Climate Change and El Nino Locked in Tempestuous Embrace — Teleconnection Between Hot Equatorial Pacific and North Atlantic Cool Pool?

The troubled and tempestuous North Atlantic. It’s a place where the most ominous kinds of atmospheric bombs just keep going off. From the Cumbria floods — the worst seen since at least the Middle Ages — to the 300-year-old bridge wrecking Frank, to above-freezing temperatures at the North Pole during Winter, weather features throughout this region have increasingly taken on the ugly markings of systems twisted by the hand of human-forced warming.

One issue that’s been raised is what, if any, influence El Nino might have had on this most oddly extreme North Atlantic weather? There, such anomalous storms are more than likely the off-shoots of three new features related to climate change. One is a Stefan Ramhstorf-identified cool pool of water just south of Greenland. A freakish region of colder than normal sea surfaces that is, all-too-likely, the result of increased glacial melt outflows from a heat-harrowed Greenland. A second climate change related feature is a zone of very hot water along the Gulf Stream off the US East Coast. This odd warmth is likely due to a kind of Gulf Stream train wreck caused by the blocking lid of fresh water Greenland melt has thrown over that current’s driving circulation. So as the zone south of Greenland cools, the area just off the Eastern Seaboard heats up. A third and final feature is a polar warming related heating of the Barents sea surface along with a related massacre of sea ice in that previously frozen region.

These three features have radically altered the heat and moisture exchange patterns of the North Atlantic and are all too likely the primary factors involved in the crazy increase in extreme weather we’ve seen there during 2013, 2014, and 2015.

image

(Teleconnection between El Nino and the three freak weather patterns in the North Atlantic? River of moisture running up from the El Nino heat bleed in the Eastern Equatorial Pacific all the way to a storm forming in the North Atlantic cool pool just south of Greenland on January 1 of 2016. Note the above image is a graphical measure of total precipitable water content. Image source: Earth Nullschool.)

But one factor that has been somewhat murky is what, if any, influence a near record or record El Nino may be having on the weather bombs going off over this climate change hotspot? At issue is the fact that teleconnections — or atmospheric energy and moisture exchange — between El Nino and the North Atlantic are somewhat difficult to tease out in the model essays and observational data.

However, this year, there does appear to be quite a lot of heat and moisture issuing from the monster El Nino raging in the Equatorial Pacific. For one, the record rains over South Carolina and the Central United States this year are certainly tied to an extremely heavy flood of moisture coming from this major atmospheric and ocean event. The moisture bleed has originated from the Eastern Pacific, lofted over Mexico and Central America to saturate airs over the Gulf States, the Central and Eastern US.

Recent observational data, in addition, also hints that this extraordinary moisture flow may well be linking up with another major moisture bleed off of sea surfaces in the range of 5-7 degrees Celsius above average off the US East Coast before feeding directly into the storm bombification zone over the North Atlantic cool pool.

Teleconnection between El Nino and North Atlantic Cool Pool

(River of moisture sets up between Equatorial Pacific and North Atlantic on January 1 of 2016. Image source: LANCE MODIS.)

It’s initial observational evidence that may well be the answer to a question we’ve been asking in the forum here since summer time — could such a teleconnection set up between these two ocean surface temperature anomaly features? In other words, could we be seeing a link up between El Nino and features that are all-too likely related to climate change resulting in some extraordinarily severe weather? Well, on January 1, as identified by the cracker-jack spotting of Andy in San Diego, the atmosphere appeared to present a very strong tell-tale of just such a link up between moisture flows.

In the above NASA MODIS satellite shot we find what appears to be an atmospheric river of moisture running along a cloud pattern issuing from the Eastern Equatorial Pacific, across Mexico and the Southern US, out over the raging hot waters off the US East Coast and finally terminating in the North Atlantic cool pool zone east of Newfoundland and just south of Greenland.

If this is indeed what’s happening, then what we’re seeing is El Nino enhancing an already extremely intense North Atlantic storm generation pattern that is all-too-likely related to climate change. An El Nino + Climate Change teleconnection between the Pacific Equator, the North Atlantic, and, earlier this week, the North Pole that’s about just as unprecedented as all the never-before-seen weather we experienced during 2015. Something that could well turn weather forecasting as we know it on its ear.

In any case, something to look for in the post event reports on this, very disruptive, El Nino and possibly related North Atlantic extreme weather.

Links:

LANCE MODIS

Earth Nullschool

Warm Storm Pushes Above Freezing Temperatures at North Pole

Hat Tip to Andy in San Diego (fantastic spotting!)

Arctic Heatwave Forecast to Crush Northern Hemisphere Snow Cover This Week

The Russian side of the Arctic is heating up.

A high amplitude ridge in the Jet Stream is forecast to develop atop the Yamal region of Russia, expand northward over the Kara and Laptev seas, inject a plume of anomalously warm air over the polar region, and then proceed on along the Arctic Ocean shores of Siberia. Beneath this ridge, temperatures over the Arctic Ocean will spike to +1 to +4 C above average while temperatures over land will hit extreme +20 C and higher anomalies.

Arctic Heatwave June 6

(Arctic heatwave invades Siberia in the GFS forecast for later this week as depicted by Climate Reanalyzer.)

Arctic Ocean zones are forecast to see temperatures climb above freezing for much of the 80 degree North Latitude zone. Over Siberia, land-based temperatures are predicted to range from the 40s and 50s along the Arctic Ocean boundary and climb to the 60s to 80s in regions just inland.

As temperatures tend to flatten out over Arctic Ocean waters and as permafrost zones in Siberia are used to far cooler readings during Northern Hemisphere Summer, the predicted heatwave is likely to have some rather strong impacts should it emerge. Most notably, snow cover over remaining land and sea ice is expected to see a rather extreme reduction over the next seven days. In other words, GFS forecast models show Northern Hemisphere snow cover basically getting crushed:

Current snow CoverPredicted Snow Cover

(Massive reduction in Northern Hemisphere [NH] snow cover predicted coincident with Siberian Heatwave later this week. Left frame shows current NH snow cover. Right frame shows predicted NH snow cover for Tuesday, June 9. Image source: Climate Reanalyzer.)

Sparse remaining snow cover in Northeast Siberia along the East Siberian Arctic Shelf coastal zone is expected to be pretty much wiped out. One foot average snow cover along the shores of the Laptev and Kara seas is also expected to melt. And a broad section of remaining snow upon the sea ice is predicted to retreat away from the North Polar region — receding back toward the final haven near Greenland.

Snow is important for spring and summer-time Arctic temperature moderation due to the fact that it provides insulation to sea ice and permafrost as well as serving as a reflective, high-albedo surface that bounces back some of the incoming heat from the 24-hour seasonal Arctic sun. Snow melt, on the other hand, serves to form albedo-reducing melt ponds over the Arctic Ocean sea ice during summer. A critical factor in late season melt forecasting in which more June melt ponds tend to mean lower sea ice totals by end season. In addition, snow melt fills permafrost zone rivers with above-freezing waters that then flow into the Arctic Ocean — providing yet another heat forcing to the sea ice.

Conditions in Context

This weekly trend and forecast is consistent with an ongoing tendency during 2015 for strong ridge formation and warm air slot development over both Alaska and the Yamal region of Russia. The high amplitude ridges also likely have teleconnections with larger weather patterns such as El Nino in the Pacific, the warm water pool (hot blob) in the Northeast Pacific, and record low sea ice extents continuing for most of Northern Hemisphere Spring. Observations that are also consistent with the predictions made by Dr. Jennifer Francis that are a direct upshot of polar amplification set off by human-caused warming of the global climate system.

image

(GFS model forecast as depicted by Earth Nullschool showing ridge Northwest Territory, trough Greenland and North Atlantic, ridge Kara and Laptev region of Siberia. A dynamic that may be the result of teleconnections set off by factors related to human-caused climate change. Image source: Earth Nullschool.)

It’s worth noting that many of these factors are self reinforcing. For example, more sea ice melt results in higher amplitude wave formation in the Jet Stream. Higher amplitude wave formation in the Jet Stream transports more warmth to the Arctic environment, resulting in more sea ice and snow melt which in turn weakens the Jet Stream further. A longer-term amplifying feedback of Arctic carbon release may also be in play (hinted at by an overburden of both CO2 and methane in the local Arctic atmosphere), which would also contribute to the conditions we now observe.

A final feedback, this one somewhat negative, occurs as a result of Greenland Ice Sheet (GIS) melt. Large cold, freshwater outflows from GIS into the North Atlantic result in localized cooling in that region. This feedback (also related to AMO weakening) enhances trough formation throughout the North Atlantic region adjacent to Greenland and the Canadian Archipelago. A final potential teleconnection to the ridges we see forming over both Yamal and the Alaska/Northwest Territory zone.

Links:

Climate Reanalyzer

Earth Nullschool

Heat Wave Forecast for Russia

Rapid Arctic Sea Ice Loss Linked to Extreme Weather

Tracking for Early Season Melt Pond Formation at The Arctic Ice Blog

%d bloggers like this: