Advertisements

Accelerating Sea Level Rise is Being Driven by Rapidly Increasing Melt From Greenland and Antarctica

From 1993 to the present day, global sea level rise has accelerated by 50 percent. And the primary cause, according to recent research, is that land glaciers such as the massive ice sheets of Greenland and Antarctica are melting far faster than they have in the past.

(Assessment of factors involved in the presently increasing rate of global sea level rise.)

Antarctica, in particular, is melting much more rapidly — with melt rates tripling in just the last ten years.

The primary factors contributing to global sea level rise include thermally expanding oceans and the melting of ice on land. During the decade of 1993 to 2004, the World Meteorological Organization notes that oceans rose by 2.7 mm per year. During this time, land ice sheets amounted to 47 percent of that rise — or about 1.35 mm. The same report found that from 2004 to 2015, oceans rose by around 3.5 mm per year and that land ice contribution had risen to 55 percent (1.93 mm per year). Looking at sea level measurements from AVISO, we find that from March of 2008 to March of 2018, the average rate of sea level rise accelerated further to 4.3 mm per year.

The net takeaway is that the rate of global ocean rise has increased by more than 50 percent since the early 1990s and that this acceleration has been driven by increasing melt from large land glaciers like those in Greenland and Antarctica.

(Sea level rise contributors as reported by the World Meteorological Organization in its 2017 report on the state of the global climate.)

Over the coming years and decades, this rate of rise is likely to continue to accelerate — surpassing 5 mm per year sometime rather soon, and likely exceeding the 1 cm per year mark by the 2040s through the 2060s. Melt rates will likely increase substantially as we approach the 1.5 C and 2.0 C warming marks. However, the net heat pressure from fossil fuel emitted greenhouse gasses will also drive sea level rise rates. As a result, it is imperative that we work to cut fossil fuel emissions more rapidly and that we pursue a swift as possible transition to clean energy.

Advertisements

May Arctic Warming Event Follow-up — Not So Bad as Predicted, But Worries Remain for Early June

There are many reasons why we monitor Arctic sea ice melt during summer. First, sea ice is a key climate indicator. Second, we are in a period of time where ice-free Arctic conditions are becoming more possible as global temperatures keep rising. And third, falling levels of Arctic sea ice have knock-on effects for a number of climate systems that we all rely on.

(Will we see a warmer than normal early June for the Arctic Ocean? If we do, it could seriously impact the Arctic Ocean’s remaining and thinning sea ice.)

Last week, we pointed out that GFS models were predicting a very warm spike to around 3.5 C above average temperatures for the Arctic come late May. Thankfully, due to the model running a bit hot, such extreme readings did not emerge. However, temperatures over the Arctic Ocean remained about 0.85 C above average overall for the past 7 day period.

Consistent, though somewhat mild, warmer than normal temperatures for this time of year over the Arctic during 2018 are still somewhat worrisome. Recent very warm winter years have experienced ‘saving grace periods’ during May and June in which temperatures near the pole returned to near average or slightly below average.

(Above freezing or near freezing temperatures predicted for most of the Arctic Ocean on June 4, 2018 in the GFS model. Sea ice tends to start melting at around -2 C due to the salt content in surrounding ocean waters. During recent years, the Arctic sea ice has been far weaker and thinner than historic norms. Image source: Earth Nullschool.)

This is not the case for 2018 so far. Temperatures have tended to remain warmer than average for the Arctic Ocean and near the pole throughout May. Moreover, short range forecasts indicate that the critical time period of early June could see continued above average temperatures — providing a potential kick for sea ice losses come late season.

Overall, GFS model runs indicate that temperatures will remain in a range between 0.5 and 1.3 degrees Celsius above average for the Arctic over the next five days. These above normal temperatures pose increased risk for sea ice losses during the crucial June window. June weather tends to greatly influence late season sea ice totals. A warmer than normal June will produce higher numbers of melt ponds and greater impetus for melt to continue with force through July, August, and September. Cooler and often cloudier Junes have tended to protect late season sea ice from hitting new all time record lows.

(Weekly averages for the Arctic Ocean during early June are expected to range near 1 C warmer than normal — extending what has already been a warmer than normal May. Image source: Global and Regional Climate Anomalies.)

2018, so far, has seen a warmer than normal May for the Arctic Ocean. And so we see ice getting swept back behind traditional lines in the Chukchi Sea, in the Beaufort Sea, and in the region north of Svalbard. Peripheral areas like Baffin Bay, Hudson Bay, and the south Kara Sea have seen slower ice melt due to their co-location with trough zones. But it is Central Arctic melt that we should be more concerned about. So we’ll be closely monitoring this region as May runs into early June.

 

Potential Historic Arctic Warming Scenario in the GFS Model Forecast for Late May

For years, Arctic watchers have been concerned that if May and June ran much warmer than average following an equally severe winter, we could see substantial sea ice losses, severe Arctic fires, and related knock-on global weather effects. This May, temperatures over the Arctic Ocean have run much warmer than average. And in the GFS model forecast, we see a prediction for a historic Arctic temperature spike during late May.

(Discussion of a potentially historic Arctic warming event for late May of 2018. Information for this analysis provided by Climate Reanalyzer, Global and Regional Climate Anomalies, and DMI.)

According to GFS model analysis, temperatures for the entire Arctic region could spike to as high as 3.5 degrees Celsius above average from Saturday, May 26 through Tuesday, May 29th. So much warming, if it does occur, would shatter temperature records around the Arctic and accelerate the summer melt season by 2-4 weeks. It would also elevate Arctic fire potentials while likely increasing upstream severe weather risks to include higher potentials for droughts, heatwaves and severe rainfall events (as we have seen recently across the Eastern U.S.).

The model run indicates three ridge zones feeding much warmer than normal air into the Arctic. The zones hover over Eastern Siberia, Western North America, and Central Europe through the North Atlantic and Barents Sea — pushing wave after wave of warmth into the Arctic Ocean region.

(Three ridges transferring heat into the Arctic are feeding the potential for a major polar temperature spike over the next ten days. Image source: Climate Reanalyzer.)

Over the coming days, this three-pronged flood of warm air could push temperatures over the Arctic Ocean to 2-10 C above average temperatures while Western North America, Eastern Siberia, and the Scandinavian countries could see the mercury climb to 5 to 20 degrees Celsius above average. This translates to 70 to 80 degree (Fahrenheit) temperatures for Eastern Siberia above the Arctic Circle, mid 70s to mid 80s for near Arctic Circle Alaska, and temperatures in the 70s to 80s for Scandinavia. For the Arctic Ocean, it means above freezing temperatures for most zones. Zones that are likely to see more rapid sea ice melt as a result.

Upstream effects include the potential continuation and emergence of fixed severe weather patterns. Extreme heat will tend to intensify for Western North America, while a pattern that favors severe rainfall is likely to remain in place for the Eastern U.S. Meanwhile, South-Central Asia through the Middle East are likely to see very extreme daytime high temperatures. Fire risks will tend to rise from Alberta to the Northwest Territory into Alaska and on through Central and Western Siberia as much warmer than normal temperatures take hold and Arctic lightning storms proliferate.

(Forecast Northern Hemisphere temperature anomaly patterns hint at a hot or unstable late spring pattern for many regions as the pole inters record warm territory. Image source: Climate Reanalyzer.)

It’s worth noting that should such an event occur during late May, it would represent yet another major and historic temperature departure for an Arctic zone that has thus far seen severe winter warming and related loss of sea ice. The concern is that eventually such heating would result in ice free conditions during summer — although when is a subject of some debate.

To this point, it is also worth noting that we should take the present GFS forecast with a bit of a grain of salt. Such amazingly warm temperatures are still 6-10 days away. Forecasts beyond the 3 day are notably fickle. And this particular model has run a bit hot of late. However, it is worth noting that the model has been correct in predicting a much warmer than normal May. And that we have already experienced one historic temperature spike during early May. So a pattern that demonstrates the potential for such extreme warming has clearly taken hold.

 

Globe Just Experienced its Third Hottest April on Record

According to reports from NASA GISS, the world just experienced its third hottest April on record. Topping out at 0.86 degrees Celsius above NASA’s 20th Century baseline, April of 2018 edged out 2010 as third in the record books despite the ongoing natural variability based cooling influence of La Nina.

(Analysis of present global temperature anomalies with information provided by NASA, NOAA and Earth Nullschool.)

The warmest regions of the world included large sections of the lower Arctic — encompassing Eastern Siberia, the East Siberian Sea, and the Chukchi Sea. In addition, Central Europe experienced much warmer than normal conditions. Notable cool pools included North-Central North America, the High Arctic, and the Weddell Sea region of Antarctica.

A seasonal reinforcement of the Jet Stream helped to keep cold air sequestered in the High Arctic during April. However, this sequestration appears to be weaker compared to recent April-through-June periods as record warm spikes returned to the High Arctic during early May. The result of strong south-to-north heat transfer through various ridge zones in the Jet Stream.

(Third warmest April on record despite La Nina. Image source: NASA.)

La Nina remained the prominent natural variability related feature during April. And the cooling influence of La Nina has tamped global temperatures down a bit following the recent record hot year of 2016. Overall, it appears that global temperatures are on track to average between 1.04 C and 1.08 C above 1880s averages during 2018. These rather high excessions are, of course, caused by atmospheric greenhouse gasses peaking in the range of 410 ppm CO2 (around 491 ppm CO2e) during April, May and June. Representing the greatest concentration of heat trapping gasses on Earth in about 15 million years.

With La Nina fading, its cooling influence is likely to become less acute and global temperatures may again begin to ramp higher by mid to late 2018. NOAA has indicated a 50 percent chance for El Nino formation during late 2018. If 2018-2019 does see an El Nino emerge, global temperatures will likely again exceed the 1.15 C threshold and potentially challenge 1.2 C.

(A warm Kelvin Wave crossing beneath the Equatorial Pacific brings with it the potential for El Nino formation during 2018-2019. If El Nino does form, and with atmospheric greenhouse gas concentrations so high, it is likely that we would see temperatures comparable to the record global warmth of 2016 re-emerge. Image source: NOAA.)

However, it is unlikely that the weaker predicted El Nino, if it does emerge, will force temperatures considerably higher than levels achieved during the strong El Nino of 2016. For that, we will likely have to wait until the early 2020s. But with carbon emissions continuing near record high ranges, temperatures are bound to rise — with the 1.5 C threshold likely to be breached by the late 2020s or early 2030s.

Warm Oceans, Displaced Polar Air: Why the Eastern U.S. is Likely to See Very Severe Rainfall During May

During recent years, warm ocean surfaces have loaded up the atmosphere with increasing levels of moisture. This moisture, in turn, has fueled more powerful rain storm events across the globe. Meanwhile, climate change is generating regions of increased instability by placing much warmer than normal air masses in confrontation with cold air displaced from a warming Arctic Ocean region.

(How climate change is impacting severe weather potentials across the U.S. East Coast during May. Data provided by Earth Nullschool, Climate Reanalyzer, and the National Weather Service.)

During the coming days, this kind of pattern will generate the potential for severe rainfall events across the U.S. East Coast. NOAA is predicting that between 3-7 inches of rain is likely to fall over the next 5-7 days. But due to the unusual situation, locally extreme and unexpected events may occur.

This severe weather potential has been fed by a combination of factors. A warmer than normal Arctic Ocean has shoved cold polar air south over the Hudson Bay region. The resulting trough is generating stormy conditions and atmospheric instability over much of Eastern North America. To the south and east, much warmer than normal sea surfaces have loaded up the atmosphere with extremely high moisture levels.

(NOAA shows that heavy rainfall is likely to dominate large portions of the Eastern U.S. over the coming weeks. With a number of climate change related influences at play, the potential for outsized severe weather events exists. Image source: NOAA.)

It’s the kind of pattern — within a highly charged atmosphere — that is capable of producing serious instances of severe weather. Heavy rainfall, hail, lightning and tornadoes are all more likely. Factors associated with climate change contributing to the situation include — much warmer than normal ocean surfaces off the U.S. Eastern Seaboard and Gulf Coast, a much warmer than normal Arctic Ocean region for this time of year, displaced polar air near Hudson Bay, and warmer than normal temperatures over much of the U.S.

As Greenland melt comes more into play, and as temperatures continue to spike higher over the Arctic Ocean in coming years, we can expect to see similar patterns producing greater instability and more intense storms. Particularly for the land zones near the North Atlantic. And so what we are seeing now is a likely prelude of events to come as the Earth continues to warm coordinate with continued fossil fuel burning — with mitigating factors primarily involving reduced carbon emissions.

Global Sea Level Rise Accelerated to 4.6 mm Per Year After 2010

Human forced climate change through fossil fuel burning now presents a serious threat to the world’s coastal cities and island nations. Diverse regions of the world are now facing increased inundation at times of high tide and during storms. Unfortunately, this trend is only worsening. And depending on how much additional fossil fuel is burned, we could see between 2 to 10 feet or more of sea level rise this Century.

(Sea level rise analysis and update based on information provided by AVISO, Climate Reanalyzer, and the work of Dr. James Hansen.)

As the Earth has steadily warmed to 1.1 C above 1880s averages, the oceans of our world have risen. At first, the rate of rise was very mild — a mere 0.6 mm per year during the early 20th Century. However, as the rate of global warming increased and the oceans took in more heat, the middle 20th Century saw sea level rise increase to 1.4 mm per year. By the end of the 20th Century, the polar glaciers had begun to melt in earnest. And from 1990 to the present day, the rate of sea level rise has accelerated to 3.3 mm per year.

Due to more warm water invading the basal regions of glaciers and more ice bergs calving into the world ocean, the annual rate at which ocean levels increase continues to jump higher. And during recent years — from 2010 to 2018 — the world ocean has risen by nearly half a centimeter each year (4.6 mm).

Global Sea Level Rise 4.6 mm Per year

(Since 2010, the rate of sea level rise has again accelerated. And it appears that El Nino years have recently tended to produce strong upward swings in the annual rate of increase. This may be due to El Nino’s tendency to set up stronger cycles of energy transfer to the poles. NOAA presently indicates a 50 percent chance that a mild to moderate El Nino will emerge during the winter of 2018-2019. Will we see another sea level spike at that time should El Nino emerge? Image source: AVISO.)

Now both island nationals and coastal cities face the increasing danger of rising tides, of inundation, and of loss of lands and infrastructure. A rapid switch to renewable energy and away from fossil fuel burning is needed to save many regions. However, due to presently high greenhouse gas accumulation, it is likely that some zones will be lost over the coming decades.

Arctic Ocean Deep in the Grips of May Temperature Spike; Beastly Summer Melt Season on the Way?

The Arctic Ocean as it appeared from space on May 6, 2018. Image source: NASA Worldview.

The Arctic sea ice is presently at its second lowest extent ever recorded in most of the major monitors. However, May is shaping up to be far, far warmer than normal for the Arctic Ocean region. If such high temperatures over this typically-frozen part of our world continue for much longer than a couple of weeks at this key time of year, precipitous summer melt is sure to follow.

******

During recent years there has been much speculation about when the Arctic Ocean will start to experience ice-free summers as fossil fuel related industries pump higher and higher volumes of greenhouse gasses into the atmosphere. In the early-to-mid 2000s, scientific consensus was that melt would tend to be more gradual and ice-free summers would hold off until the final decades of the 21st Century when the world was around 3-4 C warmer than 19th Century averages.

But the Earth System is far more sensitive to temperature increases than the early forecasts expected. Major Arctic sea ice losses surprised the world during September of 2007 and subsequently in the same month of 2012. Now, it is obvious that a pattern of far more rapid sea ice melt has taken hold. And the scientific consensus appears to have settled on a more likely and much nearer date around the early 2030s — when the world will have warmed by about 1.6 degrees Celsius.

(An oddly warm pattern in which above freezing temperatures have come early to the High Arctic is setting up during May of 2018. Content Source: Climate Reanalyzer. Video source: Scribbler’s Youtube.)

However, when it comes to sea ice, nothing is certain at this time. Any single Arctic year in which temperatures spike — particularly during normal melt season — could result in the losses that we once expected to occur much later in time.

There are many factors that will ultimately determine when a summer ice free state occurs. Warm winters are a major one. And the past two years (2017 and 2018) have seen Arctic winters in which temperatures hit some ridiculous high extremes. But another major factor is the set-up to Arctic summer that takes place during the window months of May and June.

Neven, one of our best Arctic sea ice watchers (you can check his blog out here), notes:

May and June are very important for the rest of the melting season. Not only do we now see these warm air intrusions, but high pressure maintains its presence over parts of the Arctic as well (which means relatively cloudless skies -> insolation -> melt onset and melt pond formation -> preconditioning of the ice pack -> melting momentum that gets expressed during July and August, regardless of the weather)… We have to wait and see what happens, step by step, but this isn’t a good start for the ice.

If May and June are unusually warm, particularly over the Arctic Ocean, then the sea ice — which is already greatly weakened — is bound to face an extended period of above-freezing temperatures. If such a period stretches for 5 months from May through September rather than the typical 4 months (June to September), then we are more likely to see the Arctic Ocean briefly flip into an ice-free or near ice-free state for the first time in human history.

(The coming week is expected to feature between 1 and 10 C above average temperatures for locations across the Arctic Ocean. These are very strong warm departures during May. Last week saw similar extreme warm departures. And we are already starting to see sea ice losses pile up. Image source: Global and Regional Climate Anomalies.)

This year, May is shaping up to be much, much warmer than normal for the High Arctic. Already, a large May temperature spike has occurred (see right image below). A temperature spike which is predicted to continue for at least the next ten days.

Not to put too fine a point on it, but this severe warming trend might end up presenting a bit of a problem. The extended period of melt mentioned above may begin in force — setting off a chain of feedbacks that could tip the Arctic Ocean into a far less frozen or even an ice-free state (under absolute worst case scenarios) this year.

To be clear, this is not a forecast that such a condition is bound to occur during 2018. It is just an analysis of underlying trends and a statement that risks are higher if such trends as we now observe continue. Late May could flip to a cooler than normal regime. June could be cooler and cloudier than normal (as happened during 2016 and 2017). And if that happens again, we may be spared.

(Average Arctic temperatures for 2017 [left] and 2018 [right]. The red line depicts the yearly temperature trend. The green line depicts the Arctic climatological average for 1958-2002 [which was already warmer than normal]. Note the big temperature spike in the right hand graph. That’s where we are now. Image source: DMI. For further reference, see Zack Labe‘s composite temperature analysis for the 80 North region.)

However, we are already on a much higher ramp for spring temperatures in the northern polar region than during 2017. And though 2016 saw a slightly warmer than normal spring near the pole, the May 2018 spike already far exceeds anything we saw at that time. So much, in fact, that present temperatures for May 6 are comparable to those typically seen during early June from the 80 degree N Latitude line to the Pole.

This higher ramp and related record warmth is already accelerating melt. Sea ice losses over recent days have greatly picked up and we are getting closer to record low daily ranges. If melt accelerates to a point, the greatly expanded darker ocean surfaces will draw in more heat from the sun’s rays during June — potentially overcoming the impact of the increased early summer cloudiness we have seen during recent years. Such a scenario, if it continues to develop, would be a nightmare from the climate change perspective.

Major Arctic Warming Event Predicted For the Coming Week

It’s been consistently, abnormally, warm in the Arctic for about as long as any of us can remember. But during recent years, the changes — caused by a massive and ongoing accumulation of heat-trapping gasses in the Earth’s atmosphere — appear to be speeding up.

(Far above normal temperatures are expected to invade the Arctic this week. The likely result will be an acceleration of sea ice melt and retreat. Image source: Global and Regional Climate Anomalies.)

This week, two major warm air invasions — one issuing from Siberia and another rising up through the Fram Strait and extending north of Greenland are expected to bring locally 10-20 C above normal temperatures and accelerate early season sea ice melt in an already reeling Arctic.

Consistent Warmth, Record Low Sea Ice

The farthest north region of our world has just come out of a winter during which sea ice extents consistently entered never before seen daily low ranges. With the advent of spring, sea ice measures have rebounded somewhat from winter record lows. However, according to Japan’s Polar Research Division, we are presently experiencing the second lowest daily sea ice extents since consistent measurements began. Meanwhile, Greenland during April saw an odd early bump in surface melt.

Overall, the pattern has been one of consistent abnormal warmth. And over the coming week, a number of warm air invasions will infringe upon the typically cold early May Arctic — testing new boundaries yet again.

(An ice-free Bering Sea, open water invading the Chukchi, and fractured sea ice over the Beaufort are notable features for melt season start during May of 2018. Image source: NASA.)

Much of the heating action this year has occurred over the Bering and Chukchi seas — which have never seen so much ice lost. Already sea ice is greatly reduced through these regions. Open water extends far into the Chukchi — onward and north of Barrow, Alaska. Still further into regions in which sea ice is typically rock-solid during this time of year, the Beaufort is experiencing its own late April break-up. But the areas that are expected to see the greatest warming over the coming days run closer to Siberia and the Atlantic.

Major Spring Warm Air Invasion

Today, a wedge of above-freezing air is invading the Laptev Sea north of Central Siberia. Strong southerly winds issuing from Central Asia are running north into the Arctic Ocean. They bring with them 10 to 20 C above average temperatures for this time of year — which is enough to push readings as high as 35 degrees F (2 C) over what during the 20th Century would have been a solid fringe of the polar ice cap.

Over the next 24 hours, this leading edge of warm air will spiral on toward the East Siberian Sea — bringing above freezing temperatures and liquid precipitation with it.

(5-Day forecast maximum temperatures show considerable warm air invasions proceeding throughout the Arctic. In many cases, temperatures near the North Pole will be warmer than regions far to the south. An impact of the warming world ocean on the Arctic environment. Image source: Climate Reanalyzer.)

But the main warming event for the Arctic this week will occur in the region of the Fram Strait east of Greenland. A strong low pressure system near Iceland is expected to drive wave after wave of much warmer than normal air north into the Arctic. This warm air thrust will bring with it temperatures in some places that exceed 20 C above average. Overall, Arctic Ocean basin temperatures are expected to average more than 2.3 C warmer than normal for the entire first week of May. Such high temperature departures are particularly notable for this time of year — as Arctic thermal variance tends to moderate during spring and summer.

The system will push above freezing temperatures deep into the Arctic — generating a repeat of the strange flip-flop that has become so common recently where temperatures near the North Pole are much warmer than readings further south. Warmer than freezing temperatures will also over-ride coastal portions of northeastern Greenland in yet another odd aspect of the event.

Warm storm effects including gale force winds and waves of 8-12 feet will provide added effect to above freezing temperatures in impacting the sea ice throughout the Fram Strait and northeast Greenland region. Increased insolation due to sunlight spreading over the region will also add to the overall potential for melt.

Tesla’s EV Lead Expands as Production Hits 13,000 to 17,000 in April

In the present day, two forces are helping to drive the potential for a rapid and much-needed transition to clean energy. On the one hand, we have countries like China and states like California providing clean energy leadership and incentive. And on the other hand, we have clean energy innovators like Tesla who continue to stretch the bounds of what’s possible.

This month, Tesla proved naysayers wrong by consistently producing more than 2,000 all electric Model 3 vehicles per week. During late March, Tesla produced 2070 Model 3s in one week. The next week they produced 2100. And the following week they produced 2250. During the third week of March they probably produced around 1,000 as the line shut down for improvements for 3-5 days. However, it’s likely that the final week will show in excess of 2,200 as the production line again expanded.

(Tesla EV production rates saw a big jump in Q1 as Model 3 began to hit a stride. However, Q2 2018 results will likely more than double that of Q4 of 2017 with Model 3 likely averaging over 2,000 per week. Image source: Statista and Tesla. )

Assuming that average weekly Model S and X production rates of around 1,000 (each) continued throughout the month, it appears that Tesla achieved a total rate of 4,000 BEVs produced each week. In sum, that adds up to a yearly rate of 200,000 per year.

Such a rate would make Tesla the present fastest-rate producer of EVs in the world. It would outstrip BYD and BIAC. It would leave BMW, Volkswagen, and Nissan in the dust.

Since Tesla rates of production can vary from week to week and month to month, the estimate I’ve given ranges from 13,000 to 17,000 EVs produced for April. Implied in this number is a one-month rate for the Model 3 that approaches all of Q1 production.

(CO2 emissions per 100 kilometers driven is greatly reduced when EVs are mated to grids with high clean energy penetration — like the one in Ontario. And it is for this reason that mass replacement of ICE vehicles with EVs is a key climate solution. Image source: Plug’n Drive.)

By May, it is likely that we will see 1 week rates for Model 3 exceed 3,000 as Tesla adds a third shift and continues to refine its line. Average total EV production for the month could exceed 20,000 if this ramp is achieved. By June, Tesla is aiming for a peak Model 3 production above 5,000 per week — which would imply a total EV production rate of 7,000 per week.

What all these numbers mean, and what few are reporting, is it appears that Tesla is achieving a break-away rate of electrical vehicle manufacturing. One that other automakers will have major difficulty catching up with. Such large volumes of EVs will displace a significant amount of carbon emitting ICE demand. Fossil fuel luxury and sport vehicles by BMW, Toyota, VW, Volvo, GM and many others will increasingly be replaced by this flood of high quality electrical vehicles. And a signal will be sent to the markets that higher margin ICE sales are taking a serious hit.

(Tesla Model 3 production rates significantly accelerated during early Q2 of 2018. Image source: Bloomberg Model 3 Tracker.)

If Tesla’s ramp continues, it will easily be selling 300,000 to 350,000 EVs per year by 2019 — which is considerably more than Volvo’s annual U.S. sales. This high volume will force other automakers to respond in kind. But since none will likely be able to produce in comparable volume and quality until at least 2020, Tesla is developing a major head start.

CO2 is Regularly Exceeding 410 Parts Per Million for First Time in Human History

During May of 2018, average monthly CO2 values will likely range between 411 and 412 parts per million. A new record for a heat-trapping gas that is causing serious damage to both the Earth’s environment and human civilizations.

(Atmospheric CO2 accumulation since 2007 as depicted by this animation of Mauna Loa Observatory CO2 measurements by Robbie Andrew, of the CICERO Center for International Climate Research.)

There’s one word that best describes this — trouble. And in the most simple terms it means that more unprecedented severe weather, ocean health impacts, and sea level rise is on the way.

Exceeding the 410 PPM Threshold

Last year, atmospheric CO2 levels peaked at around 409.7 parts per million during May of 2018. Hitting just shy of the 410 ppm threshold which will be consistently exceeded this year during the annual peak.

This peak comes during April and May following Northern Hemisphere winter due to seasonal loss of tree leaf photosynthesis that converts a large volume of CO2 into oxygen during summer and fall. As trees return to bloom across the large northern land masses, CO2 concentrations periodically drop.

However, due to human fossil fuel burning, the natural CO2 cycle has, since the 18th Century been significantly thrown out of balance. And as a result, the atmospheric concentrations of this key heat trapping gas rapidly ramped higher and are now in a range not seen in 15-17 million years.

(The CO2 measure at the Mauna Loa Observatory shows a hockey stick like spike in CO2 following a relatively stable period of glaciation and deglaciation over the last 800,000 years. Image source: The Keeling Curve.)

As you can see in the image above, the present period has shown an unprecedented and dangerous rate of atmospheric CO2 increase. One that has no corollary in the past 800,000 years. One that is probably unique in its velocity.

High Levels of Heat Trapping Gases Pose Serious Consequences

Such a great accumulation of heat trapping gases results in serious consequences. Present atmospheric CO2 concentrations, if maintained over multiple Centuries are likely enough to warm the Earth by more than 3 degrees Celsius (significantly more than present warming in the range of 1 to 1.2 C). And such high levels of heat trapping gases — ranging above 410 parts per million — are likely enough to melt significant portions of the world’s ice sheets over Century to multi-Century time scales. During the last climate epoch when atmospheric CO2 exceeded 410 parts per million, the Middle Miocene, sea levels were 100 to 170 feet higher than they are today.

(Atmospheric CO2 levels are now the highest since the Middle Miocene of 15 to 17 million years ago. Image source: Skeptical Science.)

Sea level is not the only system influenced by high atmospheric CO2 levels. And everything from storms to drought intensity, to ocean health, to growing seasons, to typical seasonality, to coral bleaching, and including the Earth’s net ability to support life will ultimately be impacted.

Fossil Fuel Burning is the Primary Cause, Renewable Energy the Primary Solution

As mentioned above, record CO2 emissions brought on by fossil fuel burning is driving the unprecedented atmospheric accumulation we see today. During recent years, very rapid rates of annual accumulation near 3 parts per million (ppm) were achieved as a strong El Nino rippled through the Pacific and reduced the ocean’s ability to draw down carbon. The La Nina years of 2017 and 2018 are seeing these rates of accumulation dip back to near 2 ppm or slightly less as ocean drawdowns have periodically recovered. But more El Nino years are on the way and atmospheric CO2 levels will keep rising so long as mass fossil fuel extraction and burning continues.

(CO2 annual growth rates have proceeded in lock step with increasing rates of fossil fuel burning on decadal time scales. Shorter term fluctuations are driven by the ENSO cycle and large volcanic eruptions. Image source: NOAA ESRL.)

The advance of renewable energy and the reduced use of coal has enabled the world to achieve a slower rate of atmospheric CO2 release growth that appears to be reaching a plateau near 11-12 billion tons of carbon per year. This is still an insane rate of release. However, if the world resolves itself, it can begin to rapidly reduce this severely harmful annual belching of greenhouse gasses. Emergent clean energy technologies like wind, solar, battery storage, and electrical vehicles are providing this hope for response. However, rates of adoption will need to be quite rapid if serious and ever-ramping climate harms are to be avoided. Presently high atmospheric CO2 levels exceeding 410 ppm this year represent a serious hazard. One that we fail to fully address at our peril.

Notes:

  1. Human emissions of heat trapping gases is not limited to CO2. Methane and other greenhouse gasses produced by industry have resulted in a net CO2 equivalent forcing near 491 parts per million (CO2e). Though CO2 gain is the primary driver of human forced warming, these other gases have an accumulative impact.
  2. I have used the Middle Miocene as a corollary in this analysis due to the fact that present CO2 levels at 410 parts per million and CO2e levels at 491 parts per million (end 2017) generate a rough boundary for both the top and bottom ranges for this climate epoch. It is worth noting that the human forcing is probably more dangerous than that which occurred during the Middle Miocene due to the velocity at which heat trapping gases are accumulating.

March of 2018 Was the Sixth Hottest on Record

The surface region of the globe continues to cool relative to the record hot year of 2016. Equatorial Pacific ocean surface temperatures have remained near or within La Nina states for much of 2017-2018. And the result has been a slight dip as a part of the longer term warming trend.

But as you can see in the graphic below, post 2016 cooling doesn’t look very cool at all. In contrast, most of the world is still in the grips of record heat. And so long as atmospheric greenhouse gas levels remain so high and continue to rise, this state is unlikely to change. Inevitably, unless the build-up of greenhouse gasses through fossil fuel burning slackens, more global record hot years are on the way.

(March of 2018 was 0.89 C warmer than NASA’s 20th Century baseline or 1.11 C warmer than 1880s averages. Image source: NASA.)

Much of the world experienced warmer than normal temperatures during March despite the relative cool-down — with peak heating hitting as high as 7.4 C above average over the Bering and Chukchi seas of the Arctic. Central through East Asia was also far warmer than normal, as was most of Antarctica. A backing up of the Jet Stream generated cooler than normal conditions over Europe and a persistent trough across the U.S. East Coast produced cooler and stormier weather as well. A cool pool over the Equatorial Pacific was a signature of La Nina — a period of natural variability that tends to drive cooler surface temperatures. But a world at sixth hottest on record despite La Nina isn’t really cool at all.

Extending into Record Warm Territory

Overall, we are still in the process of entering new, record warm territory globally. Ever since 2016, global temperatures have not dipped below the 1 C above 1880s averages range on an annual basis. And it is unlikely that they will ever do so again. At least not until the world’s governments resolve themselves to stop burning fossil fuels and to draw down carbon from the atmosphere.

Presently, in the 2016 to 2020 period, it appears that we are exploring a global temperature range between 1 and 1.2 C above 1880s averages. This is comparable to the lower range of the Eemian climate period (around 120,000 years ago) when the North Atlantic was much stormier than we’re used to and when oceans were between 10 and 20 feet higher than they are today. It is a temperature range that supports both stronger droughts and more severe rainfall. A range that is increasing the peak intensity of the most intense thunderstorms and hurricanes. One that is causing serious damage to corals, that threatens ice free Arctic summers, that is increasing Antarctic and Greenland melt rates, that is threatening water supplies for major cities, and that is causing disruptions to crops — from flooding deltas to less predictable growing seasons.

(2018 may become the coolest year of the late 2010s. However, despite a second consecutive La Nina in the Pacific, it will still be far warmer than the super El Nino year of 1998 — which has been left in the dust as a global marker. Image source: NASA.)

At some point during a coming El Nino — possibly as early as fall of 2018, but more likely by the early 2020s — the 1.2 C threshold range will again be tested. By the late 2020s to early 2030s, it is likely that the 1.5 C line will be crossed. The result will be even more climate damage and disruption than we presently experience.

March of 2018, as the sixth hottest March on record, is just one point in time. One dot on the graph that measures the larger trend of human-forced warming. A dot in a world that is facing down increasing damages due to climate change. A world that is now morally called to act with far greater resolve than we have ever displayed before. We have seen far too many delays. And the hard pass is upon us. Those who rise to the occasion will be the heroes of our age. Those who fail — its villains.

The Increasingly Fragile Pine Island Glacier Just Calved Again

The point where the Pine Island and Thwaites glaciers meet the sea serve as a back-stop restraining most of the great ice flows of West Antarctica. If those backstops were to fail, ocean water would flood inland along a reverse slope and generate a massive and swift out-rush of ice that would ultimately raise the world’s oceans by about 3 meters. And, lately, the evidence is mounting that the backstops are failing.

At Thwaites, just south of the neighboring Pine Island Glacier (PIG), recent research found that the ocean was flooding inland beneath that enormous ice sheet at a rate of up to 400 meters per year. But to the north, there is indication of trouble at the ice surface.

Back to Back Calving Events

Just last September, a massive 100 square mile ice berg calved off the Pine Island Glacier. The event was significant in that it marked the first major retreat of the glacial front in the face of an advancing ocean. Pine Island had already sped up. But the calving face withdrawal inland appeared to mark a new phase for the large glacier.

(Sentinel 1 satellite observations show a rapidly moving Pine Island Glacier calving off another large ice berg. Meanwhile, considerable damage appears to have been done to the glacial front.)

Now, just 7 months later, PIG is calving again. A large, approximately 6 kilometer long, 1 kilometer wide, chunk appears to have broken off into the Southern Ocean and shattered. Meanwhile, to the north and south along the glacial front, rifts appear to have formed.

This recent calving event is significant for a number of reasons. The first is that it’s happening just months after a recent large break-off during 2017. Other recent calving events at Pine Island occurred during 2001, 2007, and 2013. The present 2017-2018 events are back-to-back. The second reason is that the splintering appears to indicate a more fragile ice face. An impression reinforced by the concordant formation of rifts spreading away from the calving zone. The third is that the satellite imagery suggests Pine Island Glacier is moving quite rapidly (Recently, this rate of motion has been 1-2 km per year. However, it’s reasonable to question whether the glacier is continuing to speed up).

Conditions in Context

Present global warming due to fossil fuel burning has now forced the world into a range of temperatures between 1.0 and 1.21 degrees Celsius above 1880s averages. This boundary is similar to that of the lower range of the Eemian 120,000 years ago when oceans where 10-20 feet higher than they are today.

(The tall ice cliffs composing the Pine Island Glacial front have become increasingly fragile and fast moving as they enter the warming Southern Ocean and as that warming water continues to invade inland. Image source: Commons, Pine Island Glacier Calving Front, NASA.)

Under present greenhouse gas forcing and planned emissions, additional warming is in store. Climate models produced by Dr. Michael E Mann indicate that we are likely to hit the 1.5 C global temperature boundary some time between 2027 and 2031 on the current emissions pathway. This predicted warming is significant because analysis of past climates appears to indicate a risk of more rapid rates of sea level rise when global temperatures rise to a range between 1.5 to 2.5 C above past base line averages (see meltwater pulse 1 A).

Since the 1990s, the global rate of sea level rise has proceeded at roughly 3.3 mm per year with an apparent acceleration to around 3.6 to 4.1 mm per year during the 2010 to present time period. Given observed ice sheet instability in West Antarctica, in East Antartica, and in Greenland, there is a serious risk that this rate of rise will continue to accelerate over the coming years and decades. The key question of concern is how much and how soon.

Unusually Warm Early Arctic Spring Predicted Following Second Lowest Sea Ice Maximum on Record

After a brief Arctic cool-down late during a much warmer than usual freeze season, sea ice extents tortuously rose out of record low daily ranges during mid-March. This feeble climb was enough to barely hit above 2017’s record low maximum extent. It did not, however, push the Arctic out of its present trend of long term declines. Moreover, we are again set on a very low platform for sea ice as we enter what is predicted to be a warmer than normal start to melt season.

(Arctic sea ice losses are a long term trend that has been in place since the early to mid 20th Century. The recent satellite record captures this ongoing loss due to polar warming and triggered primarily by fossil fuel burning. In keeping with this trend, 2018 saw the second lowest sea ice extent maximum on record. Image source: Zack Labe. Data Source: JAXA.)

Arctic sea ice extent measured by JAXA and depicted above by Arctic observer Zack Labe, hit 13.89 million square kilometers on March 17th. Given the fact that warmer Arctic temperatures are now on the way, this is likely the furthest sea ice will extend in the northern polar region during 2018. By comparison, 2017 sea ice extent maxed out at 13.88 million square kilometers on March 6th of that year. As a result, 2017 just barely beat out 2018 as the lowest maximum extent in the satellite record according to JAXA.

A brief spate of cooler than average temperatures contributed to a short period of expanding sea ice late during freeze season. This cool snap in a much warmer than normal winter overall, has now ended. And the forecast shows that warmer to much warmer weather for late March may well be on tap.

Over the next week and a half, Arctic temperatures are expected to range between 0.2 to 0.8 C above average. This may not sound like much compared to the past winter which experienced long periods of 3-5 C above normal temperatures. However, the transition to spring and summer typically shows a regression toward baseline averages. In other words, since winter is where we are seeing most of the climate change related warming at present, even slightly warmer than normal temperatures during spring and summer can have an outsized impact. Especially following a very warm winter like the one we have just seen.

(The ten day forecast is presently predicting a very substantial Arctic warm-up. If this forecast is correct, it could result in a fast start to melt season. With sea ice extents already near record low levels, this potential is rather concerning. Image source: Climate Reanalyzer.)

Keeping this thought in mind, we are more likely to see slowly mounting sea ice losses over the coming days in various regions. Especially on the Pacific side of the Arctic — which is presently seeing above freezing temperatures running up through the Bering and well into the Chukchi seas. Given such a strong warm wind invasion over a key region of ice, we are very unlikely to see sea ice expansion beyond the present maximum.

Looking at the long term forecast, we find that the Arctic is expected to experience substantial warming — especially for spring. And this warming may serve to accelerate melt beyond typical rates for this time of year. The tendency for Pacific emerging warm winds appears to be in place. And by April 1st, a large plume of abnormal warmth is expected to run up from the Pacific and Eastern Siberian side of the Arctic. This plume is forecast to spread deep into the High Arctic — driving overall temperatures for the zone to 4.1 C above average with local temperatures between 20 and 25 C above average. If the present forecast holds, this unseasonal flow will also result in large regions of the East Siberian Sea experiencing above freezing temperatures for brief periods.

Taken in the greater context, if the predicted warm pattern of the next ten days becomes more of a trend for spring of 2018, then the near record low maximum of 2018 could well be followed by significant losses during melt season. Definitely a trend to keep an eye on.

Big Auto Freaks Out as Tesla Model 3 Deliveries for Q1 Track Toward 8,000 to 10,000

The major automakers are increasingly in a bind. They’re faced with a choice — keep investing in dirty energy vehicles that pollute the air, the water and wreck the climate, jump feet first into the EV revolution, or play both sides. And it’s this dichotomy that’s producing some rather freaky behavior.

(GM has often talked big about its EVs like the Volt and the Bolt. But its policy positions are contradictory to a rapid clean energy vehicle ramp.)

We’ve heard a lot of talk from some major automakers about how many electrical vehicles they’ll be producing in one year, two years, three years or more. And even as these companies have been beating the drum about ‘Tesla killers,’ how they have enough capital to own the EV revolution, some of them keep lobbying for dirty energy vehicles by attacking U.S. fuel efficiency standards.

It’s an inherent contradiction between communication and dedicated action. One that has generated a degree of legitimate distrust in the notion that some big auto manufacturers will follow up on their clean energy promises. Whether the talk is little more than a PR campaign aimed at tamping down public loyalty to those like Tesla who operate under a 100 percent clean energy business model. At the very least, it shows that auto industry focus is starting to fragment between traditionals (which include many backward-looking CEOs) who still support harmful legacy combustion engine production while hiding behind token ‘compliance cars,’ and the progressive-minded within the industry who want to rapidly jump into the EV market and compete.

(Not a compliance car. Nissan and a handful of like-minded major auto manufacturers produce and market seriously competitive EVs. Others appear to be dithering and dissembling.)

As uncertainty over auto industry intent expands due to various contradictory behaviors, here in the U.S., Tesla has been consistently ramping its production of 100 percent clean energy vehicles. And this has generated an equally predictable gnashing of teeth from the usual suspects in the financial media.

During the fourth quarter of 2017, Tesla’s factories pumped out a record number of electrical vehicles. In total, it delivered 29,870 zero tailpipe emissions cars. These included 15,200 Model S, 13,120 Model X, and 1,550 of the new Model 3s. This was the highest production quarter for Tesla and it was enough to propel its total sales for the year to over 101,000.

(Tesla Model 3 is one of the major spear-heads of a clean energy revolution. And it’s helping to goad other western automakers into a larger and expanding EV market. Image source: Tesla.)

Q1 of 2018, however, is likely to see even more. Present delivery estimates for Model S and X alone range from 22,000 to 30,000. Meanwhile the Model 3 is likely to have expanded deliveries more than fivefold to between 8,000 and 10,000. So a total of 30,000 to 40,000 Teslas will likely have hit the road by the time March elapses.

This is particularly significant when one considers that the first quarter is typically a lower selling point for most automakers even as sales have tended to peak for Tesla during Q4. During Q1 of 2017, Tesla sold 25,418 EVs. A number that will likely grow by 20 to 60 percent during 2018.

Moreover, recent reports indicate that Model 3 production is surging.

On March 19th, it was found that Tesla had ordered a large new batch of VINS. As a result, the total Tesla Model 3 VIN count had jumped to nearly 16,000. An indicator that Tesla Model 3 production — which has ranged between 700 and 900 per week since January is also likely expanding.

So it seems that the Tesla production bottle necks are starting to clear and that its ramp is jumping yet again. What this represents is a major call on the traditional auto-manufacturers. The time has come to ante up the EVs, or get out of the way for new clean energy leaders. Bluff time is over.

Polar Warming Spawns More Severe Winter Storms

So there’s a lot of groundbreaking work going on in the climate sciences right now. And a major focus is evidence that winter polar warming events are increasingly connected to blizzards and storms in places like Europe and North America. Storms that are both historically powerful and that occur with greater frequency.

(A historic nor’easter produces major flooding on the U.S. East Coast even as a blizzard pounds the UK in early March. Were these extreme storms linked to human-caused climate change and related rapid polar warming? A new scientific study says — yes. Image source: NASA Worldview.)

A new study led by pioneers in the emerging field of climate change attribution for extreme weather events (including the notable Dr. Jennifer Francis), finds:

Recent boreal winters have exhibited a large-scale seesaw temperature pattern characterized by an unusually warm Arctic and cold continents… Using a recently developed index of severe winter weather, we show that the occurrence of severe winter weather in the United States is significantly related to anomalies in pan-Arctic geopotential heights and temperatures.

In particular, the authors discovered thatwinter storms were two to four times more likely when the Arctic is abnormally warm, compared to when it was abnormally cold (emphasis added).”

Stronger, More Frequent Storms

This is a rather big deal for a number of reasons. First, it’s an observational confirmation of earlier scientific work predicting just these kinds of extreme weather instances due to polar warming and related climate change. Second, it’s another indicator that human-caused climate change is pushing us into a period of much stormier weather for the North Atlantic region during fall and winter.

(A new study in the journal Nature finds that winter storms in the U.S. are two to four times more likely when the Arctic is abnormally warm than when it is abnormally cold. Due to human-caused climate change, the Arctic is now warming up at a rate two times faster than the rest of the globe (emphasis added). Image source: Atmospheric and Environmental Research.)

With the new NASA global temperature data set out, I thought we’d take this opportunity to apply a bit of context to apparent stormy changes we see at present in winter weather patterns.

The first bit that I’d like to be crystal clear about is that the Arctic, overall, has become much, much warmer than usual during winter. That this warming spike occurs in the context overall global warming. And that this polar warming is increasingly associated with severe weather events in the middle latitudes and especially over the land and North Atlantic mid latitude zones.

The above graph shows polar temperature anomalies from the surface (1000 mb/2 meter) of the Earth to the top regions of the atmosphere (10 mb/25 kilometers). Along the bottom of the graph, we have a list of extreme weather events. Analyzing the graph we find that major polar warming associated with extreme temperature increases at the bottom of the atmosphere all the way through to the stratosphere correlate with recently more frequent historic blizzards and nor’easters in the regions mentioned.

Polar Warming Flushing Cooler Air into the Middle Latitudes

In previous posts, I used the ground-breaking scientific research of Dr. Jennifer Francis and others as a basis to analyze how energy transfer into the polar zone in the form of heat build-up has generated these extraordinary temperature extremes. How this ramping heat is associated with polar amplification — an aspect of human-caused climate change. And how these warming events can have upstream (Jet Stream) impacts that increase storminess in the middle latitudes.

(From January [top] to February [bottom] the pole heats up and extreme weather events ensue. Image source: NASA.)

But let’s take this analysis a step further to look at, as January progressed into February, where it got warmer, where it got colder, and where the big storms fired off.

The maps above show global temperature anomalies (NASA) for January (top) and February (bottom). And looking at those maps we find that the polar region heated up significantly from already warm ranges of 4 to 6.9 degrees Celsius above average during January to an amazing 4 to 12.3 C above average during February.

As this relative polar warming increased during February, the NASA maps show that colder than normal temperatures expanded over North America through Canada and parts of the Northern U.S. even as a cold spell began to blossom in Europe. Cold pools that were fed by Arctic air shunting southward as the Polar Vortex collapsed and remnant continental troughs emerged.

NASA’s zonal anomaly measures provide further evidence for this trend.

(Major northern polar warming from January [top] to February [bottom] is clearly visible in NASA’s zonal anomalies maps. Note that despite cold air excursions into North America and Europe, most zonal regions are warmer to much warmer than average.)

For here we find that as temperatures spiked from 4.5 degrees Celsius above average in the polar region of 80 to 90 degrees north latitude during January to an amazing 11 degrees above average during February, the region of 45 to 70 N dipped from 1 to 3 C warmer than average to 0.8 to 2.5 C warmer than average.

Note that the zonal middle latitude continental cooling is moderated by both the relatively warmer oceans and by very strong ridge zones running through these regions. But that the trough regions over both Europe and North America produced locally frigid temperatures and related instances of extreme weather.

Putting all these maps together from top to bottom we find that the polar warming events coincided both with mid latitude cooling even as we saw extreme snowfall in Canada and Montana, historic cold and snowfall in Europe and the UK, record flooding in the Central U.S., and record heat along the U.S. East Coast. We also find that the developing deep trough over Canada due to the expulsion of polar air southward in turn produced the succession of instabilities that would later spawn 3 very severe nor’easters off the U.S. East Coast during March.

Of course, all of these severe weather events are happening in the context of months that are around 1 degree Celsius warmer than 1880s averages globally. That January was the fifth hottest on record and that February was the sixth hottest on record during a La Nina that, all things being equal, should cause the world to be cooler than average.

But as we can see clearly here, all things are not equal — human-caused climate change is a big spoiler.

Intensifying Drought Shifts Toward Central U.S.

Last week saw a major increase in drought intensity in the Central U.S. as flash wildfires sparked across Oklahoma. Meanwhile, longer term drought trends remained strong even as the U.S. West Coast saw breaks in the dryness in the form of late winter precipitation.

(Drought expanded across the Central U.S. last week as precipitation deficits there increased. Image source: Drought Monitor.)

A return to severe to exceptional drought across the Western and Central U.S. was one of the hallmarks of the overall warm winter of 2017-2018. Historic drought, which had been suppressed by substantial rains during 2016-2017, appears to have returned — with threat of worsening conditions through spring, summer and fall.

In the Central U.S., the dry pattern reinforced this week which added to already serious conditions. During mid-week, Oklahoma saw the eruption of seven large brush fires as a result of both drought and strong winds sweeping across the plains states. Dry springs can result in fires for this region. However, the recent intensification of droughts brought on by human-caused climate change is spiking fire hazards from the Central U.S. through the West Coast and beyond.

(California snow pack totals remain well below average despite a recent increase in the number of storms affecting the state. Image source: CDEC.)

In California, snow packs are still running well below average, despite a recent wave of storms sweeping through the region. But it’s worth noting that though still much diminished from typical snow depth totals, the present range is now higher than the driest years — 2014-2015 and 1976-1977. So the situation isn’t looking quite so bad as it was a few weeks ago.

In addition, the blocking ridge that had dominated the West for much of the winter has mostly collapsed — allowing more rain and snow-bearing storms to cycle through. Some relatively intense precipitation is expected to fall over central and northern parts of the state later this this week. However, with widespread drought reasserting and with warmer than normal temperatures likely this spring, the increasingly drought-prone state is far from out of the woods.

(Temperatures have tended to remain above average across most of the U.S. this winter even as abnormally dry conditions impacted the Southwest. Image source: NOAA.)

Under human-caused climate change increasingly warm temperatures result in higher rates of evaporation from lakes and soils. This increases drought intensity for many locations around the world. In keeping with this longer-term trend, the winter of 2018 can still be characterized as both warmer and drier than normal for most of the U.S. But the overall drought pattern has shifted more toward the Central U.S. and away from the West Coast with the approach of spring.

 

Polar Anomaly Flip in an Abnormally Warm World: Arctic to Cool as Antarctica Heats Up

Interesting and concerning climate-change influenced weather in the global forecast for the next ten days.

As the Arctic is projected to cool down, it will open a brief window for sea ice to grow above its present track toward a record low maximum. However, any new edge ice will likely be weak and thin relative to past years. Meanwhile, sections of western Antarctica are predicted to see above freezing temperatures over the next week. And all of these various swings are occurring in a world that is considerably warmer than normal.

Global Context

Today, as with practically every day since I began tracking global weather and climate back in 2012, the world’s temperature averages are warmer than normal. An odd and increasingly harmful warmth that is driven by atmospheric CO2 levels ranging above 405 ppm (490 ppm CO2e). High heat-trapping gas levels that are, in turn, primarily the result of human fossil fuel burning.

(Despite an building cool-down relative to typical temperatures in the Arctic, the globe remains much warmer than average. The most intense hot spots for today hover over Canada, Southern Europe, North Africa, the Middle East, India through China, and Parts of Antarctica. Image source: Climate Reanalyzer.)

The world, overall today, is about 0.7 C warmer than the 1979 to 2000 average. Compared to 1880s, that’s about 1.2 C warmer than a typical late 19th Century day. This warming is considerable. A long term average that is in a range comparable to the Eemian of about 120,000 years ago. In other words, the world we live in today is the hottest its been in more than a thousand centuries.

Looking at the various climate zones, we find that every major region except the Arctic is warmer than average. This is happening as Northern Hemisphere Winter transitions to Spring and as the polar jet stream appears to be reasserting itself a bit after a major polar vortex collapse event during February. A new integral cold air vortex is gathering over Northwest Siberia — which is allowing cooler conditions to again reassert in the Arctic.

Opportunity for Late Season Sea Ice Regrowth

Over the next week, temperatures in the High Arctic are expected to plummet. And for the first time since practically the start of Winter, readings over the Arctic Ocean zone are expected to range below average.

As noted above, the cold pole appears to be asserting in the region of Northwest Siberia. But cold air pushing out into the Barents, North Bering, North Baffin, and Irkutsk regions will afford some opportunity for a sea ice rebound.

This cold air retrenchment is expected to be juxtaposed by significant warming through Northern Canada, Alaska, the Southern Bering, Southern Baffin Bay, Southern Greenland and in a zone just north of Svalbard. This warm pole will likely help retard any sea ice bounce coming from cooler air asserting on the Siberian side — constraining ice growth in a number of edge zones and possibly asserting some counter-cooling melt. We may even see a polynya open up in the Beaufort as temperatures over Alberta rise to above freezing and warm winds drive northward.

As a result of this warm-cold dipole, and the related warmth in certain key ice edge zones, it remains uncertain whether sea ice will bounce enough to overcome an otherwise strongly asserted trend toward a record low Arctic sea ice maximum for 2018. But if such a bounce back were to happen, the opportunity for it to occur will be during this week or next.

Extreme Antarctic Warming

As the Arctic is predicted to cool down this week, the Antarctic is expected to heat up. By late this week through next weekend, a powerful plume of warm air is expected to drive above freezing temperatures across Marie Byrd Land and the Ross Ice Shelf in West Antarctica. As with recent Northern Hemisphere Events, a high amplitude wave in the Jet Stream will drive much warmer than typical temperatures far into what should be a frigid polar zone.

(A major warm-up predicted for sections of West Antarctica will likely produce surface melt as temperatures rise to above freezing. Image source: Climate Reanalyzer.)

This warming event is predicted to be rather intense and last for 2-3 days, with temperatures rising to 25-30 degrees Celsius above average in certain zones.

Such a warm-up would push surface temperatures in some locations to 2-4 C or warmer (up to 40 degrees F) and would likely produce periods of surface melt. These kinds of melt events have been a more frequent occurrence for Antarctica recently. They’re a part of the larger trend of ice mass loss both at the surface and on the underside of sea facing ice sheets as the local ocean has warmed. A primary driver of a noted acceleration in the rate of global sea level rise.

Looking on into next week, a subsequent warming in East Antarctica is expected to push temperatures for the whole Continent into a range approximately 3.5 C above average. This event, however, is not expected to drive significant above freezing temperatures inland, though some coastal areas may see brief departures into these ranges.

Delving Further into Uncharted Territory: Arctic Sea Ice Greatly Weakened at Start of Spring 2018

The story of Arctic sea ice is one of short term complexity overlying an inexorable long term trend of decline. It has thus been difficult for sea ice monitors to forecast seasonal ice growth and retreat, despite a larger and significant warming of the Arctic.

(New ice has formed north of Greenland following a massive polar warming event last week. This ice is thin and faces the warm up of spring and summer with uncertainty. Sitting over a region that is typically filled with thick ice, it could provide a back-door for melt into the Central Arctic come summer. As usual, weather will play a key role in this year’s melt, despite the undeniable longer term trend of loss. Image source: NASA.)

Undeterred by these facts, a number of key factors stand out in 2018 — following a winter in which the Arctic has suffered considerable warming and related impacts to the ice.

Lowest Sea Ice Extent; Warmest Freeze Season

Today, Arctic sea ice extent is at its lowest levels on record. Volume, is at the second lowest levels ever measured. And this year’s freeze season (October through February of 2017-2018) was the warmest ever recorded (see link below). Taken at face value, these are pretty stark statistics. But they don’t tell the whole story. Not by a long shot.

The Arctic is warming up twice as fast as the rest of the world. It has been doing so since around 2000 when Polar Amplification — the science-based expectation that the poles will warm faster than the globe as greenhouse gas levels rise — really began to kick in. So the present warm peak in the Arctic is on top of a record spate of accelerated warming. In the graphs it looks like a rocket ship taking off.

We should be clear that most of this warming has occurred during winter time. It’s warmth that has softened the ice, thinned it. Produced a big push toward thaw. But like a cup of water with a single cube of melting ice in it will resist surface temperatures above freezing, this thinning and melting has yet to have have a significant impact on summer-time temperatures in the high Arctic. That thinning skein of ice is still doing its duty keeping the Arctic summer close to freezing. But it’s a realistic question to ask — how much longer can it? What happens when the majority of the summer ice is gone?

Such radical warming has also had a number of environmental effects. It is pushing fisheries that rely on cold water northward. It is stressing key species like the Wright Whale, the Polar Bear, and the Puffin. It is causing the permafrost to thaw, which produces a number of environmental feedbacks. Not the least of which includes land subsidence, the release of mercury into the Arctic environment and global ocean, and the slow but rising expulsion of greenhouse gasses long locked away.

Multiyear Ice Has Pulled Away From Shore

The thicker ice floes of yore are now mostly a bare memory. A recollection of past cold blasted away by fossil fuel burning and inexorable thaw. This year, an LNG tanker crossed the thinning ice during winter time. Bearing with it a great load of climate change quickening gas destined to be burned in some nation still entangled by a heat-producing web of gas plants, coal mines, and diesel and gasoline cars.

The thick, multiyear ice is reduced to a phantom of its former girth and extent. It has drawn back, pulling away from shore. Increasingly sequestered to more and more remote regions. And on the run from the ocean swells, warmer storms, and increasing instances of liquid rain that fall across an Arctic that is facing violent transition.

Increasingly, it huddles closer to Greenland and the Canadian Archipelago. But as we can see in the image at the top of this post, even this region is no longer a reliable sanctuary.

Cold Pole Shift in Forecast — Canada/Alaska Predicted to See Abnormal Warmth

As late winter transitions into early spring, we enter the less certain time of melt and thaw season. During recent years, as warming bloomed in the lower latitudes, the Jet Stream which had slowed and meandered more during winter due to polar warming, snapped back into place. This seasonal flattening and speeding up of the upper level winds tended to harden and deepen the cold pole at the north of our world. Reducing relative temperature variance above normal averages even as melt season advanced.

This created a kind of Dr. Jekyll and Mr. Hyde relationship between winter and summer in which high Arctic winter temps seemed outrageously warmer than normal even as summer snapped back to more typical Arctic averages in the furthest north locations.

(As we enter spring and summer, high Arctic temperatures tend to regress back toward the mean following winter warming. This is largely due to the inertial cooling influence of ocean ice which will tend to keep temperatures closer to the freezing line even as net energy gain is ongoing. Loss of ice would result in the removal of this insulating effect and likely push summer anomalies for the region into the +1 to +5 C range. Image source: Zachary Labe. Data Source: DMI.)

But all is not well. The loss of winter climate norms have done their damage. And the summers, on balance, saw the edge ice retreat a bit further. Saw the boundaries of Arctic cold pull a bit tighter and saw the open, warmer, sunlight-capturing waters advance ever northward.

We don’t know if this return to more normal temperatures for the high Arctic during summer will save the ice from new record lows this year during melt season. But we can track how thaw season is predicted to advance against a greatly weakened Arctic sea ice pack. And this year, the cold pole appears to be expected to shift over the land mass of western Siberia during early March.

(A warm North America, cool west Siberia dipole appears to be developing during early March in the forecast models. If this trend reinforces, it could leave large areas of ice open to early thaw from the Alaskan and Canadian maritime to the Central Arctic. Note that residual energy transfer along ocean zones remains in play in this forecast. Image source: Climate Reanalyzer.)

Meanwhile, on the North American side, abnormal warmth is predicted to advance through Alaska, Western Canada, and the Hudson Bay region.

If this trending location of warm and cool extremes reinforces and holds through melt season start, we can expect the front of melt advance to begin on the North American side as the region near the Kara and Laptev seas resist melt advance longer. Meanwhile, latent warmth over the Bering Sea and Svalbard appear to be set to hold back late season refreeze in these two key zones.

How this weather dynamic plays out will determine if melt season 2018 begins on a record low ramp and how resilient the ice will be to the seasonal thaw that is on the way. We are presently in a situation where a record low start is possible even as reasonable concerns about a potential rapid summer melt progression are presently heightened.

East Coast Still Experiencing Heavy Seas as Another Storm Looms

Large swells and high tides continued to batter the U.S. East Coast today as a storm that is predicted to become yet another nor’easter began to gather over the Central U.S.

A broad low pressure system that slammed the mid-Atlantic and Northeastern U.S. this weekend with flooding, massive waves, and wind gusts of up to 93 mph was still hurling rough seas and storm tides at the U.S. East Coast on Monday. Such widely-varied locations as coastal Florida and New Jersey were experiencing high water, beach erosion, raging surf and minor coastal flooding. Officials were warning people to stay off the beach and away from riled seas as crews rushed to clear debris.

The storm gained extreme intensity that was likely peaked by a number of climate change related factors including warmer than normal sea surface temperatures, a blocking high over Greenland that was likely impacted by a recent polar warming event, and higher sea levels resulting increasingly severe tidal flooding during the storm’s peak.

(A massive low pressure system that knocked out power to hundreds of thousands and flooded the Northeast coastline this weekend still churned off the U.S. East Coast on Monday — lashing shores with rough surf and minor flooding. Image source: Earth Nullschool.)

Inland, nearly a quarter million people were still without power from Virginia through Maine — down from a high of around two million at the weekend storm’s peak. However, utilities are saying that it may take days to fully restore power to some locations. As repair crews were scrambling, another major storm was starting to gather over the Great Plains — with a high pressure system across Florida drawing very moist air from over a much warmer than normal Gulf of Mexico and into the developing storm’s circulation.

Over the next 24 hours, the new storm is projected to track eastward — crossing to the Ohio River Valley region by late Tuesday. On Wednesday, the low will transition energy into a developing storm off Virginia and the Outer Banks. This low is then expected to rapidly intensify as it moves northward — developing strong onshore winds with gusts of 45-65 mph crossing coastal Delaware, New Jersey, Long Island, Connecticut, Rhode Island and Massachusetts by late Wednesday and into early Thursday.

(Models show another powerful low pressure system battering the Northeast Coast with 45-65 mph winds by early Thursday. Image source: Tropical Tidbits.)

The storm is also predicted to bring heavy coastal rains and up to 1-2 feet of snow across parts of the Northeast.

Presently, the storm is not expected to be as strong as the massive system that slammed the Northeast and Mid-Atlantic this weekend. However, gale force to storm force gusts are presently predicted, and forecast storm strength has been trending toward higher intensity in recent model runs.

In addition, climate change related factors like a warmer than normal Gulf of Mexico, much warmer than normal sea surface temperatures in the Gulf Stream, higher sea levels, and a large blocking high over Greenland are contributing to this most recent storm’s expected intensity. With hundreds of thousands still recovering from this weekend’s historic storm, and with so many factors now in play that could serve to further spike a new storm’s intensity above those presently expected, this is a developing situation that bears watching.

U.S. Northeast Battered by Second ‘Once in a Generation’ Storm This Year

A major nor’easter is lashing the Eastern U.S. today. Reports of moderate to severe tidal flooding are racking up as hurricane force gusts are pushing mounds of water inland and raking the coastline with tremendously powerful waves.

This storm blew up to extreme intensity over the night-time and early morning hours on Friday as two low pressure cells converged off the U.S. coast. By afternoon, the storm had bombed out to 970 mb and was still intensifying.

A broad region across the northeast from D.C. to Maine are now experiencing wind gusts of 50 to 80 mph or more with local power outages and downed lines reported over a broad region. The gusts are so strong and widespread that diverse locations all throughout the Northeast are seeing instances of toppled trees, damage to structures and falling limbs. In Chambersburg, PA, the raging gusts tipped over a school bus.

On the coast, extremely strong winds for a nor’easter and conditions more akin to a hurricane are driving directly in to shore from Chatham and Nantucket northward. As a result, weather authorities are predicting a historic coastal flood event for metropolitan areas like Boston. There, record high tides may be exceeded as winds there are now blowing at a vicious 80 mph.

(A broadening storm is lashing most of the Northeastern U.S. with gale and hurricane force winds even as a places like Boston face massive waves and record storm surge flooding. Image source: Earth Nullschool.)

But what is, perhaps, more concerning is the fact that this storm is still gathering strength. And due to a blocking high over Greenland, the storm — dubbed Riley — is likely to only slowly move off-shore. So its impacts will tend to persist for multiple high tide cycles even as its circulation broadens and it generates an east-to-west fetch of gale to hurricane force winds stretching over a 400 to 600 mile region of ocean and driving directly toward the Northeast and East Coasts.

This will enable a long-lasting storm surge that will generate serious flooding for hundreds of miles of coastline. And on top of that surge, towering waves will relentlessly batter the coast throughout Friday and Saturday. Already the flooding has become quite severe for a number of locations. But the situation is likely to get worse before it gets better. With the worst impacts expected at high tide late tonight.

Scenes like these bring back recollections of Sandy. And like Sandy, the present cyclone has been influenced in a number of ways by human-caused climate change.

The storm’s historic intensity was first fed by a large plume of moisture issuing off a much warmer than normal Gulf of Mexico. Instability, driven by a deep diving trough, formed a low sweeping over the north-central U.S. that then tapped this high volume of moisture. The latent heat in the moisture enabled stronger than normal convection which helped to spike the storm’s early intensity.

(Extremely warm sea surface temperatures both in the Gulf of Mexico and off the U.S. East Coast are helping to fuel the present storm’s record intensity. This is just one of the climate change associated factors contributing to the present storm. Image source: Earth Nullschool.)

Off shore, the Gulf Stream waters are also far warmer than normal. Ranging as high as 9 degrees Celsius above average, this abnormal heat helped to fuel a second plume of moisture and instability. And as these two areas of storminess merged, they rapidly bombed out to high intensity even as their area of storm wind circulation broadened.

To the north, a recent (climate change driven) polar warming event has generated a kind of train wreck in the upper level winds that typically hurry storm systems along. As a result of this train wreck, a blocking high over Greenland is preventing this heat-amplified storm from tracking eastward. Over the next 48 hours, this block will allow a massive pile of water and towering waves to relentlessly hammer the Northeastern and Eastern Coasts of the U.S.

(Large waves and long fetch which is predicted to be generated by this storm on Saturday could produce serious and wide-ranging impacts all up and down the Eastern Seaboard from Hatteras to Portland and points northward. Image source: Earth Nullschool.)

Presently, this storm is expected to produce the second 1 in 100 year flood event that the Boston area has seen in the past year. Under typical climate variability, the likelihood of seeing back-to-back events of this kind would be 1 in 10,000. However, due to the influences of human-caused climate change, the potential for extreme weather events like the one we are presently enduring are greatly enhanced.

(UPDATES TO FOLLOW)

Advertisements
%d bloggers like this: