. In the above graph, you can see the drop as the vertical turn in the yellow line denoting 2015.

The massive single day drop temporarily brought sea ice area in the Cryosphere Today sea ice area chart into the range of second lowest on record for the date. Area losses of around 70,000 square kilometers for Wednesday resulted in a retreat to around 4th lowest on record. But any period in which drops of this size become frequent would easily transport the measure into new record low territory.

Arctic Melt Ponds

(LANCE MODIS showing the tell-tale blue of melt ponds all over the Arctic Ocean and most concentrated in edge zone regions. Proliferation of melt ponds during early season, especially when combined with the impact of human caused global warming, can increase risk for new record lows by end season.)

The cause of such a large single day drop is likely due to a combination of factors. Lately, storms have been more prevalent in the Arctic Ocean proper and such storms have a tendency to spread the ice out more, opening gaps in the ice called polynyas which tends to push the sea ice area measure lower. In addition, there is melt pressure now in Baffin Bay, Hudson Bay, the Kara Sea, the Laptev Sea, the Beaufort Sea, the Chukchi Sea, The East Siberian Sea, the Canadian Archipelago waters, and in the Barents border region. This basically composes the entire border zone of the Arctic sea ice.

Finally, the NASA MODIS satellite composite for recent days has shown a marked shift toward a light blue coloration for the entire Arctic Ocean zone and especially for the border zones. Such a shift is indicative of a proliferation of melt ponds. Major snow cover losses over sea ice during the past two weeks have removed insulation to the sea ice pack and probably aided in the formation of these melt ponds. Melt ponds are a strong indicator for sea ice health throughout the melt season — so a proliferation of melt ponds at this time may be a sign of sea ice melt vulnerability (see more over at Neven’s Arctic Sea Ice blog where they do a bang-up job tracking seasonal melt ponds and their potential impacts).

Though a three Century drop occurred, melt overall still has some catching up to do to make 2012 levels. So though this massive daily drop occurred, we are not yet in the red zone for sea ice area. Sea ice extent measures, on the other hand, remain in the range of second to third lowest on record and are still very close to all time record low levels. So this particular melt season is certainly one to still keep watching.

Links:

Cryosphere Today

LANCE MODIS

The Arctic Sea Ice Blog

Hat Tip to Neven

Big Warm-up Predicted for Northwest Territory as Pacific Side of Arctic Melts Out Early

The long-term trend for Arctic sea ice is inexorably down. Year-after-year, decade-after-decade, the human-driven accumulation of heat in the Arctic has taken a terrible toll. Recently, mid March through mid April showed record low sea ice extents for any period since record keeping began in 1979.

Over the past two weeks, extent levels bounced back to around 4th to 6th lowest on record as winds shifted to north-to-south through the broad region between Greenland and the Kara Sea. For this region, melt pressure had been quite strong throughout Winter as a powerful warm flow of air flooded up from the North Atlantic.

Sea ice concentration

(Ice in the Bering and the Sea of Okhotsk is rapidly melting. Warming and sea ice melt ramp-up may also be on tap for both the Hudson Bay and the Beaufort as south-to-north air flows associated with the Ridiculously Resilient Ridge intensify. Image source: NSIDC.)

The shift, which has occurred coincident with upper-level winds running up from the Ridiculously Resilient Ridge in the Eastern Pacific, over Alaska and the Northwest Territories of Canada, into the Beaufort and on past the pole, has been pushing sea ice southward toward the Barents and into the Fram Strait. The result has been minor sea ice expansion in the near Greenland region at the cost of much more rapid melt in the Bering Sea, the Sea of Okhotsk and a very earl season break up of ice in the Beaufort.

Pacific Side Warming and Beaufort Break-up

Overall, this Pacific-side warming of the Arctic has driven extent levels back down into the range of 3rd to 4th lowest on record for this time of year. And rapid melt in the Bering, the Sea of Okhost, together with warming in the Beaufort and Hudson Bay may result in new challenges to record lows over the coming days.

By late April, break-up of Beaufort Sea ice is particularly dramatic with very large polynyas forming in a broad region into and north of the Canadian Archipelago and extending on into the off-shore region of the Mackenzie Delta:

Beaufort Sea Ice April 26 2015

(The Beaufort Sea shows extensive break-up and lackadaisical re-freeze on April 26th 2015. Note the extensive dark cracks and polynyas [holes] in the MODIS satellite image above. Such late-spring proliferation of polynyas and cracks can critically reduce albedo as melt season progresses. The Beaufort’s location also makes it vulnerable to continued warm air influx over a very warm Northeastern Pacific Ocean. Image source: LANCE MODIS.)

Temperatures within the Beaufort Sea and near the Canadian Archipelago are still cold enough to support some re-freeze in the Polynya regions. However, closer to the Mackenzie Delta, temps have trended more and more toward near freezing or above freezing levels (sea water freezes at around 28 degrees Fahrenheit). The result is a rather large region with no new ice formation.

More Warm air on the Way

As of 5 PM Eastern Standard time, temperatures in the Mackenzie Delta on the shores of the Beaufort Sea were pushing 32 degrees Fahrenheit. Meanwhile, 50 degree temperatures dominated the region of Great Slave Lake further upstream and southward. These readings are in the range of 8-15 degrees above normal for this time of year, resulting in an early melt pressure for the Mackenzie River and for coastal regions near the post-thaw river outflow zones.

image

(Big warm-up near the Mackenzie River and through the Northwest Territory in April  28th’s GFS model prediction. Temperatures in the low 70s gather around Great Slave Lake as above freezing temperatures drift down the Mackenzie River reaching all the way to Arctic Ocean Shores. Note near and above sea water freezing temperatures [28 F] throughout the Bering, Beaufort, northwest sections of the Canadian Archipelago and Hudson Bay in the above image. Image source: Earth Nullschool.)

This warm pool is predicted to intensify through tomorrow with temperatures reaching the low 70s Fahrenheit (22 C) near Great Slave Lake and temperatures along Mackenzie Delta shores continuing to edge up over freezing. The warm pool will then linger for another few days before shifting east over Hudson Bay through early next week, pushing temperatures between 10 to 25 degrees Fahrenheit above normal there.

By late next week, long range forecasts show another warm ridge extension through the Mackenzie Delta and melt pressure on the near-shore Beaufort re-intensifying.

Overall, with Arctic Oscillation predicted to remain neutral, melt pressure in the Arctic would tend to reduce somewhat. However, with both Bering and Okhotsk rapidly melting out and with warmth predicted to persist and intensify for those seas as well as for the Beaufort and for Hudson Bay, it appears there’s an even shot that early melt season will proceed at a more brisk than typical pace — again challenging new record lows into early May.

Links:

National Snow and Ice Data Center

NASA’s LANCE-MODIS

Earth Nullschool

The Euro Model

The Arctic Sea Ice Blog

 

 

At Start of 2015 Melt Season, Arctic Sea Ice is in a Terrible State

Strong Polar Amplification. With human-forced climate change, it’s normally something you’d tend to see during winter time. By spring, the increase in solar radiation in the Mid-Latitudes would tend to force a more rapid pace of warming there. The snow and ice cover, recently refreshed by winter, would be at highest annual albedo at winter’s end. That high albedo would create a warming lag from the upper Latitudes. The resulting increase in temperature differential would then tend to reinforce the Jet Stream — giving it a strengthening kick and providing the polar north with a kind of ephemeral haven. At least for a brief window during early spring time.

Not so with 2015. This Spring, the Jet has been a basketcase. A mess of meanders like a river finding its way through a wetland prior to joining the sea. Strong south to north flows have persisted over the North Atlantic and well into Western Siberia. These meridional patterns have repeatedly delivered heat into the Arctic — particularly through the oceanic gateway between Greenland and the Yamal region of Russia.

Unusually Warm Spring for The Arctic

For the past week, this pattern intensified and the result is a bulge of extreme heat extending on toward the North Pole in the broad zone between Greenland and Northwest Siberia:

21 h Thursday April 9 Arctic T Anomaly Map

In the above image, provided by Climate Reanalyzer, we find a classic polar vortex disruption type pattern (a rather odd event for April, as both polar amplification and vortex formation have both tended to fade by this seasonal period) in which the cold core is essentially ripped in half by warm air invading from the south. In this case, we see a massive warm air flood emerging from Eastern Europe, Western Russia and the North Atlantic riding up and over the polar zone across a warm frontal boundary. This greater warm air influx is joined with a lesser one emerging off the Ridiculously Resilient Ridge pattern off the US and Canadian West Coasts and flooding up over Alaska and the Mackenzie Delta region of Canada.

The cold cores are thus shoved aside. One has fled to a dubious haven over Eastern Siberia. The second has taken a stronger hold over Greenland. For the Greenland region, surface winds have encircled the new, displaced, cold pool, generating a temperature boundary that is sharply visible in the anomaly map. The dangerous weather-wrecking “Storms of My Grandchildren” Greenland melt and polar amplification pattern — featuring a Greenland cold pocket beside a meltwater-cooled North Atlantic zone surrounded by angrily warming regions.

High anomaly departures in the range of 15-20+ degrees C above average cover about 1/3 of the high Arctic region above 80 degrees North Latitude. Laptev, Kara, Barents and the Arctic Ocean proper are all included in the heat bulge. Temperatures in this zone today spiked to near or above the point at which sea ice melts at the surface (-2.5 C) with temperatures in the Kara in the 0 to -2 C range, temperatures in the Laptev in the -2 to -4 C range and temperatures within 100 miles of the pole hitting around -3.8 C. For this region, these are readings more typical to June or even July.

Record Low Start to Melt Season

The impacts to sea ice have been nothing short of unprecedented for early season melt.

In the extent measure we find that for the past month running we have been at or near new record lows. Over recent days, consistent with the strong surge of polar heat amplification, extent values have again plummeted past previous record low values. Dropping by more than 50,000 square kilometers for each day in the April 6-8 timeframe, the melt rate is exceedingly steep for this time of year. With April 8 achieving a new record low extent of 14,073,000 square kilometers — 95,000 square kilometers below the previous record low of 14,168,000 set in 2006.

Sea Ice Extent April 9

(Arctic Sea Ice Extent as recorded by NSIDC through April 9 of 2015. We are at the descending curve of the upper arc on the left in the image. The bottom dark blue line represents 2015 sea ice extent. The light blue and pink lines are 2007 and 2006 [previous record low years for springtime]. The upper dark blue line represents 1979 sea ice extent. The dotted green line represents 2012. Note how the 2015 line has consistently trended in record low range during the past month. Image source: NSIDC.)

As heat and sunlight build in this record low ice extent environment, greater stretches of dark, open water will trap more sunlight. This will tend to have a heat amplifying effect — pushing for greater ice losses as melt season gains traction. Weather trends will tend to have an impact as well. And Arctic Oscillation (AO) is expected to again hit a strongly positive level over the next couple of days — providing further melt pressure to sea ice already at record lows. Wind patterns have also tended to facilitate ice export through the Fram, Nares and Bering Straits this year. Given a predicted continuation of these conditions, the long term-trend seems to be melt-favorable through end of April.

Kara Melting Early, Beaufort Cracking Up

In the satellite shot the impacts of these much warmer than normal Arctic conditions are clearly visible. Particularly, the Kara Sea near Northwestern Siberia and the Beaufort are showing signs of melt stress and ice fragility.

For the Kara, melt is proceeding well in advance of typical seasonal thaw. Large polynyas have opened up even as the ice edge has retreated. Much of the ice in this zone appears broken, thin, and disassociated — making it vulnerable to both increasing solar radiation and to the periods of more intense warmth to come.

Kara Sea April 9

(The Kara Sea showing reduced sea ice coverage on April 9 of 2015. Image source: LANCE-MODIS.)

With 2015 showing a tendency for strong south to north air flows in this region, the Kara continues to be at risk of early melt through spring and into start of summer.

But perhaps more disturbing is an ongoing and widespread break-up of sea ice in the Beaufort. Starting in late March and continuing on through April, very large cracks have opened up throughout the Beaufort Sea. Given that air temperatures remain in a range cold enough to freeze surface water (-12 to -25 C), the resulting gaps have quickly frozen. However, this crack-up is occurring directly at melt season start. Warmth is building, the sun is at an ever higher angle, and the lower albedo cracks may well serve to capture more heat in an already vulnerable region. In addition, temperatures in the Mackenzie River Delta — a region that, when thawed, will dump above freezing water into the already broken Beaufort — are approaching the melt point (-4 C readings today and 0 C for widespread thaw).

Beaufort Breaking Up

(Large cracks and polynyas throughout the Beaufort Sea on April 10 of 2015. Left side of frame is somewhat covered by cloud, but a large polynya [partially frozen] is visible through the coverage. Image Source: LANCE MODIS.)

These cracks are very extensive and include multiple large breaks. A scene reminiscent of the winter 2013 break-up. But the current timing at melt season start is far more likely to enhance ice vulnerability as spring progresses toward summer. Also, the fragile behavior of this broad section of Beaufort ice illustrates how thin sea ice in this region has become even as it hints at the potential that warm water (which is increasingly prevalent at depth throughout the Arctic Ocean) may be upwelling to melt some of this sea ice from below.

Together, the warm air influx and very high temperature anomalies, the rapid melt at the edge zones, the record low extent levels, and the massive crack-up ongoing in the Beaufort all point to extreme sea ice weakness at the start of melt season. With weather patterns remaining neutral to melt-favorable over the next few weeks and with winds favoring export through the Fram, Bering and Nares, risks remain high that Arctic sea ice will remain in record low territory over the coming weeks. Sea ice fragility in certain regions, especially the Beaufort, also bear watching for possible unpleasant surprises.

Links:

Climate Reanalyzer

NSIDC

LANCE-MODIS

The Storms of My Grandchildren

The Arctic Ice Blog

NASA: Melting, Darkening Arctic Ocean Turns Up Solar Heat by 5 Percent

Atop the world lies a thinning veil of ice. A gossamer lid covering a deep, dark Arctic Ocean. It is a reflector screen for incoming solar radiation during the months-long-day of Polar Summer. And a recent NASA study shows that this heat shield is starting to fail.

Ever since the late 1970s an Arctic warming at 2-3 times the rate of the rest of the globe has set off a 13.3 percent decline of sea ice at end summer during each and every following decade. And that cumulative loss is having an extraordinary impact. For the white, reflective ice cover by September has now, on average, fallen by nearly 50%. What remains is a thinner ice cover. One full of holes and interspersed with great and widening expanses of dark water.

Dark water and thinner, less contiguous, ice absorbs more of the sun’s heat. NASA notes that this added absorption can have far-flung impacts:

While sea ice is mostly white and reflects the sun’s rays, ocean water is dark and absorbs the sun’s energy at a higher rate. A decline in the region’s albedo – its reflectivity, in effect – has been a key concern among scientists since the summer Arctic sea ice cover began shrinking in recent decades. As more of the sun’s energy is absorbed by the climate system, it enhances ongoing warming in the region, which is more pronounced than anywhere else on the planet.

For years, polar scientists have been warning of signs this powerful amplifying feedback was speeding an already drastic warming for the Arctic environment. Now, a 15 year satellite survey conducted by NASA provides direct evidence that this is indeed the case — with the Arctic now absorbing 5% more incoming solar energy than it did in the year 2000.

Arctic Sea Ice Changes

(Click Image to Enlarge. Left frame shows summer sea ice fraction change with measures in dark blue showing a greater than 50% loss on average. Right frame shows changes in absorbed solar radiation with most of the Arctic showing a 5 watt per meter squared or greater increase in solar radiation absorption and sections of the Beaufort Sea peaking at 50 watts per meter squared additional solar radiation absorption. Image source: NASA.)

Averaged over the Arctic, the failing summer sea ice and newly revealed dark waters absorb an extra 10 watts per meter squared of solar heat radiation. That extra heat is equivalent to having a 10 watt light bulb burning on every square meter of the Arctic Ocean surface throughout the entire polar summer. Twenty four hours per day, seven days a week for the seasonal period.

In some regions, like the Beaufort Sea near Northern Canada and Alaska, the extra heat absorption is as much as 50 watts per meter squared greater than year 2000 levels. An extraordinary increase in Arctic Ocean heat uptake and, perhaps, one of the chief reasons why higher Latitude ocean surface temperatures have tended to range so high in recent years.

It’s a massive realignment of the Earth’s radiative balance and one that has occurred in only a relatively short period.

NASA scientists are quick to caution that to fully take into account climate variability, the study will need to continue for another 15 years. But when taking into account the massive 35 year drop off in sea ice since 1979, it appears likely that radiative balance changes are even greater than the 15 year NASA study indicates.

September Arctic Sea Ice Loss 1979-2014

(NSIDC sea ice extent losses for Arctic since 1979 showing a 13.3% decadal rate of decline. Image source: NSIDC. Note NSIDC adds a linear trend line. However, historic rates likely show a more rapidly down curving melt progression — see image below.)

Overall, this loss of sea ice and related increased heat absorption has pushed melt season onset times a full week sooner than 1982 onsets 32 years ago. Earlier melt season starts lead to more heat absorption — a classic feedback cycle also recognized in the new NASA report.

In addition, the report links added Arctic Ocean summer heat absorption to loss of older, thicker ice observed throughout the Arctic region. Since 2000, more than 1.4 million square kilometers of 3 meter or thicker ice has melted out of the Arctic Ocean system. That ice has been replaced by coverages of less than 2 meters in thickness — another aspect of amplifying warming feedbacks at play in the Arctic.

Walt Meier, a sea ice scientist at NASA Goddard Space Flight Center in Greenbelt Maryland, notes:

Having younger and thus thinner ice during winter makes the system more vulnerable to ice loss during the summer melt season.

Whether these amplifying feedbacks will result in ice free summer conditions sooner rather than later is still a matter of some discussion among scientists. Following the 13.3 percent per decade trend puts us at ice free summers sometime around 2030-2035. But the large swings in annual variability could result in an earlier year in which ice free conditions occur. In addition, some scientists assert that amplifying heat feedbacks in the Arctic are enough to result in ice free summers as soon as 2017 to 2020.

To this point it may be worth considering that the 13.3 percent per decade rate may be steepening as is hinted at in the below long term graph:

2014_sea_ice_NSIDC_extended

(Long term melt trend compiled by Larry Hamilton. Image source: Here.)

Regardless of timing, the historic loss of Arctic sea ice is already resulting in dramatic impacts to the Earth’s radiative balance and to the distribution of global surface heat absorption. A circumstance that a number of studies have implicated in changing Jet Stream patterns and enhanced meridional (north to south and south to north) air flows.

Links:

Satellites Measure Increase of Sun’s Energy Absorbed in the Arctic

2014 Melt Season in Review

Arctic Melt Trends

Hat tip to TodaysGuestIs

Late June 2014: Arctic in Hot Water as Sea Ice Thins and Tundra Fires Erupt

Atmospheric warming due to human-caused climate change. It’s the general measure we’ve used to track a devastating and ongoing heat amplification due to a terrible greenhouse gas emission. But if we were to look for where the greatest amount of that heat has accumulated, it would be in the world’s oceans. For from its air-contacting surface to its depths thousands of meters below, the World Ocean has captured 93.4% of the total heat forcing humans have already unleashed. The remainder is almost evenly divided between the atmosphere, the continents, and the ice.

We rely on floats and deep-plunging sensors to keep track of total ocean heat content. But on any given day we can see well enough what is happening at the surface. And today ocean surface heat is screaming through the world’s satellite sensors. Overall global anomalies are spiking higher than +1 C above the 1979 to 2000 average. In the Equatorial Pacific, an El Nino that looks to be far stronger than the one that occurred in 2009-2010 is building, heating a massive wedge of the Eastern Equatorial Pacific to +2 to +4 C above average. And in the far north, we see extraordinary high surface water temperature departures exactly where we need them least — bordering Greenland and the remaining Arctic sea ice.

Arctic Sea surface temperature Anomaly on Jun 24

(Arctic sea surface temperature anomaly on June 24, 2014. Image source: NOAA/NWS.)

For encircling the Arctic from the West Coast of Greenland, to Iceland, to Svalbard, to the Barents and Kara Seas, to the Chukchi and on to the Beaufort we see surface water temperatures ranging from 2.25 to 4 C or more above average. And just west of Svalbard, we have water temperatures ranging in a zone exceeding a terrifying 8 C above average. When a sea surface temperature departure of 0.5 to 1 C above average is considered significant, these values represent extremes that are far outside what was once considered normal.

Melt Pressure to Ice Sheets

Such high surface water temperatures have numerous effects. The first is that adjacent submerged ice sheets, such as the calving faces of Greenland’s great glaciers plunging into the ocean, are faced with a far greater melt pressure than before. The glacial fronts in many cases expose 500 or more feet of ice directly to these much warmer waters. And on almost every side of Greenland, but especially in the west, along Baffin Bay, these great ice masses are confronting extraordinary warmth. The heating is without respite. It occurs at all hours of the day and since it is delivered by water, it is many times more energy intensive than a similar volume of equally heated air.

Widespread Sea Ice Thinning and Melt

In the sea ice edge zone, the warmth also provides added heat pressure to the vulnerable and already greatly thinned ice floes. This heating is especially apparent in areas where continental rivers disgorge their waters into the Arctic Ocean. Warmer than normal water temperatures have coincided with much warmer than normal land temperatures, particularly over tundra regions like Canada’s Northwest Territory and the Yakutia region of Russia. These warmer lands result in warmer river flows. And the hot rivers spill into an already hotter than usual Arctic Ocean.

The result, as we can see in today’s MODIS satellite shots are numerous zones of greatly thinned ice.

Beaufort Thin Ice

(Ice melt, thin ice and melt ponds in the Beaufort Sea on June 25 of 2014. Image source: LANCE MODIS.)

A Beaufort Sea confronted with warm water outflow from the Mackenzie River, sea surface temperatures in the range of +1 to +4.5 C above average, and a broad swath of above freezing air temperatures, is now starting to show major melt effects. The sea ice has already withdrawn by as much as 150 miles from a broad section of the Canadian and Alaskan coasts. The off-shore ice features numerous very large polynyas and leads. And, overall, the ice has taken on a bluish tint indicative of widespread melt pond formation.

Russian Arctic Ocean sea ice june 25

(Arctic Sea Ice over the Laptev and East Siberian Seas. Image source: LANCE MODIS.)

Meanwhile on the far side of the Arctic, effects appear to be even more widespread. Though sea surface temperature values are somewhat lower than those seen in the Beaufort, at +0.5 to +1.25 in most open water areas, the entire region is rife with 150-200 mile wide polynyas, shattered and broken floes, and thinning (blue in the satellite picture) ice covered in melt ponds. The ice in this region is so frail that even the mildest storms, featuring 15-20 mph winds, are enough to rip through and splinter previously contiguous ice. And the storms in the region this year have been quite mild, ranging from 990 to 1000 mb in strength.

Sea ice measures show current area and extent at between 3rd and 5th lowest on record. That said, observed ice response to even the mildest high and low pressure weather systems reveals a startling vulnerability with much warmer than normal sea surface temperatures surely a contributing factor.

Wildfire Eruptions From The Northwest Territory to Siberia

In net, much warmer water temperatures and retreating sea ice in the Northern Hemisphere trigger both Jet Stream erosion and increasing south to north air flow. Over the continents, where lands are far more susceptible to rapid warming, this can result in Arctic regions seeing summer time temperatures comparable to those in latitudes much further south.

Over the past week, temperatures in the upper 70s to upper 80s (Fahrenheit) covered a broad region of Canada’s Northwest Territory including Alberta and the Mackenzie Delta region along the Beaufort Sea. These temperatures, in the range of 20-25 F above average rapidly dried out the shallow topsoil zone over the frozen and thawing tundra. Such rapidly dried soil and newly liberated tundra is a volatile fuel for fires. The human-thawed tundra itself contains burnable organic material and hosts pockets of methane while the dry soil bed is suffused with tinder-like grasses and shrubs. Any ignition can set off extraordinary fires of almost unimaginable scope and intensity.

Great Slave Lake Fires NWT

(Massive fires rage near Great Slave Lake in Canada on June 24, 2014. Image source: LANCE MODIS.)

By June 24, four massive fires, each with a front ranging from 20-30 miles in breadth, raged along the shores of Great Slave Lake in Northwest Canada. Four smaller, though still significant fires also burned nearby. The fires are plainly visible as white, comet-like plumes of smoke in the satellite picture above. For reference, Great Slave Lake is more than 200 miles across at its widest point. Bottom edge of frame is about 300 miles.

To the south and east by about 250 miles lies the Fort McMurray tar sands operation. A smaller, though still intense, tundra fire raged within 20 kilometers of that sprawling site but did not yet encroach on one of the most powerful and dangerous means of carbon-to-atmosphere delivery on the planet.

On the other side of the Arctic in Siberian, Russia, the situation was, once again, more dire. There a region very vulnerable to mid summer wildfires during recent years erupted into numerous blazes belching smoke into a swirling cloud caught up in the heat dome overhead:

Lake Baikal Fires Re-Ignite

(Massive region of wildfires North of Lake Baikal, Russia. Image source: LANCE MODIS.)

These fires were sparked by temperatures that, during recent days, ranged in the 80s and even 90s. An extraordinary heat forcing for rapidly melting tundra regions that also saw far warmer than typical temperatures this past winter.

This area, about 800 miles to the north of Lake Baikal, Russia, is a region of rapidly thawing tundra that has burned again and again during recent summers. For scope, the satellite shot frame, above, is 750 miles on an edge. In the picture are about 50 fires with fronts ranging from 4-35 miles.

This spring, a broad area to the south of the current fire zone and just north of Lake Baikal saw massive fire activity prompting Russia to dispatch an army of hundreds of firefighters to the region. Such intense fire activity so early was unprecedented for Russia. But the real fire season typically peaks from mid July to August. And, in the above picture, we see what is likely the opening salvo for the summer fire season in earnest.

Smoke and soot from these massive fires are swept up in the circumpolar Jet Stream. There they are born aloft for hundreds of miles, often traveling northward to find a final resting place upon the sea ice or atop Greenland’s glaciers. This ultimate darkening of the snow further enhances glacial melt even as it completes the cycle of warmth, finishing a dance of heat that rises up from the oceans, assaults the ice, and heats the once frozen lands to erupt in flame.

 

Links:

Support the Dark Snow Project

Where is Global Warming Going?

NOAA/NWS

LANCE MODIS

When April is the New July: Siberia’s Epic Wildfires Come Far Too Early

Global Warming Pushing Canadian Wildfires to Spike

 

 

Arctic Sea Ice Loss Goes Vertical: Area the Size of Nevada Gone in One Day

The white, reflective barrier protecting our northern polar region from the heat-amplifying effects of human-caused warming took a severe blow today. The National Snow and Ice Data Center’s sea ice area measure essentially fell off a cliff as values plummeted by more than 286,000 square kilometers. That’s an area of ice the size of Nevada lost in a single 24 hour period. A state-sized region flipping from white, reflective, cooling ice, to dark, heat-absorptive water.

arcticice June 3

(Most recent day’s sea ice area measure shows vertical drop for June 2nd and a near vertical drop for June 3rd. Updated graph shows June 3, 2014 area measures tied with 2011 and 2012 for record low daily levels. Data source: Cryosphere Today/NSIDC. Image source: Pogoda i Klimat.)

Overall, the sprawl of sea ice fell to 9,984,000 square kilometers or a negative 907,000 square kilometer anomaly vs the already low 1979 to 2008 mean. The fall was rapid enough to bring sea ice area to within striking distance of new record lows for the date. Should the nose-dive continue for just one more day, the measure’s lower range will be shattered.

Arctic Still Warm as Extra Heat Goes to Work on Ice

Since May, weather conditions in the Arctic above the 66.5 degrees north Latitude line have remained somewhat warmer than usual. GFS averages have ranged from +1.5 to -0.3 C when compared to the, already warm, 1979 to 2000 average. And, in general, values have typically hovered in the +0.5 C range for the entire Arctic.

This temperature anomaly range is, however, a major fall from the extreme polar amplification we saw this winter on the order of +4 to +6 C above ‘normal’ temperatures during the months of January and February of 2014. It is the same relative winter-to-summer draw-down in anomalies we would expect come summer as the heat overburden goes to work doing the physical heavy lifting of ice melt rather than simply warming the air. In essence, as atmospheric and ocean temperatures approach the 28 F melt-freeze line of sea ice, energy, instead, is dumped more and more into ice melt. So though Summer is still quite a bit warmer than Winter in the Arctic, the pace of atmospheric warming in the winter is much greater so long as temperatures remain below ice-melt thresholds.

Heat Delivery Mechanisms: How Polar Amplification Melts Sea Ice

Extra dangerous and amplifying Arctic heat comes from many sources. Not only is the atmosphere over the Arctic more heavily burdened with heat-capturing gasses than the rest of the planet (currently at about 405.5 ppm CO2 and 1910 ppb methane as measured at NOAA’s Barrow Alaska station), high amplitude jet stream waves continue to deliver heat in the form of southerly warm wind invasions even as the ocean upon which the thinning ice rests draws ever more energy from an immense volume of warming water. Expanding holes in the ice, a darker, greener, Arctic environment, a rain of soot from massive wildfires burning at the Arctic’s gates — all contribute to overall warming in the Arctic system.

How this heat is delivered to the sea ice can take many forms. The first, and most obvious, is through direct solar heating of the ice itself. Such insolation heating requires both clear skies and warm air temperatures for greatest impact. In these ideal conditions, melt ponds can proliferate, greatly reducing sea ice albedo and further weakening ice for large melts later in the season. And recent studies suggest that widespread melt pond formation played a key role in both of the record melt seasons of 2007 and 2012.

Melt Ponds over Hudson Bay June 2 2014

(Thin ice over Hudson Bay, Canada on June 2 takes on the characteristic blue tint indicative of melt pond formation. During late spring of 2014, melt pond formation was relegated to the ice edge, primarily due to widespread cloud formation over the Arctic Ocean. Image source: LANCE MODIS.)

But for 2014, melt pond formation has been relegated to the ice edge boundary along the fast ice near Russia, in regions of the Canadian Arctic Archipelago, and in Hudson Bay. Large areas of cloud cover have persisted throughout the Arctic preventing a much more widespread occurrence of melt ponds. This high degree of cloudiness is likely due to the changing Arctic itself where increasing encounters between hot and cold are veritable cloud and mist generating machines. Such changes bear out in paleoclimate observations where proxy values show a more ice free Arctic is a much cloudier Arctic.

So if clouds interrupt solar insolation in a melting Arctic, then what other mechanisms go to work to deliver heat to the ice?

Weather Systems, Warming Lands and Waters

‘Fate,’ as the saying goes, ‘is not without its sense of irony.’ For water in all forms, including the low-lying clouds which are fogs and mists, is likely to play an ever-increasing role in Arctic melt. These emerging heat delivery mechanisms can simply be summed up as follows: warm wet winds, warm water upwelling, and warm rivers.

Warm Wet Winds blow from south to north and increasingly invade the Arctic as tundra melts and sea ice retreats. As summer temperatures at the Arctic boundary increase due to human forcings and related amplifying feedbacks, these warm, southerly gusts bear with them an ever-increasing moisture content. And since water has 4 times the heat capacity of air, winds laden with higher volumes of moisture carry much more heat to melt ice than the drier, colder winds of yore. When such winds contact the ice, a form of condensation mist is wrung out of the air due to temperature differential. The mist directly contacts the ice and delivers its x4 heat capacity to the ice surface. It’s a phenomena that many coastal residents in the northeastern US are well familiar with — something they call snow-eating fog.

During late spring of 2014, warm, wet winds were particularly prevalent in the region of the Bering and Chukchi Seas. These winds weren’t much warmer than sea ice freezing temperatures — ranging from 28 to 40 degrees F. But they picked up moisture in a large south to north synoptic pattern, dredging up heat and water from the temperate Pacific to dump it on the Arctic sea ice. The result was great gusts of mists and fogs eating away at the ice edge week-after-week.

Warm Winds April 25 2014Warm Winds June 2 2014

In the above satellite image sequence (LANCE MODIS), we can see the drastic effects of prevalent warm winds. The top image is from April 25 of 2014, the bottom from June 2nd. In the top frame we can see the beginnings of mist and cloud formation at the ice edge along the path of persistent south to north wind flow. By June 2nd, this warm wind pattern has melted most of the Bering and Chukchi sea ice even as it intensified to a misty, cloudy maelstrom chewing away at the ice edge.

A more intense kind of a warm wind forcing can come in the form of a warm storm. These storms typically emerge from the south carrying with them a high degree of heat and moisture. A combination of rain, strong winds and increased wave action over sea ice can have a severe effect during a warm storm as was seen during the Great Arctic Cyclone of 2012. Such storms are likely to become more prevalent as the Arctic continues to heat up. And these systems can also generate a kind of warm water upwelling that eats away at the ice from below.

Warm Water Upwelling is an especially powerful force to melt ice that sits on a warming ocean, particularly when the ice is as thin, broken and mobile as we see in the Arctic today.

Impacts from warming and upwelling deep ocean waters have been both extraordinary and increasingly visible to major glacial systems in Greenland and West Antarctica where numerous ice sheets have begun an irreversible plunge toward the oceans.

In the Arctic, heat typically pools in deeper layers and at the near-shore below-surface boundary along the continental shelf. The ice rests in a zone of colder water at the surface. Atmospheric patterns such as persistent and strong high and low pressure systems can occasionally tap this deeper water heat through a mechanism known as Ekman pumping.

The way this works is that a large-scale swirl of air creates a kind of suction effect on the sea surface. In cyclonic storms, Ekman pumping causes upwelling to occur at the center of the storm and down-welling to occur at the edges. In high pressure systems, upwelling occurs along the edges while down-welling occurs at the center.

Ekman Transport

(Illustration of Ekman transport is cyclonic [storm] and anticyclonic [high pressure] systems. Image source: MIT.)

The effect this has on sea ice is that storms will tend to spread the ice out and thin it at their centers while high pressure systems will tend to pull the ice edge in and concentrate the ice. In addition, the upwelling at the edges of the anticyclone can add melt stress, especially in more shallow coastal basins, even as melt stress is added along storm paths in which warmer waters may have ventured closer to the ice bottom.

During the last week, a persistent high pressure system formed over the Beaufort Sea. It sat opposite a set of cyclones that formed near the Kara. The anticyclonic pattern of the high drew in ice from land-fast moorings in the East Siberian Sea even as warm upwelling and loss of albedo generated warmer surface temperatures in an expanding polynya zone — pumping out a burst of ice-eating mists. The anticyclone expanded into the Laptev where a similar edge draw and surface warming effect was visible even as the wind patterns between anticyclone and cyclone converged to amplify the northward retreat of ice.

Laptev and East Siberian Sea Ice May 15

Laptev and East Siberian Sea Ice June 3

In the top LANCE MODIS image frame we see East Siberian and Laptev seas already suffering ice loss and break-up due to a series of warm wind outbursts from the Asian continent on May 15 of this spring. In the bottom frame, we see today’s sea ice coverage dramatically reduced after a week of extreme ice damage due to anticyclonic recession and related edge upwelling.

As a result, both Laptev Sea ice and East Siberian Sea ice are well into record lowest ranges.

Warm Rivers also typically provide a strong pulse of heat to the Arctic through spring and into summer. As the Arctic lands thaw and the large continents warm, water flows from thawed rivers increase. In recent years, Jet Stream wave amplification has combined with warming temperatures in the region of 55 to 75 North Latitude to increase storminess and rainfall intensity. As a result, higher volumes of warmed waters flood north into what was once the ice sanctuary of the Arctic Basin. The pulse of water is generally enough to disintegrate land-fast ice and speed the ice melt further offshore.

Though large warm water pulses are not yet visible, regions to watch for 2014 will be the Mackenzie Delta and the mouths of the Kolyma, Lena, Yenisey, and Ob rivers. Major rainfall events in Siberia have been ongoing over the past week and will likely generate increased volumes of warm water flow for the Lena and Yenisey rivers particularly.

It is also worth noting that much warmer than average conditions have spread over the Mackenzie and Ob river basins.

Forecast Shows High Rate of Melt Likely

Today’s weather shows a continued building of the high pressure ridge over the Beaufort with GFS model forecasts predicting the ridge will remain in place over at least the next seven days. Persistence of this ridge pattern will continue to draw the ice in from the East Siberian and Laptev Seas even as warm winds over the Chukchi are reinforced. Sea ice totals may further be drawn down from rapid melt proceeding in both Hudson and Baffin Bay. Melt in these areas has lagged behind the larger Arctic somewhat, so current near record low totals are yet higher than they would otherwise be.

Melt soup

(107 hour GFS Model temperature forecast. Image source: University of Maine.)

Meanwhile, model runs show the Arctic steadily devolving into a kind of melt soup where atmospheric temperatures push into an above-freezing range for sea ice over the majority of the Arctic even as shore regions of Yakutia and the Mackenzie Delta are forecast to see temperatures in the mid 60s and 70s. These readings are in the daily range of +0.3 to +1.9 C above the 1979 to 2000 average for the entire area above the Arctic Circle and are predicted to hit local spikes from +4 to +18 C.

It should go without saying that a 70 degree reading in early June on the shores of the East Siberian Sea in the high Arctic is a clear sign of human-caused climate change gone nuts. And we are likely to see these and higher readings as spring proceeds into summer.

So though general cloudiness over the Arctic may continue to suppress melt pond formation, there likely remains enough heat baked-in to keep testing new record lows for sea ice. Even under cloud cover, dangers to the sea ice abound in the form of warm winds, warm storms, warm water upwelling, and a growing heat pulse from warming Arctic rivers. Amplifying heat and a growing number of ways in which that heat can be transferred to ice creates an ever-expanding risk for ice free conditions. Under such a regime, unexpected and extreme events are increasingly likely.

*    *    *    *

UPDATE: According to reports from NSIDC and Cryosphere Today, negative Arctic sea ice area anomaly for the date grew to 988,000 square kilometers below the average for June 3rd. This represents an additional loss of 179,000 square kilometers, which is larger than the combined land masses of the UK and Croatia (or roughly the size of the state of Missouri). This most recent plunge pushes 2014 sea ice into record low range as it essentially ties values for both 2011 and 2012 on this date. Any single day loss greater than 120,000 square kilometers for tomorrow will extend 2014 losses into all-time record low range.

In total, the plunge over June 2-3 represents 465,000 square kilometers or an area larger than the combined regions of California and Maryland. It is worth noting that weekly losses in the range of 500,000 square kilometers are considered extreme. We have instead witnessed a near 500,000 square kilometer loss in just two days.

arctic_AMSR2_nic

(Thin ice visible over broad stretches of the Arctic. Image source: Uni-Bremen.)

As an additional note, it’s worth sharing the observation that while high pressure systems and warm winds have placed extreme melt pressure and caused the ice edge to rapidly recede in the Chukchi, East Siberian and Laptev seas, ongoing cyclonic action in a rough triangle from the North Pole to Greenland to the Kara Sea has resulted in a great breaking, thinning and dispersal of ice in this region. The cyclones in the area, though weak, have generated enough force to greatly disperse the ice and, perhaps, to access warmer waters just below the ice in sections where ice has repeatedly expanded and retracted over recent months. Large patches of sea ice concentration of less than 75% in this zone make it very vulnerable to any additional heat and melt forcing.

So it appears the Arctic is split between weather forces — with cyclones dominating the sea ice between the North Pole, the Kara, and the coasts of Greenland and with high pressure systems dominating the Beaufort and the Laptev. Forecast higher temperatures injected into what is already a strong melt regime continue to generate high risk for rapid melt.

Links:

Cryosphere Today/NSIDC

Pogoda i Klimat

Arctic Ice Graphs

Arctic Sea Ice

LANCE MODIS

MIT

GFS Model

University of Maine

NSIDC MASIE plots

 

Warm Winds Gather to Invade the Arctic: Summer Sea Ice Melt and The Storms of 2014

If there’s an aspect of global warming science that remains unsettled, it’s the general state of prediction and analysis over the fate of Northern Hemisphere sea ice. As is well known by now, model predictions greatly underestimated the pace of sea ice loss as a response to human-caused warming. Big melt years like 2007 and 2012 brought sea ice extent and area, by end 2012, to less than 50% of 1979 values. Sea ice volume for the same period was nearly 80% lower than 1979 measures. Such lows were generally not predicted to appear until the 2060s at the earliest.

Ice response to rapid human warming and polar amplification, in these cases, was, for lack of a better description, outrageously stunning. And the weather impacts of such amazing losses were increasingly dangerous and far-reaching. Climate systems inertia, in the case of sea ice, seemed to be no match at all for the strong and likely unprecedented warming forces we’d already unleashed.

Sifting through the sea ice tea leaves

Though much of what happened was and continues to be unexpected, a few overall patterns emerge in the data. Dynamic melt trends for area and extent were composed of massive melt years (2007 and 2012) followed by pseudo recovery years (2008, 2013) where the ice seemed to bounce back a little before inching again toward previous record lows (2009, 2010) or setting minor new melt records (2011 area) before the next big hit.

Sea ice volume measures were somewhat less messy with massive melt years (2007, 2010), more minor melt years (2011, 2012), one minor pseudo-recovery year (2008) and one major pseudo-recovery year (2013). In this set, one year (2009) stands out as neither showing a new record low volume nor showing pseudo-recovery as end season volume fell off slightly from the previous year. The fact that 2009 followed a pseudo-recovery year (2008) may or may not be instructive for the current melt season.

It is worth noting that in the volume progression, four out of seven years during the 2007 to 2013 period all showed new record lows.

Piomas Minimum Arctic Ice Volume

(Graph of minimum Arctic sea ice volume as measured by PIOMAS since 1979 with various trend line projections. Data source: PIOMAS Image source: Wipneus.)

What one can read from these data points is that strong pseudo-recovery years (like 2013 and 2008) have typically been followed in recent years by a return to the decline trend but not to new record lows. So, statistically, this is what we would expect for 2014.

That said, keep in mind that though it remains extraordinarily difficult to predict end sea ice states for any single year, the overall trend of major and unprecedented melt is most likely to continue and the window for a total sea ice loss by end season before 2020 remains wide open. Further, statistical analysis will, in every case, bow to emerging conditions on and beneath the ice.

Evolution of the early 2014 melt season

For the 2014 melt season, the fickle Arctic does not at all disappoint. By late April and early May of 2014, an extraordinarily warm winter period had wiped out most of the 2013 recovery in sea ice volume measures. By mid April, PIOMAS was showing volume in the range of second or third lowest year on record for the date.

By today, May 12, sea ice area and extent measures were in the range of 4th to 5th lowest on record with both measures approximately mirroring 2007 values for the date.

Given the potential for very rapid melt during June and July, as displayed in recent melt years, these values are within striking distance of new record lows should the weather conditions for rapid melt emerge.

Observed conditions for early to mid May 2014

It is worth noting that May does not generally tend to be a predictive month for sea ice loss. In most cases, it is more a bottleneck period where values tend to crunch together as the sea ice softens up but generally shows few breaks toward the more rapid melt trends typically seen in June or toward a slower melt due to weather that is less favorable for ice degradation.

That said, a few currently ongoing conditions may provide some strong indicators for how the 2014 melt season could progress.

High amplitude Jet Stream waves through Eastern Siberia, the Bering Sea and Alaska. A doggedly persistent weakness in the polar Jet Stream along an arc from East Siberia to Western Canada has resulted in much warmer than usual conditions for the Bering Sea, the Chukchi Sea and regions of the Beaufort adjacent to the Alaskan and Canadian coasts. Warm air originating over a pool of much hotter than normal water in the Northern Pacific just south of Alaska has continued to flow up through the Bering Sea, into the Chukchi, and over Alaska and Western Canada and on into the Beaufort.

Tracking this warm air flow resulted in a bit of incredulity as day after day observation showed the air continuing on through the Beaufort, past the North Pole zone, down over Svalbard and the Fram Strait, into the North Atlantic and finally being swept east in the strong cross-ocean wind pattern toward England and Ireland. In this way, air from 40 North Latitude in the Pacific jumped the pole to end up in the Atlantic near England.

A persistence of this weather pattern would have numerous and potential critical impacts for the Arctic during the summer of 2014. First, it would result in a constant pressure of warmer than usual conditions for sea ice along an arc from the Mackenzie Delta and Adjacent Canadian Arctic Archipelago to the East Siberian Sea. Warm winds would assault the ice from launching pads over warmer land masses in this zone, resulting in increased and early ice erosions.

Already, we can see such conditions emerging in the following MODIS satellite shots provided by NASA:

Mackenzie Delta May 11, 2014

(The Mackenzie Delta [upper left] and adjacent Canadian Archipelago waters. Image source: LANCE-MODIS.)

The above image shows the Mackenzie Delta and the Canadian Arctic Archipelago on May 11 of 2014. In these images, we can seen the result of continued warm winds from the south and near-or-above freezing temperatures. For the Mackenzie Delta, temperatures since early May have ranged between 23 and 42 F, or between 5 and 25 F above average for this time of year. The high temperatures have brought the snow melt line all the way to the coast very early and have resulted in both ice melt and retarded refreeze in the broken ice and large polynyas offshore in the nearby Beaufort. Note that an additional heat influx to these coastal waters will occur once the shallow Mackenzie River fully melts, likely resulting in the early break-up of land-fast ice near the delta.

Chukchi Beaufort Melt May 11, 2014

(The Chukchi and Beaufort Seas on May 11, 2014 from the Bering Strait [upper left] to past Barrow, Alaska [lower center]. Image source: LANCE-MODIS.)

Further along the Canadian and Alaskan coasts, we find a continuation of sea ice weakness and break up in the off-shore regions north of Barrow Alaska and on into the Chukchi Sea. Large polynyas remain open throughout the region and exhibit no refreeze in the open water sections. Past the Bering Strait zone, Chukchi melt is very well advanced for early-to-mid May due to a combination of near constant warm southerly wind influx and an advancing warm water wedge through the Bering Strait.

This warm wind pattern through Eastern Siberia, Alaska and Canada and into the Arctic Ocean is reinforced by a combination of ongoing factors including a weakened polar Jet Stream which has tended to generate high amplitude ridges in this zone, a very warm pool of water in the Northern Pacific south of Alaska, and an emerging El Nino which historically has tended to push a high amplitude split in the Jet Stream up toward Alaska. These self-reinforcing factors make it likely that the overall pattern of warm southerly winds over the region will continue to persist and have an impact well into summer.

Finally, it is worth noting that the current and ongoing warm air influx through this region provides a constant source of energy for Arctic storm genesis, a factor that may well become more significant as melt season progresses. Forecasts for the next 24 hours show a storm pulling warm, above-freezing temperatures deep into the Beaufort as it begins a transition toward the northern polar zone. It is the second system to exhibit such anomalous warm air inflow and progression into the Central Arctic during the month of May.

GFS Warm Storm

(GFS model summary showing warm storm with associated above-freezing temperatures invading deep into the Beaufort Sea during late Monday and early Tuesday of this week. Image source: University of Maine.)

A third warm air invasion, this time from Eastern Siberia, and potential related storm development is also projected for late this week or early next week.

The Arctic dipole: storms over the Arctic Basin, high pressure over Greenland. Today, we track three Arctic low pressure systems — one emerging from the warm air influx over the Beaufort, one over the Laptev and one north and east of Svalbard. Greenland, meanwhile, shows a high pressure system centered almost directly over its large ice sheet. The net effect of these lows and highs is to funnel the warm wind streaming up from the Beaufort over the Northern polar zone near the Canadian Arctic Archipelago and out over the Fram Strait and Svalbard.

It is a dipole of high pressure over Greenland and low pressure over the Arctic Basin on the Central and Eastern Siberian side that has lasted for about two months through Northern Hemisphere Spring. This set-up creates a strong and consistent wind pressure providing transport of sea ice out of the Fram Strait. It is worth noting that Fram Strait export was one of the primary factors involved in the record low sea ice total seen during 2007, so a consistent dipole pattern of storms over the Arctic basin and highs over Greenland promoting ice export could well weigh heavily as melt season progresses.

Warming over Western Russia and Eastern Europe. A second zone showing consistent ridge development, polar Jet Stream weakness and coincident anomalous warming has emerged over western Russia and Eastern Europe. Such warming was seen during the weak El Nino of 2010 and resulted in severe heatwaves and wildfires for the region. A similar pattern has emerged in tandem with the rising and potentially far stronger 2014-2015 El Nino currently developing in the Eastern Pacific. Though it is too early to tell if this emerging hot zone will reach the extremes seen in 2010, this heat pool is likely to contribute warmth to sea ice zones in the Kara and Laptev Sea as the summer melt season progresses.

So far, Kara sea ice retreat has remained within usual boundaries for recent years. However, it is worth considering the potential strength of this developing warm air pool and how it may impact adjacent Arctic zones as May progresses into June. This week’s forecast now shows above-freezing temperatures predicted to progress into the Kara and 50 degree F readings predicted to push into estuaries bordering the Kara over the next few days.

Warm water upwelling, north wind flush, storm suction for Baffin Bay. Finally we come to Baffin Bay, a place many may well consider the Arctic Ocean’s red-headed stepchild. Over recent years, warm water up-welling, possibly driven in part by sea-bed methane release, in Northern Baffin Bay has resulted in an almost constant weakness and erosion of sea ice. This condition creates a bizarre circumstance in which Baffin is often surrounded by warmer waters north and south by late spring. This year is no exception. In addition, a north wind now appears to be flushing Baffin Bay sea ice toward the North Atlantic. The result is an expanding zone of ice-free water along the West Coast of Greenland pushing toward a widening gap in the north of Baffin Bay near the Nares Strait.

To the south, a persistent storm has developed near an anomalous cool zone in the North Atlantic waters off of Newfoundland. This cold pool is likely a residual of the continued dipole, hot-west, cold-east temperature anomaly over North America which has increasingly been squashed toward Newfoundland with the emergence of summer. The cold North Atlantic pool is also likely fed by a rising outflow of fresh, cold water from Greenland glaciers as well as the Baffin Bay ice export already described. A growing Gulf Stream weakening is also well established for the region.

The persistent storm is fed by high temperature differentials in the dipole zone. It is one of the remnant storm systems of this winter’s epic assault on the coasts of Great Britain — a possible precursor to even more vicious storms this coming winter.

But, today, the storm is simply providing added suction to drain ice out of Baffin Bay.

Storm off Greenland and Newfoundland

(Like a drain in a massive bathtub: storm off Greenland and Newfoundland on May 12 reinforces northerly wind flow pulling sea ice out of Baffin Bay. Image source: LANCE-MODIS.)

A final word on Storms and Warm Winds

During late April, we talked a bit about the impact of early season melt ponds on end-season sea ice levels. For recent scientific studies have found that early season melt pond formation has a high correlation with new record lows in sea ice area and extent.

But given the current very thin and broken state of sea ice, it’s worth considering whether the rules for sea ice loss aren’t in the process of changing.

Ever since the 2012 melt season’s close, the Arctic Ocean has exhibited a very battered sea ice state. One featuring widely disassociated packs of broken and brittle ice riddled with a long and pervasive spidering of leeds. For large melt pond systems to develop, the ice pack needs to be relatively contiguous. But the recent ice pack shows very little continuity and could, instead, be said to basically lack integrity. Such a state may well prevent a degree of melt pond formation in areas in which the ice is more and more highly disassociated into floes. And it is this disassociated ice state that may be the current and future norm as sea ice continues to thin and weaken.

In addition, rising temperatures in and around the Arctic have resulted in increased atmospheric water vapor content, increased cloud formation, and increased storm presence during summer periods. This progression toward storminess is consistent with paleoclimate studies showing that ice-free or near-ice-free Arctic states were much stormier than the current one. In the event of an expected stormier Arctic, melt pond formation may well result less from direct solar insolation through clear Arctic skies and more from an increasing number of rainfall and warm fog events over sea ice.

Cyclonic pumping of warmer waters from below the ice pack into surface water zones and the mixing of waters by waves generated by storm winds is also likely to have a far greater impact on sea ice melt than seen in recent years. It is likely we saw a prelude to just such an event during the great, late-season Arctic Cyclone of 2012 which sent waves the size of houses roaring across the Beaufort Sea to batter and disassemble the already weakened sea ice.

In this dynamic and changing system, warm winds are also likely to play a much greater role. Jet Stream erosion, in such a case, unleashes warm southerly winds on the sea ice. The winds, being warmer, hold a higher water vapor content than was typical for the Arctic prior to the human warming insult. Encountering ice and cold water, the water vapor in the winds condenses to form fog. The latent heat in the water vapor is thus released to do work melting the sea ice and warming the sea surface. In such cases, a kind of snow and ice eating mist develops from the warm wind — a blow torch for the sea ice.

Links:

LANCE-MODIS

Dual Ridges Form Sea Ice Achilles Heel for Summer 2014

University of Maine

PIOMAS

Wipneus

Cryosphere Today

NSIDC

Arctic Sea Ice Graphs

The Arctic Sea Ice Blog

The Storms of Arctic Warming

Heavy, Early-Season Blow to Arctic Ice Cap: Powerful, Warm Storm Disintegrates Barents Sea Ice

A vast swath of sea ice that painstakingly formed as somewhat cooler conditions had finally settled in near Svalbard and Frans Joseph Land in the Barents Sea was shattered yesterday as a powerful, heat-laden Arctic cyclone screamed up out of a rapidly warming extreme North Atlantic.

The storm originated west of the Norway coastline where, in recent years, a repository of exceptionally warm water has collected. This near-Arctic and Barents Sea warm pool has resulted in numerous effects including a forced recession of sea ice by hundreds of miles during winter time as well as providing impetus for various anomalous heat waves in Scandinavia in recent years.

This time, the heat pool was the genesis for a powerful storm that delivered an intense package of early season warmth to a section of sea ice drifting in the North Barents Sea region.

Warm Storm Impacts

April 16, pre-storm

In the above image, provided by NASA’s  LANCE-MODIS sensor, we can see a 250 mile section of sea ice that had extended out into the Barents Sea over the past few weeks during a cooler period as warmer conditions shifted to the Laptev, East Siberian, and Beaufort Seas. The date of this shot is April 16. To the lower left is the tip of Svalbard. Upper left is the far edge of Frans Joseph Land. Another few hundred miles to the right of far right frame is Northern Norway.

The storm, for now is off frame.

Storm April 17

Now on April 17, we can see the storm center in the far left frame near the tip of Svalbard. At this point, the storm has bombed out to an extraordinarily powerful 950 mb low, packing 60+ mph winds. In its upper quadrant, it carried with it temperatures ranging from 10 to 20 C above typical seasonal averages. Perhaps more importantly, through cyclonic forces it pumped waters that were up to 5 C above average temperature up from the depths and into the ice pack. This kind of cyclonic Ekman Pumping, in recent years, has had an increased potential to rapidly reduce sea ice due to warmer surrounding water conditions and warmer waters at depth.

Note that rapid sea ice disintegration is already involved in the wake of this severe Arctic Cyclone.

Aftermath -- Near Zero Contiguous Ice

Now, today, on April 18, we can see that in the aftermath of this powerful Arctic Cyclone there is very little contiguous sea ice left. What remains is what in sea ice parlance can be termed nilas — very thin and diffuse ice of 0-10 centimeters in thickness. Note that the entire 250 mile zone is completely involved in this very visible ice loss and that such losses continue on past Frans Joseph Land and into the Kara Sea.

Further Implications for the 2014 Melt Season

Melt season in the Arctic is now well involved. In addition, we have numerous weaknesses in the Northern Hemisphere Jet Stream that continue to funnel much warmer than average air over the Arctic Sea Ice. Alaska, Siberia and the Barents all continue to see strong warm air impulses that progress well into the zone covered by sea ice.

Today, according to GFS model measures for the zero hour, average Arctic temperatures are 2.24 C above the, already warmer than normal, 1979 to 2000 average. This is a rather high spike for spring, when Arctic temperatures typically start to settle back down after seeing high levels of global warming associated heat amplification during winter time.

The excess heat had already pushed Arctic sea ice extent measures down to near record lows as of April 17. According to NSIDC, extent measures had fallen to 13.9 million square kilometers yesterday, the second lowest level in the measure. With full effect from the recent intense storm not yet fully realized, it is possible that impacts in this region alone could reduce total values by at least 100,000 square kilometers.

arcticice_nsidc apr 17

(Arctic Sea Ice Extent Second Lowest on Record for April 17. Data Source: NSIDC. Image Source: Pogoda i Klimat.)

Yet one more major blow to sea ice from a powerful warm storm type system. And, in this case, with melt season progressing rapidly and with so much heat already shifting into the Arctic, it is highly unlikely that this zone of newly dispersed ice will see much in the way of recovery over the coming weeks.

 

Links:

LANCE-MODIS

NSIDC

Pogoda i Klimat

Global Forecast Systems Model

Persistent Arctic Cyclone and the Warm Storm of 2013

 

Arctic Sea Ice Breaking Up as Heat Anomaly Spikes to 4.21 Degrees Celsius Above Average

The Siberian Heat Wave that began last week continues apace today. Far warmer than normal southerly winds continue to blow over a large region of Siberia bringing with them near freezing and occasionally above freezing temperatures. The combined influence of this off-shore flow and, what is for the Arctic, late spring and early summer-like weather is having a profound effect on Arctic sea ice in the regions of the Kara, Laptev, and East Siberian Seas.

Last week, we reported that an early break-up of sea ice was ongoing in the Kara Sea. Now, with the warm, off-shore flow shifting west, this break-up zone has expanded well into the Laptev and East Siberian. Satellite observations indicate that a very large section of ice pack, stretching from Severnaya Zemlya past the New Siberian Islands and on into the East Siberian Sea has been shoved northward by the strong south-north wind flow. The result is large gaps, ranging from 50-100 miles in width, forming along the boundary of the land fast ice and spreading through a zone of high impact for about 2,000 kilometers through the Kara and Laptev Seas before extending along a less involved fault zone another 1,000 kilometers into the East Siberian Sea.

Moving from west to east around the Arctic Basin, below is a summary of the ongoing break-up. Please note that some sections of these images are obscured by cloud cover:

Kara Sea March 9 v2Kara Sea March 24

(Kara sea before large scale breakup on March 9 in the top frame and after large-scale break up on March 24 in the lower frame. Image source: Lance-Modis)

Above, we have a continuation of the Kara Sea ice breakup we reported last week. Note that the break-up now extends all the way through sections of the land-fast ice to shore. Motion of the floe is still mostly south to north with sections of open water here ranging from 5-30 kilometers in width.

Moving east, we find that the eastward drift of the off-shore wind pattern and associated warm air temperatures that are closer to May and June norms have had a dramatic impact on Laptev sea ice as well:

Laptev March 9

Laptev March 24

(Laptev sea ice on March 9 with some large polynas prior to large scale break-up and extending of polynas on March 24. Image source: Lance-Modis)

Here we find the section of large openings and polynas spreading east from Severnaya Zemlya through the Laptev and on past the New Siberian Islands. Ice crack sizes are quite large with gaps stretching between 30-50 kilometers in width. Sea ice toward the central pack shows much more extensive cracks (leads) and breakage.

Still further east, the warm southerly winds have also widened and extended large cracks running through the East Siberian Sea, the region of water covering the shallow and sensitive East Siberian Arctic Shelf zone:

East Siberian Sea March 9

East Siberian Sea March 24

(East Siberian Sea ice on March 9 in the top frame and March 24 in the bottom frame. Image source: Lance-Modis.)

The crack structure appears to have shifted north, extended and widened even as the ice system became more crack-riddled.

Siberian Heat Wave Continues

Temperatures in the region continue to range between 5 and 20 or more degrees Celsius (9 to 36 F) above average for this time of year. This abnormal ‘heat’ translates into average temperatures ranging from -14 to 0 C (8 to 32 Fahrenheit). It is worth noting that salt water freezes at around -2 C (28 F, depending on salinity). So average temperatures in this range are enough to retard refreeze after breakage, to keep sea ice more disassociated and brittle, and to result in some areas where sporadic melt occurs.

As spring continues, warmer water beneath the ice pack, waters warmed by solar insolation, ice warmed by solar insolation, and warm water outflows from the Continents may well become involved to enhance early season sea ice break up and melt.

Overall, the Arctic is now experiencing an extraordinarily high temperature anomaly of +4.21 above the 1979-2000 average or about 5.7 C above the 1880s average. These excessive above average temperatures are high enough to initiate early melt, fragility and break-up in some zones (as observed above).

T2_anom_satellite2

(Very large Asian heat plume. Image source: University of Maine.)

This particular heat wave is in association with a very large Asian system in which much warmer than average temperatures extend south to north from Northern China, Mongolia, through the Yakutia region of Russia and on up into the Kara, Laptev, East Siberian, and Beaufort Seas of the Arctic Ocean. It is also worth noting the rather impressive hot pool forming over the Balkan States of Eastern Europe and the Ukraine which is, perhaps, a pattern settling in with the potentially oncoming El Nino.

GFS model runs show the current Arctic pulse spiking to around +5 C above 1979 to 2000 averages over the next 48 hours and then slowly fading through March 31 as anomalies return to a range of about +2-3 C above average. Hot zones continue to linger over China, Mongolia, Siberia and Eastern Europe as a somewhat troubling heat pulse develops over a large swath of western Greenland before riding up over Svalbard potentially bringing 30-40 degree (F) temperatures to both Western Greenland and this Arctic island by late in the forecast period.

Links:

Lance-Modis

University of Maine

Arctic Ice Graphs

 

Far Worse than Being Beaten with a Hockey Stick: Michael Mann, Our Terrifying Greenhouse Gas Overburden and Heating the Earth by + 2 C by 2036

I’m going to say something that will probably seem completely outrageous. But I want you to think about it, because it’s true.

You, where-ever you are now, are living through the first stages of a disaster in which there is nowhere to run, nowhere to hide, and no safe place on Earth for you to go to avoid it. The disaster you are now living through is a greenhouse emergency and with each ounce of CO2, methane and other greenhouse gasses you, I, or the rest of us, pump into the air, that emergency grows in the vast potential of damage and harm that it will inflict over the coming years, decades and centuries. The emergency is now unavoidable and the only thing we can hope to do through rational action is to reduce the degree of harm both short and long term, to rapidly stop making the problem worse, and to put human ingenuity toward solving the problem rather than continuing to intensify it.

But damage, severe, deadly and terrifying is unleashed, in effect and already happening, with more on the way.

*    *    *    *    *

Manns-hockey-stick

(Michael Mann’s famous Hockey Stick graph showing Northern Hemisphere temperatures over the past 1,000 years. The influences of human warming become readily apparent from the late 19th to early 21rst centuries. But human greenhouse gas forcing has much greater degrees of warming in store.)

This week, Michael Mann wrote an excellent piece describing the immediacy of our current emergency in the Scientific American. In typical, just the facts, fashion, he laid out a series of truths relevant to the current greenhouse catastrophe. These facts were told in a plain manner and, yet, in a way that laid out the problem but didn’t even begin to open the book on what that problem meant in broader context.

Michael Mann is an amazing scientist who has his hand on the pulse of human-caused climate change. He is a kind of modern Galileo of climate science in that he has born the brunt of some of the most severe and asinine attacks for simply telling the truth and for revealing the nature of our world as it stands. But though Mann’s facts are both brutal and hard-hitting for those of us who constantly read the climate science, who wade through the literature and analyze each new report. By simply stating the facts and not telling us what they mean he is hitting us with a somewhat nerfed version of his ground-breaking Hockey Stick. A pounding that may seem brutal when compared to the comfortable nonsense put out by climate change deniers and fossil fuel apologists but one that is still not yet a full revelation.

I will caveat what is a passionate interjection by simply saying that Michael Mann is one of my most beloved heroes. And so I will do my best to help him out by attempting to lend more potency to his already powerful message.

2 C by 2036 — Digging through the Ugly Guts of it

All that said, Michael Mann laid out some brutal, brutal facts in his Scientific American piece. Ones, that if you only take a few moments to think about are simply terrifying. For the simple truth is that the world has only a very, very slim hope of preventing a rapid warming to at least 2 C above 1880s levels in the near future and almost zero hope altogether of stopping such warming in the longer term.

The first set of figures Mann provides involves the current greenhouse gas forcing. Current CO2 levels are now at the very dangerous 400 parts per million threshold. Long term, and all by itself, this forcing is enough to raise global temperatures by between 2 and 3 degrees Celsius. But hold that thought you were just about to have, because we haven’t yet included all the other greenhouse gasses in that forcing.

Mann, in the supplemental material to his Scientific American paper, notes that the total forcing of all other greenhouse gasses currently in the atmosphere is about 20% of the total CO2 forcing. This gives us a total CO2 equivalent forcing of 480 ppm CO2e, which uncannily mirrors my own analysis here (the science may have under-counted a bit on the methane forcing, but this value is likely quite close to current reality for both the short and long term).

480 ppm CO2e is one hell of a forcing. It is nearly a 75% greater forcing than 1880s values and, all by itself, is enough to raise temperatures long-term by between 3.5 and 4.5 degrees Celsius.

And it is at this point that it becomes worthwhile talking a bit about different climate sensitivity measures. The measure I am using to determine this number is what is called the Earth Systems Sensitivity measure (ESS). It is the measure that describes long term warming once all the so called slow feedbacks like ice sheet response (think the giant glaciers of Greenland and West Antarctica) and environmental carbon release (think methane release from thawing tundra and sea bed clathrates) come into the equation. Mann, uses a shorter term estimate called Equilibrium Climate Sensitivity (ECS). It’s a measure that tracks the fast warming response time once the fast feedbacks such as water vapor response and sea ice response are taken into account. ECS warming, therefore, is about half of ESS warming. But the catch is that ECS hits you much sooner.

At 480 ppm CO2e, we can expect between 1.75 and 2.25 degrees C of warming from ECS. In essence, we’ve locked about 2 C worth of short term warming in now. And this is kind of a big deal. I’d call it a BFD, but that would be swearing. And if there is ever an occasion for swearing then it would be now. So deal with it.

Mann, in his article, takes note of the immediacy of the problem by simply stating that we hit 2 C of shorter term ECS warming once we hit 405 ppm CO2 (485 CO2e), in about two to three years. And it’s important for us to know that this is the kind of heat forcing that is now hanging over our heads. That there’s enough greenhouse gas loading in the atmosphere to push warming 2 C higher almost immediately and 4 C higher long term. And that, all by itself, is a disaster unlike anything humans have ever encountered.

Global Fossil Fuel Emission

(Global annual fossil fuel emission is currently tracking faster than the worst-case IPCC scenario. Aerosols mask some of the heating effect of this enormous emission, what James Hansen calls ‘a Faustian Bargain.’ Image source: Hansen Paper.)

But there is a wrinkle to this equation. One that Dr. James Hansen likes to call the Faustian Bargain. And that wrinkle involves human produced aerosols. For by burning coal, humans pump fine particles into the atmosphere that reflect sunlight thereby masking the total effect of the greenhouse gasses we have already put into the atmosphere. The nasty little trick here is that if you stop burning coal, the aerosols fall out in only a few years and you then end up with the full heat forcing. Even worse, continuing to burn coal produces prodigious volumes of CO2 while mining coal pumps volatile methane into the atmosphere. It’s like taking a kind of poison that will eventually kill you but makes you feel better as you’re taking it. Kind of like the greenhouse gas version of heroin.

So the ghg heroin/coal has injected particles into the air that mask the total warming. And as a result we end up with a delayed effect with an extraordinarily severe hit at the end when we finally stop burning coal. Never stop burning coal and you end up reaching the same place eventually anyway. So it’s a rigged game that you either lose now or you lose in a far worse way later.

Mann wraps coal and other human aerosol emissions into his equation and, under business as usual, finds that we hit 2 C of ECS warming by 2036 as global CO2 levels approach 450 ppmv and global CO2e values approach 540 ppmv. At that point, were the aerosols to fall out we end up with an actual short term warming (ECS) response of 2.5 to 3 C and a long term response (ESS) of about 5 to 6 C. (Don’t believe me? Plug in the numbers for yourself in Mann’s climate model here.)

So ripping the bandaid off and looking at the nasty thing underneath, we find that even my earlier estimates were probably a bit too conservative and Mann, though we didn’t quite realize it at first, is hitting us very hard with his hockey stick.

What does a World That Warms So Rapidly to 2 C Look Like?

OK. That was rough. But what I am about to do is much worse. I’m going to take a look at actual effects of what, to this point, has simply been a clinical analysis of the numbers. I’m going to do my best to answer the question — what does a world rapidly warming by 2 C over the next 22 years look like?

Ugly. Even more ugly than the numbers, in fact.

First, let’s take a look at rates of evaporation and precipitation. We know that, based on past research, the hydrological cycle increases by about 6% for each degree Celsius of temperature increase. So far, with about .8 C worth of warming, we’ve had about a 5% increase in the hydrological cycle. What this means is that evaporation rates increase by 5% and precipitation events, on average, increase by about 5%. But because weather is uneven, what this does is radically increase the frequency and amplitude of extreme weather. Droughts are more frequent and more severe. Deluges are more frequent and more severe.

(Program in which top climate scientists explain how global warming increases the intensity of evaporation and precipitation all while causing dangerous changes to the Jet Stream.)

At 2 C warming we can change this loading from a 5% increase in the hydrological cycle of evaporation and precipitation to a 12% increase. You think the droughts and deluges are bad now? Just imagine what would happen if the driver of that intensity more than doubled. What do you end up with then?

Now let’s look at something that is directly related to extreme weather — sea ice loss. In the current world, about .8 C worth of warming has resulted in about 3.2 C worth of warming in the polar regions. And this warming has resulted in a massive and visible decline of sea ice in which end summer volume values are up to 80% less than those seen during the late 1970s. This loss of sea ice has had severe effects on the Northern Hemisphere Jet Stream, both pulling it more toward the pole and resulting in high amplitude Jet Stream waves and local severe intensification of storm tracks. At 2 C worth of global warming, the Arctic heats up by around 7 C and the result is extended periods of ice free conditions during the summer and fall that last for weeks and months.

stroeve-barret-p-10-plus-2012

(Actual rate of sea ice loss vs IPCC model predictions. The most recent record low value achieved in 2012 is indicated by the dot. Image source: Assessment of Arctic Sea Ice/UCAR Report.)

The impacts to the Northern Hemisphere Jet Stream are ever more severe as are the impacts to Greenland ice sheet melt. Under such a situation we rapidly get into a weather scenario where screaming temperature differentials between the North Atlantic near Greenland and the warming tropics generate storms the likes of which we have never seen. Add in a 12% boost to the hydrological cycle and we get the potential for what Dr. James Hansen describes as “frontal storms the size of continents with the intensity of hurricanes.”

Greenland melt itself is much faster under 2 C of added heat and the ice sheets are in dangerous and rapid destabilization. It’s possible that the kick will be enough to double, triple, quadruple or more the current pace of sea level rise. Half foot or more per decade sea level rise rapidly becomes possible.

All this severe weather, the intense rain, the powerful wind storms and the intense droughts aren’t kind to crops. IPCC projects a 2% net loss in crop yields each decade going forward. But this is likely to be the lower bound of a more realistic 2-10 percent figure. Modern agriculture is hit very, very hard in the context of a rapidly changing climate, increasing rates of moisture loss from soil and moisture delivery through brief and epically intense storms.

The rapid jump to 2 C is also enough to put at risk a growing list of horrors including rapid ocean stratification and anoxia (essentially initiating a mass die off in the oceans), large methane and additional CO2 release from carbon stores in the Arctic, and the unlocking of dangerous ancient microbes from thawing ice, microbes for which current plants and animals do not have adequate immune defenses.

How do we avoid this?

In short, it might not be possible to avoid some or even all of these effects. But we may as well try. And this is what trying would look like.

First, we would rapidly reduce human greenhouse gas emissions to near zero. As this happens, we would probably want a global fleet of aircraft that spray sulfate particles into the lower atmosphere to make up for the loss of aerosols once produced by coal plants. Finally, we would need an array of atmospheric carbon capture techniques including forest growth and cutting, then sequestration of the carbon stored by wood in lakes or in underground repositories, chemical atmospheric carbon capture, and carbon capture of biomass emissions.

For safety, we would need to eventually reduce CO2 to less than 350 ppm, methane to less than 1,000 ppb, and eliminate emissions from other greenhouse gasses. A very tall order that would require the sharing of resources, heroic sacrifices by every human being on this Earth, and a global coordination and cooperation of nations not yet before seen. Something that is possible in theory but has not yet been witnessed in practice. A test to see if humankind is mature enough to ensure its own survival and the continuation of life and diversity on the only world we know. A tall order, indeed, but one we must at least attempt.

Links:

Earth Will Cross Climate Danger Threshold by 2036

What does a World at 400 Parts per Million CO2 Look Like Long-Term?

One Scientist Argues 2036 Could be Point of No Return for Climate Disaster

A Faustian Bargain on the Short Road to Hell

Doubling Down on our Faustian Bargain

Dr. Jennifer Francis, Top Climate Scientists Explain How Global Warming Aps the Hydrological Cycle and Wrecks the Jet Stream to Unleash Extreme Weather

Assessment of Arctic Sea Ice/UCAR Report

 

A Siberian Heat Wave is Breaking Kara Sea Ice In March, So is it Time to Start Thinking about Hot Arctic Rivers?

There’s a heatwave in Dickson, Russia today. But if you were standing on the shores of this port city on the Kara Sea in the far north, you might not realize it. The forecast high? 29 degrees Fahrenheit.

Dickson is located about 500 miles north of the Arctic Circle and 1,000 miles south of the North Pole. To its west is Novaya Zemlya, a sparely inhabited and typically frozen island between the Kara and Barents Seas. To its east is Siberian Khatanga and Severnaya Zemlya an island system that, until 2005, sat in a pack of Arctic sea ice so dense and resilient, it was once possible to ski from Severnaya all the way to the North Pole even at the height of Northern Hemisphere summer. No more. The sea ice is now but a thin and wrecked shadow of its former glory.

Ask any resident of this, typically frigid, coastal town and they’ll tell you that today it’s abnormally warm, even hot for this far-north locale. For the average high for this day in Dickson is about 1 degrees Fahrenheit. Typical daily highs of 29 degrees (F) don’t normally appear in Dickson until mid-to-late June.

So, in essence, summertime has arrived in Dickson in March and there we see temperatures that are a shocking 28 degrees Fahrenheit above average. Human caused climate change at its most brazen. But we haven’t seen a thing yet…

As we can see in the map below, Dickson is but one location sitting beneath a vast and spreading Siberian and Arctic heatwave:

Temp Anomaly March 20

(Global temperature anomaly map for March 20, 2014 shows world temps +.65 C above the, already hotter than normal, 1979-2000 baseline and Arctic temps at +3.12 C. Note the large heat pool over Siberia. Image source: University of Maine.)

A heatwave extending from the Pacific Ocean in the east to the borders of Mongolia and China in the south. From Surgut in the west and on deep into the Arctic Ocean’s Laptev and Kara Seas in the far north. And it is vast, covering an area roughly 2,000 by 2,000 miles at its widest points. But the heatwave is not disassociated from other high temperature anomalies. It flings a wide outrider over the Beaufort Sea and the Bering Strait. And it sits in a broad flood of warmer than average air riding over Europe, the Middle East and Asia.

This Jet Stream entrained warm air feeds the heatwave even as pulses of much warmer than normal air rise up from the deserts of Western China over Mongolia and up into Russia to give it an added kick. The connecting pattern is a high amplitude Jet Stream wave surging past the Arctic Circle and deep into the Arctic Ocean. It is the kind of high amplitude pattern that, over recent years, has been implicated in so many extreme Arctic heat invasions and related severe weather events.

Temperatures in the far north of this hot zone range from 10 to over 36 degrees Fahrenheit above average for this time of year. For Siberia and the Arctic Ocean it is a heatwave of just below freezing and slightly above freezing temperatures. In other words — what, until recently, used to be summer-like conditions.

Heat Wave Breaking up Ice in the Kara Sea

Such anomalous warmth is enough to put a heavy strain on sea ice. The ice freezes and melts at around 28 degrees F. So extended periods near or above this temperature can have an impact on ice integrity. The ice gets hit by warmer air even as it floats over warmer waters. It’s a kind of one-two punch that can be pretty devastating to sea ice integrity.

And we see just this kind of situation over the past two weeks in the region of the Kara Sea near Port Dickson.

Normally, this frigid ocean zone is covered in a stable sheet of ice called land fast ice. The ice is anchored to the land at various points and tends to remain solid due to reduced movement caused by grounding on the surrounding land features. When the land fast ice starts to go, it usually presages melt.

Kara Sea March 9Kara Sea March 17

(Break-up of Kara sea ice and land fast ice. Top frame shows the Kara on March 7, bottom frame shows break-up visible on March 17. Note that cloud covers a portion of both images and that the March 20 image — the most recent — is too obscured by cloud for detailed analysis. Image source: Lance-Modis)

With the recent influx of much warmer than normal air from the south, this is exactly what we see. A widespread breaking up of Kara sea ice and of even the more resilient features fixed to surrounding lands and islands. And as you can see in the lower frame image, the break-up is quite extensive and dramatic.

The current warm pulse is expected to last for the next few days before shifting back to Svalbard by early to mid next week. Meanwhile, overall Arctic temperatures are expected to remain between 2.5 and 5 C above the, already warmer than normal, 1979 to 2000 average all while a trend establishes that continues to feed warm air pulses up over Asia and into the Arctic Ocean zones of the Kara, Laptev and East Siberian Seas.

Abnormal warmth gathering over the continents in this way can cause both early melt and large flushes of warm meltwater into the Arctic Ocean. An issue that is specially relevant due to recent NASA studies of another section of the Arctic Ocean — the region north of Canada and the Mackenzie River Delta called the Beaufort Sea.

Warm Rivers Heat the Arctic Ocean, Melt Sea Ice

The NASA study found that large pulses of warm water from continental rivers are a strong mechanism for transporting heat into the Arctic and, over recent years, are one of many factors resulting in the sea ice’s rapid recession.

Warm Rivers NASA

(Heat flux from Canadian Mackenzie River into the Beaufort Sea during recent melt years. The first image shows sea surface temperatures on June 12 of 2012 before the Mackenzie River discharged and on July 5, 2012 after. Note the ocean surface water temps rising by as much as 10 C between frames. Image source: NASA.)

The NASA study found that large heatwaves warmed the continents and that this caused continental rivers to disgorge warm water into an already warming Arctic Ocean. The findings showed significant contributions from warm rivers to rising sea surface temperatures and sea ice melt during recent Arctic summers including the record melt year of 2012.

As the Arctic experiences increasing pulses of summertime temperatures during late winter and into spring, it is likely that warm water discharge and overall warmth will play a role at the transition between sea ice freeze and melt season. And this thought brings us back to Russia which appears to be stuck in the abnormally warm pattern covered above. A pattern that, should it continue to flicker and swell, may well bring a surge of warmer than usual water into the Kara, Laptev and East Siberian Seas come later this spring and on into summer. A blow to sea ice that may well emerge but that we can ill afford.

Links:

The University of Maine

Lance-Modis

NASA: Warm Rivers Play a Role in Arctic Melt

Arctic Heat Drives Sea Ice Back Into Record Low Territory At Top of Melt Season

record low sea ice cover March 10

(Record low sea ice cover on March 10, 2014 a time that typically features sea ice maximum. Note that all basins show sea ice area and extent below the, already lower than normal, 1979-2000 base-line. Image source: Climate Change Institute.)

Abnormal, warm southerly winds at the lower and upper levels. More large heat pulses driven by high amplitude Jet Stream waves. Tropical heat launching into the Arctic Stratosphere over the Himalayas. Warm water upwelling from the rapidly heating ocean depths.

All conditions that continue to place the Arctic sea ice under a state of constant siege — winter and summer. All again doing their dangerous work in pushing the now critically weakened ice, once more to record low levels.

Under this state of ongoing assault, regions near Svalbard fell into rapid retreat as floes fractured over warming waters in the Bering Sea and west of Greenland. The result is the lowest measure of winter time sea ice area ever seen in any record for this day since Arctic observation began. Yet one more passing milestone in the vicious and rapid progression of human-caused climate change.

2011 Records Fall

According to reports from NSIDC and Cryosphere Today, Arctic sea ice area dropped to a record low of 12.95 million square kilometers on March 10 of 2014. It is a measure more than 2 million square kilometers, or an area roughly the size of Greenland, smaller than that seen during the late 1970s and breaking the previous record low, set just three years ago, by 150,000 square kilometers. Sea ice extent, meanwhile, had fallen to 14.5 million square kilometers, a measure roughly tied with the previous record low set in 2011 and also about 2 million square kilometers below area values seen during the late 1970s.

It is worth noting that the trend lines for both sea ice extent and area are well below previous trends for record low years 2007 (green below) and 2012 (pink below).

Sea ice area march 10 CT

(March 10 Sea Ice Area showing record low for the day. Image source: Pogoda i Klimat. Data Source: Cryosphere Today.)

Melt Hot Spots: Ocean Zones Near Svalbard and Greenland

With the Aqua Satellite again cresting the Arctic, we can peer down through cloud and ice to see dark, open waters peeking through kilometer-wide cracks or dominating entire ocean zones during a very anemic peak freeze. With recent days bringing average Arctic temperatures in the range of 2.5 to 4.5 degrees Celsius above normal and with local spikes in the +20 degrees C above normal range, areas of visible retreat and fragility abound.

These heat spikes combined with strong southerly winds near Svalbard to drive a rapid, far-north, retreat of ice floes on March 9-11 into zones that previously saw open ocean only during summer time. This far northward invasion of dark, open water is the primary culprit of the new record low:

Open Ocean North of Svalbard March 11

(Open ocean north and west of Svalbard on March 11, 2014. It is worth noting that Svalbard is about 600 miles from the North Pole. The Current sea ice edge, during a time when ice extent should be at its maximum, is now just 500 miles from the North Pole. Image source: Lance-Modis.)

A large region of northern Baffin Bay near Northwest Greenland and the Canadian Arctic Archipelago also showed extensive melt and open ocean zones during recent days.

Over past decade, this region has shown increasing susceptibility to warm ocean water upwelling near the Nares Strait with winter-time melting of northern extremities in Baffin Bay. But this year’s melt was particularly strong. An event that coincided with sea-bed earthquakes and anomalously high methane levels (1950 ppb+) in the region through mid-to-late February. It is possible that upwelling is both driven by warm water currents now filling up the Baffin deep water zone and by the somewhat energetic out-gassing of sea bed methane through faults and seeps.

It is worth noting that evidence of these seeps is based on satellite observation and very little in the way of comprehensive seabed methane assessment has been completed by the global scientific community, a gap in understanding that may well come back to haunt us as human-caused warming continues to put increased heat pressure on both deep and shallow ocean carbon stores.

Baffin Bay Nares Extensive cracked ice open water

(Fingerprints of warm water upwelling, sea-bed methane release? Extensive open water, cracked ice in North Baffin Bay, Nares Strait region during height of sea ice extent, 2014. Image source: Lance Modis.)

Heightened risk for record low year, total meltdown

The current record low status for end winter sea ice and the approach of El Nino, which tends to add heat to the European and Asian continents, results in an increased risk that new record lows for sea ice area, extent and volume may be reached by end of summer 2014. Both warm air and water flushing in from the continents have been implicated in large sea ice retreats during recent years and a rapid heating of the large land mass over Arctic Europe and Asia, along with a simultaneous warming of Alaska, should El Nino progress, may amplify both continental heat build up and heat transfer through river outflow into the Arctic Ocean Basin.

In addition, high temperature anomalies during late winter to early spring continue to suppress sea ice recovery late season. The result is that more open ocean is now available to absorb energy from the rising sun or to deliver that energy in the form of waves and currents to the greatly diminished ice pack. The one saving grace, if it can be viewed as such, is a minor, though likely temporary rebound in sea ice volume extending from late last year, likely bringing volume values into the range of 3rd or 4th lowest on record for March.

It is also worth considering that sea ice area trends show an ever-increasing possibility of a record melt year with melt rates similar to 2007, 2011 or 2012 enough to bring 2014 to new record lows.

sia_projections_from_current_date

(Sea ice area projections based on past trends. It is worth noting that the melt season has lengthened by nearly a month since 1979, the result being increasing volumes of ice lost from end of freeze to end of melt. Image source: Jim Pettit. Data Source: NSIDC.)

In any case, this combination of conditions generates a high risk of sea ice reaching new record lows in sea ice area, volume and/or extent come end of summer 2014 (60%). This prediction finds its basis in observed records of past melt seasons and in the fact that very few days remain for a potential late-season uptick in sea ice. If record low values hold and a late season rebound does not occur, it is worth considering this simple fact: each time sea ice reached a new record low maximum sea ice area since 2005,  a new record area melt was achieved by end of summer. That said, not achieving a record low maximum is no guarantee of safety, as 2012 so starkly proved.

It is also worth considering that sea ice may be very close to tipping points and once thinned beyond a certain threshold will be unable maintain integrity. In such an event, warm, dark, increasingly mobile ocean waters eventually overwhelm an ice pack fighting for survival. We may well have seen the beginning of such a consequence during 2012 when powerful and energetic storms that would usually result in sea ice retention only served to hasten record losses. A warning that there are fewer and fewer conditions favoring summer ice retention as the Arctic energy balance is ever more forcibly shoved toward melt.

Given these potentials — the high likelihood for record low area at maximum, the ever-lengthening melt season, and the increasing fragility of ice come end-summer — it is worth considering the unexpected worst case: total sea ice loss or near total ice loss (less than 1 million square kilometers area) by end of summer 2014. At this point, given record low area conditions late in the freeze season, we will assess a slight uptick of total ice loss risk over the previous year from 10 to 15 percent — a somewhat increased risk that sea ice values reach near ice free levels during a catastrophic melt this summer (15%).

If an observed start to the melt season begins early and if melt rates rapidly steepen, we will likely reassess both the likelihood of new records at minimum and a potential ice-free end summer state in the face of increased risks. At this point, both measures are low confidence estimates based on trends analysis, observation of current unprecedented Arctic warmth, and continued fragile ice state conditions.

UPDATE:

March 11 Arctic sea ice area values showed continued decline into record low territory. March 10 to 11 area losses, according to Cryosphere Today, extended an additional 70,000 square kilometers pushing the value down to 12.88 million square kilometers over the entire Arctic. This level is about 130,000 square kilometers below the previous record low value for today set in 2011 at 13.1 million square kilometers.

Abnormal atmospheric warmth over the regions most affected including north and east of Svalbard, Frans Joseph Land, the Kara Sea, a large region of Russia near Dickson, and in the region of the Nares Strait continued to provide melt pressure driving the most recent record low.

Links:

NSIDC

Climate Change Institute

Jim Pettit

Lance Modis

Cryosphere Today

Pogoda i Klimat

Arctic Ice Graphs

%d bloggers like this: