More Heat for the Human Hothouse: NASA Shows First Three Months of 2015 Were Warmest on Record

With El Nino firing off in the Pacific and polar amplification pushing to ever-greater extremes in the Arctic, 2015 is following hot on the heels of 2014’s record warmth. A situation that is increasing the likelihood that the 2014-2015 period will feature back-to-back record breaking years.

According to reports from NASA GISS, March of 2015 topped off at third hottest in the global climate record. The reading — at +0.84 C above the 20th Century average — fell just behind March of 2002 (+0.88 C) and March of 2010 (+0.87 C).

A very warm month in a trio of near record warm months that, when combined, exceeded the temperature departure for any January-through-March period in the global climate measure. The average for 2015’s first three months totaled +0.79 C above 20th Century climates, making it the hottest start for any year since 1880. The first three months of 2002 now come in as second hottest at +0.77 C — with 2007 and 2010 tied for the third hottest such period at +0.75 C.

These values are +0.99 C above 1880s averages and about +1.14 C above averages for the cool period at the start of the 20th Century. Ongoing and growing temperature departures representing a very rapid rate of temperature rise — one more than ten times faster than the warming that put an end to the last ice age.

A Heat Signature Consistent With Human-Forced Climate Change

Geographic Temperature Anomalies March NASA 2015

(Geographic disposition of temperature departures by NASA GISS.)

NASA’s geographic temperature anomalies map gives us a sense of the distribution of this extreme and record global heat.

Highest temperature departures occurred in an expansive zone from Northeastern Europe, through most of Siberia, and stretching on up into the high Arctic. This hot zone occurred in conjunction with persistent south to north air flows over the European and Asian Continents. These meridional patterns delivered substantial record heat to the Arctic, contributing to record low sea ice extent measures by end of month. This region also showed monthly anomalies in an extraordinary range of +4 to +7.5 degrees Celsius above average.

A second hot zone along the US and Canadian West Coast occurred in conjunction with a Ridiculously Resilient Ridge pattern and related south to north air flows. This region showed temperature departures in a range higher than 4 degrees Celsius above average and included extreme, 1,200 year, drought conditions for California combined with record heat and wildfires for this broader region.

Throughout the geographic temperature map provided by NASA, we find that most global regions experienced much warmer than normal temperatures — with the equatorial, tropical, and Northern Hemisphere zones showing the greatest departures.

Significant cool departures are either related to an apparent and ocean health threatening AMOC slow-down in the North Atlantic south of Greenland (Rahmstorf), include the Northeastern US and Canada, or involve the broader heat sink in the Southern Ocean. It is a distribution of broad, rapid warming and isolated localized cooling consistent with what global climate models have been predicting for human-forced climate change for many decades now.

These models predicted that the Northern Hemisphere Polar region would warm fastest and first, that the Southern Ocean would draw a greater portion of atmospheric heat into the ocean system, and that land ice melt near Greenland and West Antarctica would generate cold, fresh water flows into the nearby ocean zones and set off localized cooling. Atmospheric cooling, in this case, that would occur in isolation and in the context of a broader and rapidly warming global climate system together with a dangerous warming of the land ice sheets.

Zonal Anomalies Reveal Extraordinary Polar Amplification, Tell-Tale of Southern Ocean Heat Sink

Zonal Anomalies March

(NASA GISS zonal anomalies map for March of 2015)

The NASA zonal anomalies map is also consistent with an extraordinarily strong Northern Hemisphere polar amplification for March. One that jibes with predicted polar warming due to the human heat forcing. Here we find an extreme heat departure in the region of 85-90 North Latitude of +3.2 C for the month. Much of the Northern Hemisphere shows strong heat amplification with values above +1 C and rising in all the Latitudinal zones above 40 North.

All other zonal regions except the noted heat sink in the Southern Ocean show positive, though less extreme, temperature departures.

Overall, these are extraordinary and disturbing heat maps. Observations that validate many of the previous warming predictions. Maps that include the eerie tell-tale of an early Ocean Circulation slow-down in the North Atlantic. A set of observations that point toward a number of rather extreme weather and climate conditions for this year and for the years to follow.


GISS Surface Temperature Analysis

Atlantic Ocean Circulation Found to Slow Down

World Ocean Heartbeat Fading?

Hat Tip to Kevin Jones


Antarctic Heat Heralds Hottest September in the NASA Record

September 2014 Hottest on Record

(Global temperature anomaly map for September of 2014. Note extraordinary bands of very strong positive temperature anomaly ranging the globe with hottest zones at or near the poles. Image source: NASA GISS.)

Another hottest month on record for the global climate. And this one is a bit of a doozey.

According to NASA GISS, September of 2014 saw global surface temperatures that were 0.77 C hotter than the 20th Century average. This record beats out 2005 by a rather strong 0.04 C margin and represents the 3rd month in the GISS record for 2014 that was either the hottest or tied for the hottest (May, August and September).

Ocean surface heat and anomalous warmth at the poles were deciding factors for the new September record with very few regions of the global ocean surface showing cooler than average temps and with extraordinary heat at the poles, especially in Antarctica. This southern polar zone experienced average monthly temperatures as much as 8.7 above the global average across a relatively broad zone. Both East and West Antarctica observed this very strong polar amplification with East Antarctica experiencing the peak anomalies.

zonal anomalies map september 2014

(Zonal anomalies by Latitude in the NASA GISS measure. Image source: NASA GISS.)

The zonal anomalies map for September of 2014 showed no latitudinal zone experiencing cooler than 20th Century average conditions. A rather extraordinary feature considering most months show cooler than 20th Century average conditions along at least some latitudes.

Most extreme heating occurred at or near the poles with the 75-80 degree South Latitude zone showing an extraordinary +3.4 C departure from the global norm and the 80-90 degree North Latitude zone showing a strong +1.75 degree positive anomaly.

The only zone showing near 20th Century average temperatures was the heat sink region of 55 to 60 degrees South Latitude in the Southern Ocean. In this climate region a strong storm track combines with an expanding fresh water wedge issuing from melting Antarctic glaciers to force down-welling and atmosphere to ocean heat capture. A heat capture that was alluded to in a recent scientific paper which found the upper Southern Ocean contained between 24 and 55 percent more heat than expected.

This heat sink region, featuring an expanding fresh water wedge has been instrumental in somewhat higher than normal Antarctic sea ice totals. An impact that is, ironically, driven both by Antarctic continental ice melt together with an increasing storminess in the Southern Ocean and waters more heavily laden with salt issuing from the equatorial zone. A highly unstable confluence that results in local surface cooling as the ocean takes a heavy dose from the human riled heat engine.

Conditions in Context

No El Nino yet, despite two warm Kelvin waves and somewhat favorable atmospheric conditions throughout the months of August and September. But sea surface temperature in the Equatorial Pacific region remain somewhat hotter than normal — bending toward the warm side of ENSO neutral. Overall ocean surface warmth, however, was extraordinary throughout September, pushing well above the global average and ranging, in GFS models, from 0.7 C to 1.2 C above the already hotter than normal 1979 to 2000 average.

Overall, three more record or near record hot months would put 2014 in serious contention for hottest year on record (2014 is running 0.65 C hotter than average, the global record is 0.67 C above average for 2010). A rather odd result considering we still see no El Nino and almost every recent hottest year has been spurred on by this powerful atmospheric variability driver. A record hot year in 2014 with no El Nino could well be an indication that the human forcing is beginning to over-ride natural variability and that the ENSO signal, though still very powerful, is becoming more and more muted by an increasingly substantial human heat forcing.



It’s Worse Than We Thought — New Study Finds that Earth is Warming Far Faster Than Expected


“It’s Worse Than We Thought” — New Study Finds That Earth is Warming Far Faster Than Expected

Ocean Heat Map

(Upper ocean heat anomaly map for 2002 through 2011 shows extreme global heating of the upper ocean during the past decade. Image source: Quantifying Underestimates of Long-Term Upper Ocean Warming.)

2 Degrees Celsius. That’s the ‘safe limit’ for human warming now recommended by the IPCC. But under current human greenhouse gas heating of the atmosphere and oceans, 2 C is neither safe, nor the likely final upper limit of the warming we will probably eventually see.

In the push and pull between all the various political and scientific interests over setting these goals and limits, the glaring numbers really jump out at the wary analyst. One is the total heat forcing now being applied to the atmosphere by all the greenhouse gasses we’ve dumped into the air over the years and decades. That total, this year, rose to a stunning 481 parts per million CO2 equivalent. And if we look at paleoclimate temperature proxies, the last time the world’s atmosphere contained 481 parts per million CO2 was when temperatures were in the range of 3-4 degrees Celsius hotter than we see today.

It takes time for all that extra heat to settle in, though. Decades and centuries for ice to melt, oceans to warm and the Earth System to provide feedbacks. So what scientists are really concerned with when it comes to recommending policy is how much warming is likely to occur this century. And, for this measure, they’ve developed a broad science for determining what is called Equilibrium Climate Sensitivity (ECS).

ECS is sensitivity to a given heat forcing that does not include the so-called slow feedbacks of ice sheet and ocean responses. For this measure, 481 ppm CO2e gets us to around 1.8 degrees Celsius warming this Century — if the Earth System and related so-called slow feedbacks are as slow to respond as we hope they will be…

Earth System Warming Far Faster Than Expected

Earlier this week, a new study emerged showing that the world was indeed warming far faster than expected. The study, which aimed sensors at the top 700 meters of the World Ocean, found that waters had warmed to a far greater extent than our limited models, satellites, and sensors had captured. In particular, the Southern Ocean showed much greater warming than was previously anticipated.

Winds and a very active downwelling, likely driven by a combined freshening of water near Antarctica and an increased salinity due to warming near the equator, drove an extraordinary volume of heat into these waters. An extra heat in the oceans that was 24 to 58 percent higher than previous estimates. An extraordinary rate of uptake earlier measures had missed.

Upper Ocean Heat Content trends

(Upper ocean heat content trends from 1970 to 2004. Note the extraordinary amount of heat being forced into the Southern Ocean near the 50 degrees South Latitude line. This heat forcing is likely due to increased storminess and ocean circulation-driven down-welling related to effects driven by human caused climate change such as increased glacial melt in Antarctica and increased sea surface salinity near the equator. Image source: Quantifying Underestimates of Long-Term Upper Ocean Warming.)

This observation led New Scientist to make the following rather blunt statement:

It’s worse than we thought. Scientists may have hugely underestimated the extent of global warming because temperature readings from southern hemisphere seas were inaccurate.

The implications of finding this extra heat are rather significant. For one, it upends current Equilibrium Climate Science. Gavin Schimdt — Chief NASA GISS scientist — over at RealClimate, noted that the study’s findings would increase ECS ranges from 1.1 to 4.1 C to 1.1 to 4.7 C (a 15% percent increase by Gavin’s calculation). This increase shows that the Earth System may well be both far more sensitive to current human heat forcing and may well be likely to warm far faster this century than scientists had previously hoped. For broader context, it’s worth noting that the scientific community generally considers ECS to be in the range of 1.5 to 4.5 C (3 C average). And any analysis of the new findings is likely to push sensitivity to the higher range of these scales.

Dr Wenju Cai from CSIRO in Australia added by noting that the results mean the world is warming far faster than we thought:

“The implication is that the energy imbalance – the net heating of the earth – would have to be bigger,” he says.

Higher rates of Earth Systems responses to human heat forcing this century and a larger net energy imbalance in the global system together spell very bad news. What this means is that there is both more heat forcing now than we at first expected and that that heat forcing is likely to bring about more extreme climate consequences far sooner than we had initially hoped.

These findings are new and will take some time to ring through the scientific community. And though this study provides a more complete picture of how rapidly the Earth is warming and where that heat is going, we are still missing another big part of the puzzle — what is happening to the deep ocean. Recent studies by Trenberth hint that that region of the climate system is also taking up extra heat very rapidly. So, hopefully, more exact measures of the total ocean system can give us an even better idea of how the Earth System is responding to our insults.

Yet again, we have another study showing clearly that conditions are today worse than we previously expected. How we can continue to do things like build coal plants and plan to burn oil and natural gas throughout the 21st Century is beyond imagining. But here we are…


Quantifying Underestimates of Long-Term Upper Ocean Warming

The World is Warming Faster Than We Thought

Different Depths Reveal Ocean Warming Trends

Climate Responses From Lewis and Curry

Hat Tip to Colorado Bob

Hat Tip to Bassman

%d bloggers like this: