Coastal Arctic Temperatures hit 84.2 F Today

Fossil fuel burning is really ramping up the global heat. And for the typically cold Arctic Ocean coastal region, this means that temperatures are now able to strike into the 80s during mid-May.

Today, a very extreme wave in the Jet Stream produced an elongated ridge pattern that ran far to the north over Eastern Europe. This high amplitude wave brought with it temperatures that ranged up to 20 degrees Celsius (36 degrees Fahrenheit) above normal for this time of year. A heat surge which pushed temperatures to 29 C or 84.2 F near Archangel, Russia.

Extreme heat Arkangel

(Severe heat strikes northeastern Europe as part of an extreme jet stream wave pattern. Image source: WX Charts. Hat tip to Peter Sinclair.)

The kind of jet stream wave that spurred this extreme heat has become common over recent years. It’s an atmospheric feature that some scientists have associated with polar amplification — an aspect of human-forced climate change in which the poles warm faster than the lower latitudes.

During 2019, heat transfer into the Arctic has contributed to near record low and record low sea ice extent values in the months of March, April and May. The wavy jet stream patterns have also been associated with a number of severe weather events. Today’s extreme northern heatwave fits into a longer-term pattern of similar occurrences.

(Analysis of recent extreme jet stream pattern over Eastern Europe.)

Wavy, persistent jet streams have recently been associated with worsening weather — heat waves and wild fires in the ridge zones and severe precipitation in the trough zones. Scientists like Dr. Michael E. Mann and Dr. Jennifer Francis have warned that the associated Jet Stream waves are linked to human-forced climate change and are likely contributors to recent events.

Dr. Mann notes:

The extreme weather we’re seeing around the Northern Hemisphere, such as heat waves, floods, droughts, and wildfires, is related to an unusual, undulating pattern in the jet stream. The other part of this that’s atypical is that this undulating pattern doesn’t usually hold longer than a few days. But this one isn’t going anywhere. Our work shows that this sort of pattern, which has been associated with many of the most extreme, persistent weather events in recent years, including the 2003 European heatwave, the 2010 Moscow wildfires, the 2011 Texas and Oklahoma drought, and the 2016 Alberta wildfires to name a few, is becoming more common because of human-caused climate change, and in particular, because of amplified Arctic warming.

It looks like 2019 is no exception to the longer-term trend. And we have already seen a number of instances of middle latitude extreme weather contributed to by the jet stream features Dr. Mann mentions above this year.

(Want to help fight climate change by switching to an electric vehicle? Get 5,000 free supercharger miles through this link.)

Advertisements

North Atlantic May Cough up Another Out of Season Tropical Cyclone this Week

Like pretty much everywhere else in the world ocean these days, and due primarily to a rampant injection of greenhouse gasses into the Earth’s atmosphere through fossil fuel burning, the North Atlantic is now considerably warmer than during the 19th and 20th Centuries…

Warming Waters and An Angry Jet Stream

That extra heat provides more available fuel for tropical storm and hurricane formation. It increases the top potential peak intensity of the most powerful storms. And it extends the period in which such tropical cyclones are capable of forming — for sea surface temperatures of at least 70-75 degrees Fahrenheit are often necessary to fuel such systems (please also see the present science on how climate change is impacting tropical cyclones).

(Sea surface temperatures in the North Atlantic now range between 1 and 7 degrees Celsius above average for most regions. These warmer than normal sea surfaces provide more fuel for storms even as they extend the period during which tropical storm and hurricane formation is possible. Image source: Earth Nullschool.)

But it’s worth noting that warm ocean waters are not the only ingredient that add to the potential for the formation and strengthening of these powerful storms. Instability and cloud formation are often necessary to seed such systems. And the more extreme warm and cold temperature anomalies associated with wavier Jet Stream patterns inject exactly this form of instability into the middle latitudes at a higher rate than was witnessed during past decades.

Due to its proximity both to a melting Greenland and to a rapidly warming Arctic, the North Atlantic is particularly vulnerable to the production of powerful swirls of warm and cold air. Warming tropics collide with the cold air producing pools of glacial freshwater melt and the enlarging meanders of the Northern Hemisphere Jet Stream. And it’s the proliferation of these unstable vortices forming over warming waters throughout the North Atlantic that may start to generate a more and more noticeable higher incidence of both out of season cyclones and stronger storm systems.

(A persistent swirl of disorganized clouds in the Central North Atlantic — continuously re-charged by frontal systems sweeping down from Baffin Bay and feeding on warmer than normal sea surface temperatures may become the first tropical cyclone of 2017. If it later forms into a tropical storm, it will become the third out-of-season named storm to form in the Atlantic over the last 15 months. Image source: LANCE MODIS.)

Last year, extremely warm sea surface temperatures combined with this kind of observed instability to spur the formation of Hurricane Alex during January. Tropical storm Bonnie also formed out of season during May. Similar very warm ocean conditions then helped to kick-start the late November formation of Category 3 Hurricane Otto (though November is still technically hurricane season, it’s supposed to be very rare to see so strong a storm form so late in the year).

Possible April Cyclone Underlines Recent High Incidence of Out of Season Storms

Fast forward to April of 2017. According to the National Hurricane Center, there’s now a 30 percent chance that a tropical depression may form in the Central Atlantic over the next 48 hours. Ultimately, such a system could gather into the first Atlantic named storm of 2017 — Arlene. Such an event would mark the third time in just 15 months that the Atlantic basin had produced an out-of-season tropical storm or hurricane.

(A vast majority — 97 percent — of tropical storms and hurricanes in the Atlantic form during hurricane season from June 1 to November 30. That said, human forced climate change may now be in the process of providing more fuel for the formation of out-of-season storms. Image source: North Atlantic Tropical Cyclone Climatology.)

Incidence of out-of-season tropical storms or hurricanes in the Atlantic is rather rare. Over 158 years from 1851 to 2009, perhaps one such system formed, on average, each year. Moreover, these storms primarily formed during May — which by itself produced more out-of-season storms than December through April combined. And a vast majority of these systems were tropical storms — not hurricanes or major hurricanes.

In 2016 and 2017, Alex formed as a hurricane during January — which is practically unheard of. Bonnie formed during late May, which was less unusual but still out-of-season. Otto formed as a category 3 major hurricane during late November — another anomalous event. Meanwhile, if Arlene forms this April it will represent 1 out of only about 20 such systems that formed during the month in the period of 1851 through 2009.

But even if we don’t get a tropical cyclone in the middle of the North Atlantic during April of 2017, it’s becoming increasingly obvious that conditions have changed. That forecasters now need to be more alert for out-of-season tropical cyclones and to the various new weather phenomena that are now being precipitated by a warming climate.

Links:

The National Hurricane Center

Hurricanes and Climate Change

Earth Nullschool

LANCE MODIS

Extreme Weather Events Linked to Climate Change Impact on Jet Stream

North Atlantic Tropical Cyclone Climatology

Hat tip to Vaughn

Hat tip to Hilary

%d bloggers like this: